CN101325912A - 用于在电生理标测和治疗期间显现心脏形态的系统和方法 - Google Patents

用于在电生理标测和治疗期间显现心脏形态的系统和方法 Download PDF

Info

Publication number
CN101325912A
CN101325912A CNA2006800466927A CN200680046692A CN101325912A CN 101325912 A CN101325912 A CN 101325912A CN A2006800466927 A CNA2006800466927 A CN A2006800466927A CN 200680046692 A CN200680046692 A CN 200680046692A CN 101325912 A CN101325912 A CN 101325912A
Authority
CN
China
Prior art keywords
coordinate
conduit
image
data volume
radioscopic image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800466927A
Other languages
English (en)
Other versions
CN101325912B (zh
Inventor
K·埃克
A·格罗特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101325912A publication Critical patent/CN101325912A/zh
Application granted granted Critical
Publication of CN101325912B publication Critical patent/CN101325912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/12Devices for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display

Abstract

提供了便于实时对一个或多个导管尖端相对于解剖结构形态进行视觉检测的系统和方法。本公开的系统和方法特别适于使用自动导航支持来相对于心脏组织定位参考导管,该自动导航支持绘出在X射线透视图像中可见的各显著图像特征。根据各示例性实施例,各显著特征包括各参考导管通常放置在相对于解剖结构的已知标准位置上的一个或多个导管尖端。基于有注解的显著特征,借助于介入设备,本公开的系统和方法有效地用于实现诸如心脏形态的解剖结构与例如医生导入的(各)消融导管的介入设备的对准,并生成融合或叠加的图像。还公开了有利的计算机软件产品。

Description

用于在电生理标测和治疗期间显现心脏形态的系统和方法
本公开的内容通常涉及一种方法、系统及计算机软件产品,用于为了在心动过速的治疗中识别标测(mapping)和/或消融导管(例如)相对于患者心脏形态的位置,而在电生理期间显现心脏形态,以实时地识别导管相对于心脏组织上的各点的位置。
心动过速可由电脉冲的异常传导造成,其中脉冲并不遵循其生理路径而创建例如从一个心室回到心房的反馈回路(折返性心动过速),或者可由一个心室中(例如,在疤痕组织周围)或一个心房中的非生理循环传导路径造成,从而导致心率过快。为了阻滞折返性心动过速或异常传导路径,通常需要环状或线性消融,而且需要消除消融路径的间隙。
心律失常的电生理(EP)诊断和治疗引起越来越高的临床关注度。心动过速(脉搏率的不规则增加并伴有不规律的心跳配置)需要治疗,这是因为心动过速已被确定为诱发高风险脑卒中和心脏梗死的小血凝固的主要来源。心动过速的来源可以是异位(局部患病的心脏组织产生虚假脉冲)或者是由于折返性传导,在折返性传导中点脉冲并不遵循其生理路径而创建寄生的反馈回路,这导致病理学上的心率过快。
心脏标测用于定位心脏内异常的电路径和电流,以及诊断心脏活动的机械及其他方面。已经描述出用于标测心脏的各种方法和设备。射频(RF)消融用于通过消融和杀死心脏组织以便创建破坏导致心律失常的异常电路径的非传导损伤来治疗心律失常。在RF消融中,在消融导管的尖端处导引热量以在心肌中造成损伤。这样经消融的疤痕组织不能再产生或传送电脉冲。局部消融破坏不规则的局部来源,而需要环状或线性消融以阻滞折返性心动过速。
图1描绘了通常称为定位器信息的卡通图像,其涉及患者心脏24左心房的消融过程。穿过心脏组织并形成环的线指示出医生打算进行消融引起的阻滞的位置。
在电生理(EP)过程中,通常难于识别标测和/或消融导管相对于患者心脏形态的位置。在当前最先进的技术中,医生根据通过模糊的心脏阴影或根据在X射线投影图像上可见的参考导管的位置来判断心脏相对于各导管的位置。或者,医生可以使用定位器系统(例如,来自Biosense Webster的CARTO、来自Ensight的NavX等),该定位器系统建立导管到某参考坐标系统的联系,但是对于患者的解剖结构来说并不是必须的。即使用导管上的定位器,医生常常使用透视以努力验证通过定位器系统提供的估算位置。
已经提出在X射线透视图像上叠加分割的心脏解剖轮廓来指示(各)导管的估算位置。但是,心脏的运动(例如,基于间歇/周期的心脏收缩)使得难于可靠或精确地将来自预介入(pre-interventional)图像数据的患者形态叠加在透视图像上。此外,心脏还(例如)基于膈肌的压力相对于胸腔移动。因此,心脏形态在透视图像上的未补偿叠加很可能产生该预介入体积与(不可见的)心脏的实际位置的不良和/或不可靠对准。
因此,人们希望提供一种方法和/或系统,用于补偿心脏的运动并且将心脏解剖轮廓叠加在(各)X射线透视图像上,以促进临床过程和/或诊断,例如,为医生指示导管的位置。人们尤其希望将分割的心脏解剖轮廓叠加在(各)X射线透视图像上以促进临床过程和/或诊断。
正如本文所阐述的,本公开了使用自动导航支持促进了对导管尖端与心脏组织形态的视觉检测,该自动导航支持使用了在X射线透视图像中可见的显著图像特征。根据本公开的各示例性实施例,可能有用的显著特征包括(各)参考导管的一个或多个导管尖端,其放置在与心脏形态相关的已知标准位置。基于所注释的显著特征,本所公开的系统和方法在用介入设备(例如,由医生插入的消融导管)实现解剖结构(例如,心脏形态)的对准过程中是有效的。
本所公开的系统和方法可以有利地用于电生理介入中,其通常发生在透视X射线控制下的导管插入实验室(Cathlab)中。本公开的系统和方法特别用于心脏病的应用,包括心脏组织的标测和/或消融。通过精确和可靠地将心脏形态叠加在实时的透视图像上,医生/临床医生意识到几点临床优势,例如,降低了花费在对不完全的环状和线性消融进行试验和误差纠正以治疗折返性心动过速的时间/努力的量。
与本公开的方法、系统和计算机软件产品相关的附加特征、功能和优势将从后面的说明书中,尤其是在结合附图进行审阅时变得明显。
为了帮助本领域普通技术人员制造和使用本公开的方法、系统和计算机软件产品,请参照附图,在附图中:
图1描绘出在患者心脏左心房的所谓卡通图像上的预期消融路径;
图2是根据本公开示例性实施例的用于在心脏中实时标测心脏消融治疗的系统的示意图;
图3是根据本公开示例性实施例的用于图2系统的示例性导管的末梢部分的示意图;
图4是根据公开示例性实施例的示意性地示出用于确定识别导管相对于患者的感兴趣区域(例如,心脏的腔室)的位置的方法的流程图;
图5示出了具有相对于患者的解剖结构放置的多个导管尖端的X射线透视图像的可视化;以及
图6示出了根据本公开示例性实施例的叠加在X射线透视图像上的变换预介入体积的融合可视化,其在视觉上相对于心脏组织定位出导管尖端。
首先参照图2,根据本公开的一个示例性实施例提供了与临床活诊断过程,例如,受试者25心脏24的心脏消融治疗相结合进行实时标测的标测系统10的示意图。系统10包括至少一个介入设备,例如,细长的标测探针,优选的是导管30,其由用户22通过受试者的静脉或者动脉插入到期望的临床/解剖的位置,例如,心脏的腔室(可以是左或右心室或心房)。导管导入技术是本领域技术人员所公知的。
图3是示出示例性导管30的远端部分的示意图。如前所述,导管通过患者的静脉系统以插入/定位在心脏24中。导管30优选地包括至少一个位置传感器40、尖端电极48和一个或多个温度传感器49,所有这些优选固定在或接近导管的远侧尖端44。温度传感器49例如可以包括一个或多个热电偶和/或热敏电阻。位置传感器40通常产生或接收信号,该信号用于确定导管40在患者解剖结构中,例如在心脏的腔室中的位置和取向。
在示例性导管30中,尖端电极48通常配置成向心脏24施加电信号以消融心脏组织,并且还可优选配置用于诊断目的,例如心脏标测。或者,为了诊断目的和消融心脏组织可以设置分立的电极。根据本公开的示例性实施例,可以在位置传感器40、远侧尖端44和尖端电极48之间建立固定的位置和取向关系。任选地,导管30还可以包括至少一个附加的位置传感器(未示出)和/或射线透不过的标记(参见图5中的点(element)308),以识别分开的导管并确认它们在X射线投影图像上的位置和取向,如本文所描述的。
进一步参照图2,本公开的一个示例性实施中,标测系统10包括显示监视器52、成像系统39和控制台20。定位系统控制单元36、消融功率发生器38、接线盒32、心电图(ECG)记录和/或监测系统34及计算机50典型地包括在系统10中,例如,(整体或部分地)与控制台20结合。计算机50通常包括适当的处理能力和/或信号处理电路,其适于执行本文所描述的处理功能。虽然人们可以预见的是计算机50将执行本地所必需的处理功能,但是还可以预见到可以采用诸如内联网、外联网等的网络计算机系统,以访问处理能力和/或编程和/或数据相关的资源。
因而,根据本公开的各示例性实施例,计算机50与软件和/或硬件一起编程以执行本文所描述的处理功能和通信。例如,软件可以电子的形式以从网络上下载到计算机,或者,这类软件设置在有形介质上,例如磁或光学介质或者其他非易失性存储器,以供与计算机50相连的(各)处理单元进行存取和/或使用。在一些实施例中,计算机50采取通用计算机的形式。
在系统10的示例性实施例中,接线盒32优选地(a)将来自导管30的导线和温度传感器信号路由到消融功率发生器38,(b)将来自导管30的传感器40的定位传感器信息路由到定位系统控制单元36,(c)将由尖端电极48产生的诊断电极信号路由到ECG监视器34。替代或附加地,接线盒32可以将这些信号中的一个或多个直接路由到计算机50(并且可扩展地路由到相关的网络)。ECG监视器34也优选进行耦合以接收来自一个或多个身体表面电极的信号,从而将ECG同步信号提供给与计算机相关的(各)处理单元。
成像系统39进一步可操作地连接到计算机50,以供接收和处理来自成像系统39的图像(或成像信号)。在一个示例性实施例中,成像系统39是X射线透视系统。不过,可以预见到根据本公开的系统和方法可以使用其他成像模式,包括但不局限于MRI、超音波心动描记、CT、或者任何其他可适于提供瞬时图像的模式,所述瞬时图像捕获介入设备(例如,导管)的当前位置以及相关的(各)解剖结构,例如,心脏组织。
定位系统11通常与本公开的系统相连,并且一般包括一组外部辐射器28、导管30的位置传感器40和定位系统控制单元36。正如对于本领域技术人员而言应当是显而易见的,可以采用一个或多个附加的位置传感器,并且这样的(各)附加位置传感器也通常与定位系统11进行通信。外部辐射器28一般定位在受试者25外部的各自位置,并产生由位置传感器40感测的场,例如电磁场。因而,位置传感器40有利地用于检测辐射器28所产生的场,并且基于感测到的磁场数据,便于定位系统控制单元36计算位置传感器40的位置坐标。或者,位置传感器40可以配置并用于产生反过来由外部辐射器28探测的场。
对于本公开的系统和方法的一些示例性应用,通常在附着于受试者体外的外部应用的参考片上,或者在内部放置的导管上的参考位置传感器维持在一般相对于解剖结构(例如,心脏24)的固定位置。通过将导管30的位置与参考导管的位置进行比较,能够相对于解剖结构(例如,心脏)精确确定导管30的坐标,而不管该解剖结构的可能相对运动。事实上,在本公开的示例性实施例中,ECG 34和附加的呼吸传感器用以产生用于产生心跳和呼吸运动补偿的数据,后面将对此做出更加详细地描述。
定位系统控制单元36接收来自位置传感器40(或者当位置传感器40产生能量场时来自外部辐射器28)的信号,计算传感器40和导管30的定位,并且向计算机50传输定位信息和与定位信息有关的能量剂量信息(接收自消融功率发生器38,后面将对此做出描述)。定位系统控制单元36优选地在临床或诊断过程中本质上不断地产生并传输定位信息(和能量剂量信息)。
消融功率发生器38优选地产生尖端电极48所使用的功率以执行消融。优选地,消融功率发生器产生RF功率以执行RF消融。替代或附加地,消融功率发生器借助于其他消融技术,例如激光消融或者超声波消融来引起消融。优选地,应用适当地反馈技术以便于识别心脏标测上根本不适合的消融区域,后面将对此进行更全面的讨论。
根据本公开的示例性实施例,消融功率发生器38包括反馈系统,其能够提供适当的电流水平以将尖端维持在大约50℃到大约65℃间的恒定温度。消融功率发生器38通常例如通过串行通信线路向计算机50传输电流信息,该电流信息涉及用以维持恒定尖端温度所需的电流。消融功率发生器优选地在本质上不断的基础上测量和传输持续的电流水平,即,用以将消融尖端维持在期望温度范围内所必需的电流水平。
或者,根据本公开可以使用在先前心脏过程中所生成的心脏标测。在一个示例性实施例中,从另一个源,例如成像模式(例如,透视、MRI、超音波心动描记、CT、或正电子发射断层摄影(PET))中采集适于患者心脏解剖的心脏标测,并且可以将导管的定位显现在变换后的预介入数据体积集的图像上,该图像定义出用实时X射线图像融合/叠加的心脏标测,后面将对此进行更全面的讨论。
图4是根据本公开的示例性实施例的一个流程图200,其示意性示出一种在临床或诊断过程(例如,EP过程)中确定导管相对于患者感兴趣区域(例如,心脏形态)的位置的方法。在块210中,将对应于多个参考导管的各导管尖端44中的每一个放置在例如相对于心脏组织的已知解剖位置。在心脏病的应用中,各参考导管的导管尖端44一般放置在心脏内的已知标准位置,以使这些尖端44在透视图像中是可见的。在块220中首先进行体积与解剖结构,例如(不可见的)心脏的对准,其中在预介入数据体积(一次)中识别多个参考导管尖端44中每一个的各自位置。预介入数据体积源自先前例如基于3D CT扫描或者MRI成像程序采集的图像。
在对X射线透视图像进行简单预处理(通过形态滤波或者最大减少滑动时间(sliding time maximum subtraction)来进行背景去除)之后,使预处理的图像与代表导管顶端44和附近定位的标记的滤波器相互关联。这一滤波器可以根据先验知识进行选择或者从未受干扰的导管“纯粹’”X射线投影图像中导出,该图像是在进行感兴趣介入之前采集的。关联结果的局部极大值被认为是标记和尖端的候选。
由于尖端44和标记一般排成一条线,因此所有既没有分开太远(例如,不属于一个标记线)也没有靠得太近(例如,由于透视显示缩短而造成的不稳定估算)的候选对为Hough变换,这意味着两个候选相应的线表示在Hough域中。在Hough域中的各个条目(entry)形成环状分布聚类,其允许对基本在同一位置上有不同取向的两条标记线之间进行辨别。
一般使用k均值算法进行Hough域中的聚类,但是也可以使用教科书中的其他聚类方法进行。一旦对聚类进行了识别,就对形成一条线的各候选的端点进行识别并就其各向同性(isotropy)进行测试。导管尖端44与导管的第一标记相比有更多的各向异性,因此可以容易地进行识别。替代或除此之外,从先前的各图像中可以传播线的取向和尖端44的相对位置。
在块230中,将参考导管尖端44的位置进行分割并针对其在X射线透视帧图像(实时)中的各自位置分配坐标。使用有注解的模型对预介入体积数据集(例如,来自先前的MRI或CT成像程序)进行分割。这些注解包含各参考导管的所有公共位置。在分割的过程中,使该模型变形以匹配测得的数据,并且将这些有注解的点自动移动到患者数据集中的各自位置。或者,可以由医生、临床医生或其他临床人员在体积数据集中标记出靶向参考导管的位置。
在块240中,计算几何变换,其以如下的方式对各参考导管尖端44来自3D坐标的各自位置进行变换,所述方式使得通过体积的投影将3D坐标变换到与透视帧(实时)的2D坐标相匹配的2D坐标。该原理的简便快速实现依赖于如下条件,即只有患者解剖结构(例如,心脏形态)的一个静态分割结果的刚性变换可以匹配估算的参考导管位置。为了避免由于解剖结构运动,例如基于心跳运动而造成的伪影,对导管运动进行低通滤波。
更精细的方案可以使用源自解剖结构(例如,不同收缩状态下的心脏)的若干重建的解剖结构(例如,心脏)的4D(例如,3D+时间)模式。在这种情况下,ECG信号给出正确的收缩状态,然后使用刚性变换对各个模型进行拟合。
在块250中,在监视器52上显示透视帧和变换后的预介入数据体积的融合或叠加图像。以这种方式,用户、临床医生和/或介入医生22可以验证感兴趣的导管相对于患者解剖结构(例如,2D心脏形态)的定位,而小是使其位置与定位器系统所使用的某些坐标系统产生关联。可以将融合或叠加的图像数据打印出、存储到盘片上、或者以其他方式进行保存以供未来由医院人员在适当情况时进行参考。
在本公开的各示例性实施例中,将分割的心脏解剖轮廓叠加在X射线透视图像上,以为用户、临床医生或者介入医生22提供在何处相对于患者解剖结构(例如,心脏)定位感兴趣的导管的较好指示。图5是在利用透视图像300叠加或融合分割的心脏解剖轮廓之前的透视图像300。图像300示出了接近心脏24附着于患者皮肤的多个ECG导线302。位于一个心房中的参考EP导管304是三个可见导管306中的中间一个,即,黑色的弯曲结构。该导管304放置在解剖标志,例如冠状窦处。较低的EP导管306似乎位于靠近顶点的左心室。在该导管上,很容易看见射线透不过的标记环308。如图所示,上面的导管306位于心脏的一个心房中。将肺与腹部器官分开的膈肌310可在图像300的右下侧看见,并且是用以确定呼吸摄入的深度的可能来源,其使得心脏沿着定义了患者身体的纵轴移动。图像300示出了从明亮的肺部组织到较暗的腹部组织的弧形过渡。此外,图像300描绘了脊骨和一些肋骨,但这些并不是本公开目的的兴趣所在。
通过使用掩模叠加,即变换后的预介入数据体积和实时采集的X射线透视图像的混合,能够以这样的方式呈现导管相对于心脏形态的当前位置,使得通过心脏解剖的实时图像引导导管到感兴趣区域的引导,因此可容易地实现。因而,参照图6,提供了心脏形态602叠加在透视图像604上的示例性融合或叠加图像600。正如从图6的示例性融合或叠加图像600中显而易见的,临床医生或者其他系统用户获得了更好的装备以在获得由本公开的系统和方法提供的组合的透视和解剖图像时,执行临床和/或诊断过程。
再次参照图2,本发明的一个提议实施例包括集成到工作站或控制台20,例如,EP工作站中的软件模块,一般描绘于计算机50内的100。这样的工作站一般用作临床或诊断过程(例如,EP过程)的中央控制和显示单元,并适于将EP特异性的ECG信号、X射线和定位器信息进行合并。软件模块100接收感兴趣解剖结构(例如,心脏形态)的预介入数据体积集,以将其与解剖结构(例如,看不见的心脏)的X射线图像进行对准,以便在EP标测和治疗过程中显现解剖结构,例如心脏。软件模块100对计算机50下指令以自动地在预介入数据体积集(一次)中识别参考导管的位置。软件模块100还对计算机50下指令以自动地对参考导管尖端进行分割并为它们在X射线透视帧(实时)中的位置分配各自的坐标。其后,软件模块100对计算机50下指令以自动地计算几何变换,其以如下方式对各参考导管的3D坐标位置进行变换,所述方式使得通过该体积的投影得到与透视(实时)2D坐标相匹配的2D坐标。在执行这些步骤之后,软件模块100对计算机50下指令以显示预介入数据体积集的融合或叠加图像和X射线图像。
合并有软件模块100的高级且专用的EP实验室设备的潜能提供了显著的临床和诊断利益。例如,根据预介入数据体积对心脏形态的补偿叠加产生在实时透视图像中对(看不见的)心脏的实时位置的对准。该覆盖的一个优点包括在EP标测和心血管治疗期间实时对感兴趣导管进行位置验证。
任何专用的EP实验室可以合并有根据本文所描述的示例性实施例的EP工作站,例如用于控制和联合各种硬件(例如,X射线成像器、EP ECG采集、消融导管控制、以及定位器系统)的目标硬件。本发明也可以容易地包含在用于这种工作站的软件包之中,例如作为附属模块等。
总之,本公开的系统、方法和计算机软件产品为诊断过程中涉及的临床医生和医护人员,特别是希望降低验证感兴趣导管相对于(各)实际解剖结构(例如,X射线透视期间显现的心脏形态)的定位的时间量的医生,提供了极大的利益。此外,当使用ECG和有关呼吸深度的信息来提供心跳和/或呼吸运动补偿时,简化了补偿的预介入数据体积的叠加。以这种方式,可以在心脏和/或呼吸周期中任何给定时间精确地显现感兴趣导管的定位。相反,当前定位器信息的使用提供了导管相对于某些参考坐标系统的位置,但是对于患者的解剖结构来说并不是必须的。
有利地,本公开的各实施例使该系统、方法和计算机软件的用户能够在过程中实时地,从视觉上确定感兴趣导管相对于叠加在X射线透视图像上的心脏形态的2D表示的位置。结果,能更加快速地辨别出感兴趣导管的位置验证,从而允许在例如没有不必要消融过度心脏组织的情况下获得通常将要形成的更完全的非引导损伤。
虽然本公开的方法、系统和软件产品已经参考其各示例性实施例进行了描述,但是本公开并不局限于这样的示例性实施例。相反,本文所公开的方法、系统和软件产品在不脱离其精神或范围的情况下,允许各种的修改、增强和/或变更。例如,所公开的系统和方法可以特别用于各种的临床和诊断环境,例如,用于注射和/或把干细胞和包含干细胞的治疗放入体内的过程。因此,本公开在其权利要求书范围内实现和包括这些修改、增强和/或变更。

Claims (20)

1、一种用于在介入过程中确定导管相对于患者的感兴趣区域的位置的方法,所述方法包括:
将各导管尖端(44)放置在所述患者(210)体内的已知位置,每一个尖端(44)对应多个参考导管中的一个;
在预介入数据体积(220)中识别所述多个参考导管尖端中每一个的各自位置;
对所述多个参考导管尖端(44)进行分割和在X射线图像(230)中为它们中每一个的位置分配坐标;
计算几何变换,其以如下方式对以3D坐标的形式给出的所述预介入数据体积中所述多个参考导管尖端(44)中每一个的所述位置进行变换,所述方式使得通过所述体积的投影得到2D坐标,所述2D坐标对应于与所述X射线图像(240)的2D坐标相匹配的2D坐标;以及
对所述预介入数据体积的融合或叠加图像和所述X射线图像中的一个进行显示,以验证所述导管相对于所述患者形态(250)的位置。
2、根据权利要求1所述的方法,其中,所述X射线图像是透视图像。
3、根据权利要求1所述的方法,其中,所述预介入数据体积源自先前采集的3D CT扫描和MRI图像中的至少一个。
4、根据权利要求1所述的方法,其中,对所述多个参考导管尖端(44)进行分割和在X射线图像(230)中为它们中每一个的位置分配坐标的所述步骤包括使用有注解的模型。
5、根据权利要求4所述的方法,其中,所述有注解的模型包括所述多个参考导管的所有共同位置。
6、根据权利要求4所述的方法,其中,使用有注解的模型包括:
使所述模型变形以匹配所测得的数据;以及
将各有注解的点移动到患者数据集中各自的位置。
7、根据权利要求4所述的方法,其中,由用户将所述多个参考导管中每一个的所述位置标记在所述预介入数据体积中。
8、根据权利要求1所述的方法,其中,计算几何变换(240)的所述步骤包括对所述患者的所述感兴趣区域形态的一个静态分割结果的刚性变换,以匹配所述多个参考导管中每一个的估算位置。
9、根据权利要求1所述的方法,还包括对所述导管的所述位置进行低通滤波,以避免由于所述感兴趣区域的运动而造成的图像伪影。
10、根据权利要求1所述的方法,其中,所述感兴趣区域包括心脏的形态。
11、根据权利要求1所述的方法,其中,所述变换(240)包括分别相对于由于心跳和呼吸而造成的所述导管的运动,分别使用来自ECG和呼吸传感器的信息,对应于呼吸摄入的深度和心动周期的相位中的至少一个进行刚性变换。
12、根据权利要求1所述的方法,其中,所述介入过程是EP过程。
13、一种用于对体内感兴趣区域进行成像和显现感兴趣导管的成像系统,所述系统包括:
感兴趣的导管,配置成用于标测和消融中的至少一个;
多个参考导管,每一个具有放置在所述体内感兴趣区域的已知位置的导管尖端(44);
图像处理单元(50),其耦合到所述感兴趣导管和所述多个参考导管,并配置成:
在预介入数据体积中识别所述多个参考导管尖端(44)中每一个的各自位置;
对所述多个参考导管尖端(44)进行分割和在X射线图像(230)中为它们中每一个的位置分配坐标;以及
计算几何变换,其以如下方式对以3D坐标的形式给出的所述预介入数据体积中所述多个参考导管尖端(44)中每一个的所述位置进行变换,所述方式使得通过所述体积的投影得到2D坐标,所述2D坐标对应于与所述X射线图像(240)的2D坐标相匹配的2D坐标;以及
显示装置(52),其耦合到所述图像处理单元(50),以显示所述预介入数据体积的融合或叠加图像和所述X射线图像中的一个,从而验证所述导管相对于所述患者形态(250)的位置。
14、根据权利要求13所述的系统,其中,所述X射线图像是透视图像。
15、根据权利要求13所述的系统,其中,所述预介入数据体积源自先前采集的3D CT扫描和MRI图像中的至少一个。
16、根据权利要求13所述的系统,其中,所述感兴趣区域包括心脏形态。
17、一种用于在过程期间在受试者(25)的感兴趣区域中定位感兴趣导管的计算机软件产品(100),所述产品包括计算机可读介质,其中存储有程序指令,所述指令在由计算机读取时,令计算机(50)执行:
在预介入数据体积(220)中识别多个参考导管尖端(44)中每一个的各自位置,每一个导管尖端(44)放置在体内(210)感兴趣区域的已知位置;
对所述多个参考导管尖端(44)进行分割和在X射线图像(230)中为它们中每一个的位置分配坐标;
计算几何变换,其以如下方式对以3D坐标的形式给出的所述预介入数据体积中所述多个参考导管尖端(44)中每一个的所述位置进行变换,所述方式使得通过所述体积的投影得到2D坐标,所述2D坐标对应于与所述X射线图像(240)的2D坐标相匹配的2D坐标;以及
显示所述预介入数据体积的融合或叠加图像和所述X射线图像中的一个,以验证所述导管相对于所述患者形态(250)的位置。
18、根据权利要求17所述的计算机软件产品(100),其中,所述X射线图像是透视图像。
19、根据权利要求17所述的计算机软件产品(100),其中,所述预介入数据体积源自先前采集的3D CT扫描和MRI图像中的至少一个。
20、根据权利要求17所述的计算机软件产品(100),其中,所述感兴趣的区域包括心脏形态。
CN2006800466927A 2005-12-15 2006-12-08 用于在电生理标测和治疗期间显现心脏形态的系统和方法 Active CN101325912B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US75075505P 2005-12-15 2005-12-15
US60/750,755 2005-12-15
PCT/IB2006/054716 WO2007069168A2 (en) 2005-12-15 2006-12-08 System and method for visualizing heart morphologyduring electrophysiology mapping and treatment

Publications (2)

Publication Number Publication Date
CN101325912A true CN101325912A (zh) 2008-12-17
CN101325912B CN101325912B (zh) 2011-01-12

Family

ID=37994865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800466927A Active CN101325912B (zh) 2005-12-15 2006-12-08 用于在电生理标测和治疗期间显现心脏形态的系统和方法

Country Status (5)

Country Link
US (1) US8050739B2 (zh)
EP (1) EP1962689B1 (zh)
JP (1) JP5270365B2 (zh)
CN (1) CN101325912B (zh)
WO (1) WO2007069168A2 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102048548A (zh) * 2009-10-29 2011-05-11 株式会社东芝 X射线摄影装置
CN102196768A (zh) * 2008-10-23 2011-09-21 皇家飞利浦电子股份有限公司 用于介入射频消融或起搏器放置过程中的虚拟解剖结构丰富的实时2d成像的心脏和/或呼吸门控图像采集系统及方法
CN102354339A (zh) * 2011-10-18 2012-02-15 浙江大学 一种实时心脏生理数据与3d心脏模型关联方法和系统
CN103079478A (zh) * 2010-08-23 2013-05-01 皇家飞利浦电子股份有限公司 用于医疗流程的标测系统和方法
CN103648394A (zh) * 2011-06-27 2014-03-19 皇家飞利浦有限公司 使用外科工具曲线与x-射线图像的配准的实时3d血管造影
CN103845053A (zh) * 2012-11-28 2014-06-11 韦伯斯特生物官能(以色列)有限公司 使用局部坐标系的位置感测
CN103892858A (zh) * 2012-12-26 2014-07-02 韦伯斯特生物官能(以色列)有限公司 通过模拟图像而降低的x射线曝光
CN105877744A (zh) * 2015-02-13 2016-08-24 韦伯斯特生物官能(以色列)有限公司 使用冠状窦导管图像补偿心脏运动
CN106308794A (zh) * 2015-06-30 2017-01-11 四川锦江电子科技有限公司 一种标测鞘管心脏卵圆窝定位方法
CN111132621A (zh) * 2017-09-14 2020-05-08 皇家飞利浦有限公司 超声图像处理
CN111568544A (zh) * 2019-02-01 2020-08-25 柯惠有限合伙公司 用于使医疗装置相对于目标的导航视觉化的系统和方法
CN111918611A (zh) * 2018-05-16 2020-11-10 松下电器产业株式会社 胸部x线图像的异常显示控制方法、异常显示控制程序、异常显示控制装置以及服务器装置
CN112451088A (zh) * 2019-09-04 2021-03-09 上海科技大学 基于模型的射频消融手术辅助系统

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545488B2 (en) 2004-09-17 2013-10-01 The Spectranetics Corporation Cardiovascular imaging system
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8989842B2 (en) * 2007-05-16 2015-03-24 General Electric Company System and method to register a tracking system with intracardiac echocardiography (ICE) imaging system
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US8388541B2 (en) 2007-11-26 2013-03-05 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
JP5896737B2 (ja) 2008-04-03 2016-03-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 呼吸測定器、呼吸測定器の作動方法、及び呼吸測定コンピュータプログラム
EP2265175B1 (en) * 2008-04-17 2017-08-23 C.R.Bard, Inc. Systems for breaching a sterile field for intravascular placement of a catheter
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
JP5823096B2 (ja) * 2009-02-10 2015-11-25 株式会社東芝 X線診断装置及び画像処理方法
US9412044B2 (en) * 2009-06-09 2016-08-09 Siemens Aktiengesellschaft Method of compensation of respiratory motion in cardiac imaging
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
EP3542713A1 (en) 2009-06-12 2019-09-25 Bard Access Systems, Inc. Adapter for a catheter tip positioning device
WO2011019760A2 (en) 2009-08-10 2011-02-17 Romedex International Srl Devices and methods for endovascular electrography
EP2517622A3 (en) 2009-09-29 2013-04-24 C. R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8731642B2 (en) * 2009-11-08 2014-05-20 Paieon Inc. Apparatus and method for locating a device tip within a volume
CN102821679B (zh) 2010-02-02 2016-04-27 C·R·巴德股份有限公司 用于导管导航和末端定位的装置和方法
WO2011150376A1 (en) 2010-05-28 2011-12-01 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
JP5980201B2 (ja) 2010-05-28 2016-08-31 シー・アール・バード・インコーポレーテッドC R Bard Incorporated 針および医療用コンポーネントのための挿入誘導システム
JP2013535301A (ja) 2010-08-09 2013-09-12 シー・アール・バード・インコーポレーテッド 超音波プローブヘッド用支持・カバー構造
BR112013002431B1 (pt) 2010-08-20 2021-06-29 C.R. Bard, Inc Sistema para a reconfirmação da posição de um cateter no interior de um paciente
US20120150025A1 (en) * 2010-09-21 2012-06-14 Siemens Corporation Image Registration Using Interventional Devices
EP2632360A4 (en) 2010-10-29 2014-05-21 Bard Inc C R IMPROVED ASSISTED BY BIO-IMPEDANCE OF A MEDICAL DEVICE
EP2675350B1 (en) 2011-02-17 2014-12-17 Koninklijke Philips N.V. System for providing an electrical activity map
RU2616987C2 (ru) 2011-03-02 2017-04-19 Конинклейке Филипс Н.В. Система и способ медицинской визуализации для предоставления представления изображения, поддерживающего точное направление хирургического инструмента при хирургической операции на сосудах
BR112013021977A2 (pt) * 2011-03-02 2018-06-12 King S College London método para visualizar informações de um objeto de interesse, dispositivo para visualizar informações de um objeto de interesse, sistema de formação de imagem médica, elemento de programa de computador e meio legível por computador
US9186515B2 (en) 2011-07-05 2015-11-17 Cardioinsight Technologies, Inc. System and methods to facilitate providing therapy to a patient
KR20140051284A (ko) 2011-07-06 2014-04-30 씨. 알. 바드, 인크. 삽입 유도 시스템을 위한 바늘 길이 결정 및 교정
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
WO2013188833A2 (en) 2012-06-15 2013-12-19 C.R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
US9044156B2 (en) * 2012-12-28 2015-06-02 Biosense Webster (Israel) Ltd. Catheter with improved safety line for distal tip and related method
US9623211B2 (en) * 2013-03-13 2017-04-18 The Spectranetics Corporation Catheter movement control
US10758308B2 (en) 2013-03-14 2020-09-01 The Spectranetics Corporation Controller to select optical channel parameters in a catheter
US11642169B2 (en) 2013-03-14 2023-05-09 The Spectranetics Corporation Smart multiplexed medical laser system
US9757200B2 (en) 2013-03-14 2017-09-12 The Spectranetics Corporation Intelligent catheter
CN105979868B (zh) 2014-02-06 2020-03-10 C·R·巴德股份有限公司 用于血管内装置的导向和放置的系统和方法
JP6548393B2 (ja) * 2014-04-10 2019-07-24 キヤノンメディカルシステムズ株式会社 医用画像表示装置および医用画像表示システム
US10987168B2 (en) 2014-05-29 2021-04-27 Spectranetics Llc System and method for coordinated laser delivery and imaging
US10925511B2 (en) 2014-07-24 2021-02-23 Cardiosolv Ablation Technologies, Inc. System and method for cardiac ablation
US9986983B2 (en) 2014-10-31 2018-06-05 Covidien Lp Computed tomography enhanced fluoroscopic system, device, and method of utilizing the same
US10646118B2 (en) 2014-12-30 2020-05-12 Regents Of The University Of Minnesota Laser catheter with use of reflected light to determine material type in vascular system
US10646275B2 (en) 2014-12-30 2020-05-12 Regents Of The University Of Minnesota Laser catheter with use of determined material type in vascular system in ablation of material
US10646274B2 (en) 2014-12-30 2020-05-12 Regents Of The University Of Minnesota Laser catheter with use of reflected light and force indication to determine material type in vascular system
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US11039888B2 (en) 2015-05-12 2021-06-22 Navix International Limited Calculation of an ablation plan
US10278616B2 (en) 2015-05-12 2019-05-07 Navix International Limited Systems and methods for tracking an intrabody catheter
WO2016181318A1 (en) 2015-05-12 2016-11-17 Navix International Limited Lesion assessment by dielectric property analysis
JP2018520718A (ja) 2015-05-12 2018-08-02 ナヴィックス インターナショナル リミテッドNavix International Limited 誘電特性分析による接触品質評価
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10702226B2 (en) 2015-08-06 2020-07-07 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
US10674982B2 (en) 2015-08-06 2020-06-09 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
US10716525B2 (en) 2015-08-06 2020-07-21 Covidien Lp System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction
US11058386B2 (en) 2015-11-16 2021-07-13 Canon Medical Systems Corporation X-ray diagnosis apparatus and medical image diagnosis system for specifying a device being currently operated
US11172895B2 (en) 2015-12-07 2021-11-16 Covidien Lp Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
JP7118890B2 (ja) * 2016-02-12 2022-08-16 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 画像誘導手術において位置合わせされた蛍光透視画像を使用するためのシステム及び方法
CN114903591A (zh) 2016-03-21 2022-08-16 华盛顿大学 3d医学图像的虚拟现实或增强现实可视化
EP3484362A1 (en) 2016-07-14 2019-05-22 Navix International Limited Characteristic track catheter navigation
US10471263B2 (en) * 2016-09-06 2019-11-12 Catheter Precision, Inc. System and method for cardiac resynchronization
US11382566B1 (en) 2016-11-21 2022-07-12 Walter Kusumoto Lead placement assisted by electrophysiology mapping
US10973436B2 (en) 2016-09-22 2021-04-13 Walter Kusumoto Pericardiocentesis needle guided by cardiac electrophysiology mapping
US11007016B2 (en) 2016-09-22 2021-05-18 Walter Kusumoto Intracardiac ultrasound catheter handheld adapter
US11051886B2 (en) 2016-09-27 2021-07-06 Covidien Lp Systems and methods for performing a surgical navigation procedure
WO2018092063A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
WO2018092062A1 (en) 2016-11-16 2018-05-24 Navix International Limited Real-time display of tissue deformation by interactions with an intra-body probe
US11010983B2 (en) 2016-11-16 2021-05-18 Navix International Limited Tissue model dynamic visual rendering
WO2018092070A1 (en) 2016-11-16 2018-05-24 Navix International Limited Esophagus position detection by electrical mapping
WO2018092071A1 (en) 2016-11-16 2018-05-24 Navix International Limited Estimators for ablation effectiveness
US10699448B2 (en) 2017-06-29 2020-06-30 Covidien Lp System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data
WO2019075074A1 (en) 2017-10-10 2019-04-18 Covidien Lp SYSTEM AND METHOD FOR IDENTIFICATION AND MARKING OF A TARGET IN A THREE-DIMENSIONAL FLUOROSCOPIC RECONSTRUCTION
US11135008B2 (en) 2017-12-13 2021-10-05 Biosense Webster (Israel) Ltd. Graphical user interface (GUI) for displaying estimated cardiac catheter proximity to the esophagus
US11364004B2 (en) 2018-02-08 2022-06-21 Covidien Lp System and method for pose estimation of an imaging device and for determining the location of a medical device with respect to a target
US10905498B2 (en) 2018-02-08 2021-02-02 Covidien Lp System and method for catheter detection in fluoroscopic images and updating displayed position of catheter
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11918423B2 (en) 2018-10-30 2024-03-05 Corindus, Inc. System and method for navigating a device through a path to a target location
WO2021235804A1 (ko) 2020-05-18 2021-11-25 주식회사 루닛 메디컬 장치의 이상을 결정하는 방법 및 시스템

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US6285898B1 (en) * 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
US6983179B2 (en) * 1993-07-20 2006-01-03 Biosense, Inc. Method for mapping a heart using catheters having ultrasonic position sensors
US5718241A (en) * 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
JP3589505B2 (ja) * 1995-06-09 2004-11-17 株式会社日立メディコ 3次元画像処理表示装置
US6915149B2 (en) * 1996-01-08 2005-07-05 Biosense, Inc. Method of pacing a heart using implantable device
US6490474B1 (en) * 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
US6301496B1 (en) * 1998-07-24 2001-10-09 Biosense, Inc. Vector mapping of three-dimensionally reconstructed intrabody organs and method of display
US6226542B1 (en) * 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6950689B1 (en) * 1998-08-03 2005-09-27 Boston Scientific Scimed, Inc. Dynamically alterable three-dimensional graphical model of a body region
DE19843408C2 (de) * 1998-09-22 2000-10-26 Siemens Ag Verfahren zur Wiedergabe von Röntgenbildern beim Positionieren eines in ein Gefäß eingeführten Katheters und Vorrichtung zur Durchführung des Verfahrens
EP1115328A4 (en) 1998-09-24 2004-11-10 Super Dimension Ltd SYSTEM AND METHOD FOR LOCATING A CATHETER DURING AN ENDOCORPOREAL MEDICAL EXAMINATION
JP2000175897A (ja) * 1998-12-17 2000-06-27 Toshiba Corp 手術支援用x線ct装置
NL1012223C2 (nl) * 1999-06-03 2000-12-06 Martil Instr B V Hartgangmaker alsmede gangmakereenheid en elektrische draad daarvoor.
JP4550186B2 (ja) * 1999-09-06 2010-09-22 株式会社東芝 電気生理マッピング装置
US6368285B1 (en) * 1999-09-21 2002-04-09 Biosense, Inc. Method and apparatus for mapping a chamber of a heart
US6298257B1 (en) * 1999-09-22 2001-10-02 Sterotaxis, Inc. Cardiac methods and system
US6389104B1 (en) * 2000-06-30 2002-05-14 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data
US6351513B1 (en) * 2000-06-30 2002-02-26 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on co-registration of other modalities with 3-D angiography reconstruction data
JP2002119507A (ja) * 2000-10-17 2002-04-23 Toshiba Corp 医用装置および医用画像収集表示方法
DE10210646A1 (de) * 2002-03-11 2003-10-09 Siemens Ag Verfahren zur Bilddarstellung eines in einen Untersuchungsbereich eines Patienten eingebrachten medizinischen Instruments
ES2865048T3 (es) * 2002-04-17 2021-10-14 Covidien Lp Estructuras de endoscopio para navegar a un objetivo en una estructura ramificada
DE10322738A1 (de) * 2003-05-20 2004-12-16 Siemens Ag Verfahren zur markerlosen automatischen Fusion von 2D-Fluoro-C-Bogen-Bildern mit präoperativen 3D-Bildern unter Verwendung eines intraoperativ gewonnenen 3D-Datensatzes
US7764984B2 (en) * 2003-07-10 2010-07-27 Koninklijke Philips Electronics N.V. Apparatus and method for navigating an instrument through an anatomical structure
JP5030588B2 (ja) * 2003-08-21 2012-09-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2つの画像を組み合わせるための装置及び方法
DE10340544B4 (de) * 2003-09-01 2006-08-03 Siemens Ag Vorrichtung zur visuellen Unterstützung einer elektrophysiologischen Katheteranwendung im Herzen
DE10357184A1 (de) * 2003-12-08 2005-07-07 Siemens Ag Verfahren zur fusionierten Bilddarstellung
US7450743B2 (en) * 2004-01-21 2008-11-11 Siemens Medical Solutions Usa, Inc. Method and system of affine registration of inter-operative two dimensional images and pre-operative three dimensional images
US20080021297A1 (en) 2004-02-10 2008-01-24 Koninklijke Philips Electronic, N.V. Method,a System for Generating a Spatial Roadmap for an Interventional Device and Quality Control System for Guarding the Spatial Accuracy Thereof
DE102004020587B4 (de) * 2004-04-27 2016-02-18 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur visuellen Unterstützung einer elektrophysiologischen Katheteranwendung mit 2D-Durchleuchtungsbildern
WO2007017771A2 (en) * 2005-08-05 2007-02-15 Koninklijke Philips Electronics, N.V. Catheter navigation system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196768A (zh) * 2008-10-23 2011-09-21 皇家飞利浦电子股份有限公司 用于介入射频消融或起搏器放置过程中的虚拟解剖结构丰富的实时2d成像的心脏和/或呼吸门控图像采集系统及方法
CN102048548A (zh) * 2009-10-29 2011-05-11 株式会社东芝 X射线摄影装置
CN103079478A (zh) * 2010-08-23 2013-05-01 皇家飞利浦电子股份有限公司 用于医疗流程的标测系统和方法
CN103648394B (zh) * 2011-06-27 2016-11-16 皇家飞利浦有限公司 使用外科工具曲线与x-射线图像的配准的实时3d血管造影
CN103648394A (zh) * 2011-06-27 2014-03-19 皇家飞利浦有限公司 使用外科工具曲线与x-射线图像的配准的实时3d血管造影
CN102354339A (zh) * 2011-10-18 2012-02-15 浙江大学 一种实时心脏生理数据与3d心脏模型关联方法和系统
CN103845053A (zh) * 2012-11-28 2014-06-11 韦伯斯特生物官能(以色列)有限公司 使用局部坐标系的位置感测
CN103892858B (zh) * 2012-12-26 2020-08-25 韦伯斯特生物官能(以色列)有限公司 通过模拟图像而降低的x射线曝光
CN103892858A (zh) * 2012-12-26 2014-07-02 韦伯斯特生物官能(以色列)有限公司 通过模拟图像而降低的x射线曝光
CN105877744A (zh) * 2015-02-13 2016-08-24 韦伯斯特生物官能(以色列)有限公司 使用冠状窦导管图像补偿心脏运动
CN106308794A (zh) * 2015-06-30 2017-01-11 四川锦江电子科技有限公司 一种标测鞘管心脏卵圆窝定位方法
CN106308794B (zh) * 2015-06-30 2020-06-30 四川锦江电子科技有限公司 一种标测鞘管心脏卵圆窝定位方法
CN111132621A (zh) * 2017-09-14 2020-05-08 皇家飞利浦有限公司 超声图像处理
CN111132621B (zh) * 2017-09-14 2023-12-12 皇家飞利浦有限公司 超声图像处理
CN111918611A (zh) * 2018-05-16 2020-11-10 松下电器产业株式会社 胸部x线图像的异常显示控制方法、异常显示控制程序、异常显示控制装置以及服务器装置
CN111918611B (zh) * 2018-05-16 2023-12-29 松下控股株式会社 胸部x线图像的异常显示控制方法、记录介质及装置
CN111568544A (zh) * 2019-02-01 2020-08-25 柯惠有限合伙公司 用于使医疗装置相对于目标的导航视觉化的系统和方法
CN112451088A (zh) * 2019-09-04 2021-03-09 上海科技大学 基于模型的射频消融手术辅助系统
CN112451088B (zh) * 2019-09-04 2021-11-19 上海科技大学 基于模型的射频消融手术辅助系统

Also Published As

Publication number Publication date
WO2007069168A2 (en) 2007-06-21
EP1962689A2 (en) 2008-09-03
US20100217116A1 (en) 2010-08-26
CN101325912B (zh) 2011-01-12
EP1962689B1 (en) 2014-02-26
JP2009519083A (ja) 2009-05-14
US8050739B2 (en) 2011-11-01
JP5270365B2 (ja) 2013-08-21
WO2007069168A3 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
CN101325912B (zh) 用于在电生理标测和治疗期间显现心脏形态的系统和方法
US8195271B2 (en) Method and system for performing ablation to treat ventricular tachycardia
EP1922005B1 (en) System for electrophysiology regaining support to continue line and ring ablations
AU2014265090B2 (en) Tracking of catheter from insertion point to heart using impedance measurements
US7599730B2 (en) Navigation system for cardiac therapies
US8527032B2 (en) Imaging system and method of delivery of an instrument to an imaged subject
US8401616B2 (en) Navigation system for cardiac therapies
US8428690B2 (en) Intracardiac echocardiography image reconstruction in combination with position tracking system
US20180360342A1 (en) Renal ablation and visualization system and method with composite anatomical display image
US20080287805A1 (en) System and method to guide an instrument through an imaged subject
US20060116576A1 (en) System and use thereof to provide indication of proximity between catheter and location of interest in 3-D space
US20080283771A1 (en) System and method of combining ultrasound image acquisition with fluoroscopic image acquisition
US20080287783A1 (en) System and method of tracking delivery of an imaging probe
CN105559746A (zh) 采用心内信号的对准标测图
US7940972B2 (en) System and method of extended field of view image acquisition of an imaged subject
US20100298695A1 (en) System and Method for Cardiac Lead Placement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant