CN101163780A - 来自原位转化工艺的气体的处理 - Google Patents

来自原位转化工艺的气体的处理 Download PDF

Info

Publication number
CN101163780A
CN101163780A CNA2006800131302A CN200680013130A CN101163780A CN 101163780 A CN101163780 A CN 101163780A CN A2006800131302 A CNA2006800131302 A CN A2006800131302A CN 200680013130 A CN200680013130 A CN 200680013130A CN 101163780 A CN101163780 A CN 101163780A
Authority
CN
China
Prior art keywords
gas stream
hydrogen
gas
catalyzer
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800131302A
Other languages
English (en)
Other versions
CN101163780B (zh
Inventor
Z·迪亚兹
A·A·德尔帕焦
V·奈尔
A·W·M·勒斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN101163780A publication Critical patent/CN101163780A/zh
Application granted granted Critical
Publication of CN101163780B publication Critical patent/CN101163780B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/17Interconnecting two or more wells by fracturing or otherwise attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/03Heating of hydrocarbons

Abstract

本发明提供一种生产甲烷的方法,所述方法包括:按原位转化工艺从地表下生产地层流体和分离地层流体以产生液体物流和第一气体物流。第一气体物流包含烯烃。在一种或多种催化剂存在下使第一气体物流与氢源接触以产生第二气体物流。可以在接触期间使蒸汽、一氧化碳和/或氢在第一物流中存在或加入第一物流中。在一种或多种附加催化剂存在下使第二气体物流与氢源接触以产生包含甲烷的第三气体物流。

Description

来自原位转化工艺的气体的处理
技术领域
本发明通常涉及从各种地表下地层如含烃的地层生产氢、甲烷和/或其它产品的方法和系统。
背景技术
从地下地层获得的烃通常用作能源、用作原料和用作消费品。对于可利用烃源逐渐消耗的关注和对于生产的烃总体质量下降的关注导致可利用烃源的更有效回收、加工和/或使用的方法的开发。原位工艺可用于从地下地层取出烃材料。需要改变地下地层中烃材料的化学和/或物理性能以允许烃材料更容易地从地下地层取出。化学和物理变化可包括地层中烃材料的产生可脱除流体的原位反应、组成变化、溶解度变化、密度变化、相变和/或粘度变化。流体可以是但不限于气体、液体、乳液、浆料和/或流动特性类似于液体流的固体颗粒物流。
可以将使用原位转化工艺从地下地层获得的地层流体销售和/或加工以生产商业产品。例如可以使用原位转化工艺从含烃的地层生产甲烷。可以将甲烷作为燃料销售或使用,或可以将甲烷作为生产其它化学品的原料销售或使用。由原位转化工艺生产的地层流体可具有与通过常规生产工艺获得的地层流体不同的性能和/或组成。使用原位转化工艺从地下地层获得的地层流体可能不满足运输和/或商业使用的工业标准。因此需要处理从各种含烃地层获得的地层流体的改进方法和系统。
发明内容
在此所述的实施方案通常涉及生产甲烷和/或管道气体的系统和方法。
在一些实施方案中,本发明提供一种生产甲烷的方法,所述方法包括:按原位转化工艺从地表下生产地层流体;分离所述地层流体以产生液体物流和第一气体物流,其中所述第一气体物流包含烯烃;在一种或多种催化剂和蒸汽存在下使所述第一气体物流中的至少所述烯烃与氢源接触以产生第二气体物流;和在一种或多种附加催化剂存在下使所述第二气体物流与氢源接触以产生第三气体物流,其中所述第三气体物流包含甲烷。
在一些实施方案中,本发明也提供一种生产甲烷的方法,所述方法包括:按原位转化工艺从地表下生产地层流体;分离所述地层流体以产生液体物流和第一气体物流,其中所述第一气体物流包含一氧化碳、烯烃和氢;和在一种或多种催化剂存在下使所述第一气体物流与氢源接触以产生第二气体混合物,其中所述第二气体混合物包含甲烷,并且其中所述氢源包含所述第一气体物流中存在的氢。
在一些实施方案中,本发明也提供一种生产甲烷的方法,所述方法包括:按原位转化工艺从地表下生产地层流体;分离所述地层流体以产生液体物流和第一气体物流,其中所述第一气体物流包含一氧化碳、氢和含有至少2个碳原子的烃,其中所述含有至少2个碳原子的烃包括链烷烃和烯烃;和在一种或多种催化剂和二氧化碳存在下使所述第一气体物流与氢接触以产生第二气体物流,其中所述第二气体物流包含甲烷和链烷烃,并且其中所述氢源包含所述第一气体物流中存在的氢。
附图说明
获益于如下详细描述并参考附图,本发明的优点对本领域技术人员是显然的,在附图中:
图1给出用于处理含烃地层的原位转化系统的一部分的实施方案的示意图。
图2给出了生产管道气体的系统的实施方案的示意图。
图3给出了生产管道气体的系统的实施方案的示意图。
图4给出了生产管道气体的系统的实施方案的示意图。
图5给出了生产管道气体的系统的实施方案的示意图。
图6给出了生产管道气体的系统的实施方案的示意图。
尽管本发明易于进行各种改进和替代形式,将其具体实施方案通过例子在附图中给出和可在此详细描述。附图可能不是按比例的。但是应当理解附图及对其详细描述不打算限制本发明到所公开的特定形式,而是相反打算覆盖落入由所附权利要求限定的本发明的精神和范围的所有改进、等同和替代方案。
具体实施方式
如下描述通常涉及处理使用原位转化工艺从含烃地层生产的地层流体的系统和方法。可以处理含烃地层以得到烃产品、氢、甲烷和其它产品。
“烃”通常定义为主要由碳和氢原子形成的分子。烃也可包含其它元素如但不限于卤素、金属元素、氮、氧和/或硫。烃可以是但不限于油母岩质、沥青、焦沥青、油、天然矿物蜡和沥青岩。烃可能位于地球中的矿物脉石中或邻近地球中的矿物脉石。脉石可包括但不限于沉积岩、砂、silicilytes、碳酸盐、硅藻土和其它多孔介质。“烃流体”是包含烃的流体。烃流体可包括、夹带、或被夹带在非烃流体如氢、氮气、一氧化碳、二氧化碳、硫化氢、水和氨。
“地层”包括一个或多个含烃层、一个或多个非烃层、覆盖层和/或底层(underburden)。“覆盖层”和/或“底层”包括一种或多种不同类型的不渗透材料。例如覆盖层和/或底层可包括岩石、页岩、泥岩或湿/密实碳酸盐。在原位转化工艺的一些实施方案中,覆盖层和/或底层可包括相对不渗透和在原位转化加工期间不经受温度的含烃层,所述原位转化加工导致覆盖层和/或底层的含烃层的明显特性变化。例如底层可包含页岩或泥岩,但在原位转化工艺期间不允许底层受热到热解温度。在一些情况下,覆盖层和/或底层可能在一定程度上可渗透。
“地层流体”表示地层中存在的流体和可包括热解流体、合成气、活动化烃和水(蒸汽)。地层流体可包括烃流体以及非烃流体。术语“活动化流体”表示由于地层的热处理而能够流动的含烃地层中的流体。“产生的流体”表示从地层取出的地层流体。
“原位转化工艺”表示从热源加热含烃地层以提高至少一部分地层的温度到热解温度以上使得在地层中产生热解流体的工艺。
“碳数”表示分子中的碳原子数目。烃流体可包括具有不同碳数的各种烃。烃流体可以通过碳数分布描述。碳数和/或碳数分布可以通过真实沸点分布和/或气液色谱确定。
“热源”是基本通过传导和/或辐射传热提供热量到至少一部分地层的任何系统。例如热源可包括电加热器如绝缘导体、细长元件和/或管道中设置的导体。热源也可包括通过燃烧地层外或地层中燃料而产生热量的系统。该系统可以是表面燃烧器、井底气体燃烧器、无焰分布燃烧室和天然分布燃烧室。在一些实施方案中,可以通过其它能源供应提供到一个或多个热源或在一个或多个热源中产生的热量。其它热源可直接加热地层或可以将能量施加到直接或间接加热地层的传递介质。要理解施加热量到地层的一个或多个热源可使用不同的能源。因此,例如对于给定的地层,一些热源可从电阻加热器供应热量,一些热源可从燃烧提供热量和一些热源可从一个或多个其它能源(例如化学反应、太阳能、风能、生物量或其它可再生能源)提供热量。化学反应可包括放热反应(例如氧化反应)。热源也可包括提供热量到邻近和/或围绕加热位置的加热器如加热器套管。
“加热器”是在井或接近井眼区域中产生热量的任何系统或热源。加热器可以是但不限于电加热器、燃烧器、与地层中或从地层产生的材料反应的燃烧器和/或其组合。
“原位转化工艺”表示从热源加热含烃地层以提高至少一部分地层的温度到热解温度以上使得在地层中产生热解流体的工艺。
术语“井眼”表示通过将导管钻入或插入地层而在地层中形成的孔。井眼可具有基本圆形的横截面或其它横截面形状。在此使用的术语“井”和“开口”当表示地层中的开口时可以与术语“井眼”互换使用。
“热解”是由于施加热量的化学键断裂。例如热解可包括仅通过热量将化合物转变成一种或多种其它物质。可以将热量传递到地层的断面以引起热解。在一些地层中,一部分地层和/或地层中的其它材料可通过催化活性促进热解。
“热解流体”或“热解产品”表示基本在烃的热解期间产生的流体。由热解反应产生的流体可以与地层中的其它流体混合。将该混合物视为热解流体或热解产品。在此使用的“热解区”表示反应以形成热解流体的地层(例如相对可渗透地层如沥青砂地层)的容积。
“裂化”表示涉及有机化合物的分解和分子重组以产生比初始存在更多的分子的工艺。在裂化中伴随着氢原子在分子之间的转移而发生一系列反应。例如石脑油可经历热裂化反应以形成乙烯和H2
“可冷凝烃”是在25℃和一个大气压绝压下冷凝的烃。可冷凝烃可包括碳数大于4的烃的混合物。“不可冷凝烃”是在25℃和一个大气压绝压下不冷凝的烃。不可冷凝烃可包括碳数小于5的烃。
“烯烃”是包括具有一个或多个非芳族碳-碳双键的不饱和烃的分子。
“API比重”表示在15.5℃(60)下的API比重。API比重由ASTM方法D6822测定。
“周期表”表示通过国际理论和应用化学联合会(IUPAC),2005年10月规定的周期表。
“第X列金属”表示周期表第X列的一种或多种金属和/或周期表第X列的一种或多种金属的一种或多种化合物,其中X相当于周期表的列数(例如1-12)。例如“第6列金属”表示周期表第6列的金属和/或周期表第6列的一种或多种金属的化合物。
“第X列元素”表示周期表第X列的一种或多种元素和/或周期表第X列的一种或多种元素的一种或多种化合物,其中X相当于周期表的列数(例如13-18)。例如“第15列元素”表示周期表第15列的元素和/或周期表第15列的一种或多种元素的化合物。
在本申请的范围中,将来自周期表的金属的重量、来自周期表的金属化合物的重量、来自周期表的元素的重量或来自周期表的元素化合物的重量计算为金属的重量或元素的重量。例如如果每克催化剂使用0.1克MoO3,则计算的催化剂中钼金属的重量是每克催化剂0.067克。
图1给出了用于处理含烃地层的原位转化系统的一部分的实施方案的示意图。原位转化系统可包含屏蔽井208。屏蔽井用于在处理区域周围形成屏蔽。该屏蔽抑制流体流入和/或流出处理区域。屏蔽井包括但不限于脱水井、真空井、捕集井、注入井、薄浆井、冷冻井或其组合。在一些实施方案中,屏蔽井208是脱水井。脱水井可脱除液体水和/或抑制液体水进入一部分要加热的地层或正在加热的地层。在图1所示的实施方案中,屏蔽井208显示为仅沿热源210的一侧延伸,但屏蔽井典型地包围使用的或要使用的所有热源210以加热地层的处理区域。
将热源210放入至少一部分地层。热源210可包括绝缘导体、导管中的导体加热器、表面燃烧器、无焰分布燃烧室和/或天然分布燃烧室。热源210也可包括其它类型的加热器。热源210提供热量到至少一部分地层以加热地层中的烃。可以使地层中的烃热解以形成地层流体。可以通过供应管线212将能量供应到热源210。供应管线212可依赖于用于加热地层的热源的类型而在结构上不同。用于热源的供应管线212可传输用于电加热器的电,可输送用于燃烧室的燃料或可输送在地层中循环的换热流体。
生产井214用于从地层取出地层流体。在一些实施方案中,生产井214可包含一个或多个热源。生产井中的热源可加热在或靠近生产井的地层的一个或多个部分。生产井中的热源可抑制从地层取出的地层流体的冷凝和回流。
可以将从生产井214生产的地层流体通过收集管216输送到处理设施218。地层流体也可从热源210生产。例如流体可以从热源210生产以控制邻近热源的地层中的压力。可以将从热源210生产的流体通过管路或管道输送到收集管216或可以将生产的流体通过管路或管道直接输送到处理设施218。处理设施218可包含分离单元、反应单元、提质单元、燃料电池、涡轮、贮存容器和/或用于加工生产的地层流体的其它系统和单元。处理设施可从至少一部分从地层生产的烃形成运输燃料。
在一些实施方案中,将从原位转化工艺生产的地层流体送到分离器以将地层流体分成一个或多个原位转化工艺液体物流和/或一个或多个原位转化气体物流。可以进一步处理液体物流和气体物流以得到所需产品。
在一些实施方案中,将原位工艺转化气体在地层的地点处理以生产氢。从原位工艺转化气体生产氢的处理工艺可包括蒸汽甲烷重整、自热重整和/或部分氧化重整。
可以处理全部或至少一部分气体物流以得到满足天然气管道规格的气体。图2、3、4、5和6给出了从原位转化工艺气体物流生产管道气体的系统的实施方案的示意图。
如图2所示,使地层流体220进入气体/液体分离单元222和分离成原位转化工艺液体物流224、原位转化工艺气体226和含水物流228。原位转化工艺气体226进入单元230。在单元230中,原位转化工艺气体226的处理脱除硫化合物、二氧化碳和/或氢以生产气体物流232。单元230可包含物理处理系统和/或化学处理系统。物理处理系统包括但不限于膜单元、变压吸附单元、液体吸收单元和/或低温单元。化学处理系统可包括在处理工艺中使用胺(例如二乙醇胺或二异丙醇胺)、氧化锌、环丁砜、水或其混合物的单元。在一些实施方案中,单元230使用Sulfinol气体处理工艺以脱除硫化合物。可以使用Catacarb(Catacarb,Overland Park,Kansas,U.S.A.)和/或Benfield(UOP,DesPlaines,Illinois,U.S.A.)气体处理工艺脱除二氧化碳。
气体物流232可包含但不限于氢、一氧化碳、甲烷和含有至少2个碳原子的烃或其混合物。在一些实施方案中,气体物流232包含氮和/或稀有气体如氩或氦。在一些实施方案中,气体物流232包含0.0001克(g)至0.1g、0.001g至0.05g或0.01g至0.03g氢每克气体物流。在一些实施方案中,气体物流232包含0.01g至0.6g、0.1g至0.5g或0.2g至0.4g甲烷每克气体物流。
在一些实施方案中,气体物流232包含0.00001g至0.01g、0.0005g至0.005g或0.0001g至0.001g一氧化碳每克气体物流。在一些实施方案中,气体物流232包含痕量二氧化碳。
在一些实施方案中,气体物流232可包含0.0001g至0.5g、0.001g至0.2g或0.01g至0.1g含有至少2个碳原子的烃每克气体物流。含有至少2个碳原子的烃包括链烷烃和烯烃。链烷烃和烯烃包括但不限于乙烷、乙烯、乙炔、丙烷、丙烯、丁烷、丁烯或其混合物。在一些实施方案中,含有至少2个碳原子的烃包含0.0001g至0.5g、0.001g至0.2g或0.01g至0.1g乙烯、乙烷和丙烯的混合物。在一些实施方案中,含有至少2个碳原子的烃包含痕量的含有至少4个碳原子的烃。
在脱除硫化氢的处理之后的管道气体(例如天然气)包含甲烷、乙烷、丙烷、丁烷、二氧化碳、氧气、氮气和少量稀有气体。典型地,处理的天然气每克天然气包含0.7g至0.98g甲烷;0.0001g至0.2g或0.001g至0.05g乙烷、丙烷和丁烷的混合物;0.0001g至0.8g或0.001g至0.02g二氧化碳;0.00001g至0.02g或0.0001至0.002g氧气;痕量稀有气体;和余量是氮气。这种处理的天然气的热含量为40MJ/Nm3至50MJ/Nm3
由于气体物流232在组成上不同于处理的天然气,气体物流232可能不满足管道气体要求。如果气体物流232要用作燃料,则在其燃烧期间产生的排放物可能是不可接受的和/或不满足规范标准。气体物流232可包含使气体物流不适于用作制备另外产品的原料物流的组分或组分含量。
在一些实施方案中,将含有大于2个碳原子的烃从气体物流232分离。可以使用低温工艺、吸附工艺和/或膜工艺分离这些烃。含有大于2个碳原子的烃从气体物流232的脱除可促进和/或强化气体物流的进一步加工。
在此所述的工艺单元可以在如下温度、压力、氢源流量和气体物流流量下操作,或另外如本领域已知的那样操作。温度可以为50-600℃、100-500℃或200-400℃。压力可以为0.1-20MPa、1-12MPa、4-10MPa或6-8MPa。通过在此所述的单元的气体物流的流量可以为5公吨气体物流每天(“MT/D”)至15,000MT/D。在一些实施方案中,通过在此所述的单元的气体物流的流量为10-10,000MT/D或15-5,000MT/D。在一些实施方案中,加工的气体的每小时体积为5,000-25,000倍一个或多个加工单元中催化剂的体积。
如图2所示,气体物流232和氢源234进入氢化单元236。氢源234包括但不限于氢气、烃和/或能够给出氢原子的任何化合物。在一些实施方案中,使氢源234在进入氢化单元236之前与气体物流232混合。在一些实施方案中,氢源是气体物流232中存在的氢和/或烃。在氢化单元236中,在一种或多种催化剂存在下气体物流232与氢源234的接触使气体物流232中的不饱和烃氢化和产生气体物流238。气体物流238可包含氢和饱和烃如甲烷、乙烷和丙烷。氢化单元236可包含分离罐。分离罐从产品气体物流脱除任何重副产物240。
气体物流238离开氢化单元236和进入氢分离单元242。氢分离单元242是能够从进入的气体物流分离氢的任何合适单元。氢分离单元242可以是膜单元、变压吸附单元、液体吸收单元或低温单元。在一些实施方案中,氢分离单元242是膜单元。氢分离单元242可包含从Air Products and Chemicals,Inc.(Allent own,Pennsylvania,U.S.A.)获得的PRISM膜。膜分离单元可以在50-80℃的温度下(例如在66℃的温度下)操作。在氢分离单元242中,从气体物流238分离氢产生富氢物流244和气体物流246。富氢物流244可用于其它工艺,或在一些实施方案中用作氢化单元236的氢源234。
在一些实施方案中,氢分离单元242是低温单元。当氢分离单元242是低温单元时,可以使气体物流238分离成富氢物流、富甲烷物流和/或包含沸点大于或等于乙烷沸点的组分的气体物流。
在一些实施方案中,气体物流246中的氢含量是可接受的和不需要从气体物流246进一步分离氢。当气体物流246中的氢含量是可接受的时,该气体物流可适于用作管道气体。
可能希望从气体物流246进一步分离氢。在一些实施方案中,使用膜从气体物流246分离氢。氢分离膜的例子描述于Matzakos等人的U.S.专利No.6821501中。
在一些实施方案中,从气体物流246脱除氢的方法包括转化氢成水。气体物流246离开氢分离单元242和进入氧化单元248,如图2所示。氧化源250也进入氧化单元248。在氧化单元248中,气体物流246与氧化源250的接触产生气体物流252。气体物流252可包含由于氧化而产生的水。氧化源可包括但不限于纯氧、空气或富氧空气。由于空气或富氧空气包含氮气,可能需要监测提供到氧化单元248的空气或富氧空气的量以保证产品气体满足所需的氮气管道规格。在一些实施方案中,氧化单元248包含催化剂。在一些实施方案中,氧化单元248在50-500℃、100-400℃或200-300℃的温度下操作。
气体物流252离开氧化单元248和进入脱水单元254。在脱水单元254中,从气体物流252分离水产生管道气体256和水258。脱水单元254可以是例如标准气体装置二醇脱水单元和/或分子筛。在一些实施方案中,需要改变从原位转化工艺气体产生的管道气体中甲烷的量。可以通过组分的脱除和/或通过原位转化工艺气体中组分的化学改性而提高管道气体中甲烷的量。
图3给出了通过原位转化工艺气体的重整和甲烷化而提高管道中甲烷的量的实施方案的示意图。
在此所述的原位转化工艺气体的处理产生气体物流232。气体物流232、氢源234和蒸汽源260进入重整单元262。在一些实施方案中,将气体物流232、氢源234和/或蒸汽源260在进入重整单元262之前混合在一起。在一些实施方案中,气体物流232包含可接受量的氢源和因此不需要外加氢源234。在重整单元262中,在一种或多种催化剂和蒸汽源260存在下气体物流232与氢源234的接触产生气体物流264。可以选择催化剂和操作参数使得最小化气体物流232中甲烷的重整。气体物流264包含甲烷、一氧化碳、二氧化碳和/或氢。气体物流264中的二氧化碳、气体物流264中的至少一部分一氧化碳和气体物流264中的至少一部分氢来自碳原子数大于2的烃(例如乙烯、乙烷或丙烯)到一氧化碳和氢的转化。气体物流264中的甲烷、气体物流264中的至少一部分一氧化碳和气体物流264中的至少一部分氢来自气体物流232和氢源234。
重整单元262可以在此处所述的温度和压力下操作或另外如本领域已知的那样操作。在一些实施方案中,重整单元262在250-500℃的温度下操作。在一些实施方案中,重整单元262中的压力为1-5MPa。
为满足例如管道规格可能需要脱除气体物流264中的过量一氧化碳。可以使用甲烷化工艺从气体物流264脱除一氧化碳。一氧化碳的甲烷化产生甲烷和水。气体物流264离开重整单元262和进入甲烷化单元266。在甲烷化单元266中,在一种或多种催化剂存在下气体物流264与氢源的接触产生气体物流268。氢源可以由气体物流264中存在的氢和/或烃提供。在一些实施方案中,向甲烷化单元和/或气体物流中加入另外的氢源。气体物流268可包含水、一氧化碳和甲烷。
甲烷化单元266可以在此处所述的温度和压力下操作或另外如本领域已知的那样操作。在一些实施方案中,甲烷化单元266在260-320℃的温度下操作。在一些实施方案中,甲烷化单元266中的压力为1-5MPa。
可以在二氧化碳分离单元270中从气体物流268分离二氧化碳。在一些实施方案中,气体物流268离开甲烷化单元266和在进入二氧化碳分离单元270之前通过换热器。在二氧化碳分离单元270中,从气体物流268分离二氧化碳产生气体物流272和二氧化碳物流274。在一些实施方案中,分离工艺使用胺以促进二氧化碳从气体物流268的脱除。在一些实施方案中,气体物流272包含至多0.1g、至多0.08g、至多0.06或至多0.04g二氧化碳每克气体物流。在一些实施方案中,气体物流272基本不含有二氧化碳。
气体物流272离开二氧化碳分离单元270和进入脱水单元254。在脱水单元254中,水从气体物流272的分离产生管道气体256和水258。
图4给出了通过原位转化工艺气体的同时氢化和甲烷化而提高管道气体中甲烷量的实施方案的示意图。原位转化工艺气体中一氧化碳和碳原子数大于2的烃的氢化和甲烷化产生甲烷。在一个处理单元中的同时氢化和甲烷化可抑制杂质的形成。抑制杂质的形成提高从原位转化工艺气体的甲烷产量。在一些实施方案中,原位转化工艺气体的氢源含量是可接受的和不需要外部氢源。
在此所述的原位转化工艺气体的处理产生气体物流232。气体物流232进入氢化和甲烷化单元276。在氢化和甲烷化单元276中,在催化剂或多种催化剂存在下气体物流232与氢源的接触产生气体物流278。可以由气体物流232中的氢和/或烃提供氢源。在一些实施方案中,向氢化和甲烷化单元276和/或气体物流232中加入另外的氢源。气体物流278可包含甲烷、氢和在一些实施方案中至少一部分气体物流232。在一些实施方案中,气体物流278包含0.05g至1g、0.8g至0.99g或0.9g至0.95g甲烷每克气体物流。气体物流278可包含至多0.1g含有至少2个碳原子的烃和至多0.01g一氧化碳每克气体物流。在一些实施方案中,气体物流278包含痕量一氧化碳和/或含有至少2个碳原子的烃。
氢化和甲烷化单元276可以在此处所述的温度和压力下操作或另外如本领域已知的那样操作。在一些实施方案中,氢化和甲烷化单元276在200-350℃的温度下操作。在一些实施方案中,氢化和甲烷化单元276中的压力为2-12MPa、4-10MPa或6-8MPa。在一些实施方案中,氢化和甲烷化单元276中的压力为约8MPa。
可能需要从气体物流278脱除氢。从气体物流278脱除氢可允许气体物流满足管道规格和/或处理要求。
在图4中,气体物流278离开甲烷化单元276和进入精制单元280。二氧化碳物流282也进入精制单元280或在精制单元的上游与气体物流278混合。在精制单元280中,在一种或多种催化剂存在下气体物流278与二氧化碳物流282的接触产生气体物流284。氢与二氧化碳的反应产生水和甲烷。气体物流284可包含甲烷、水和在一些实施方案中至少一部分气体物流278。在一些实施方案中,精制单元280是带有二氧化碳进料管线的氢化和甲烷化单元276的一部分。
精制单元280可以在此处所述的温度和压力下操作或另外如本领域已知的那样操作。在一些实施方案中,精制单元280在200-400℃的温度下操作。在一些实施方案中,精制单元280中的压力为2-12MPa、4-10MPa或6-8MPa。在一些实施方案中,精制单元280中的压力为约8MPa。
气体物流284进入脱水单元254。在脱水单元254中,从气体物流284分离水产生管道气体256和水258。
图5给出了通过在过量二氧化碳存在下原位转化工艺气体同时氢化和甲烷化及分离乙烷和重质烃而提高管道气体中甲烷量的实施方案的示意图。未用于氢化和甲烷化工艺的氢可与二氧化碳反应以形成水和甲烷。然后可以从工艺物流分离水。在二氧化碳存在下在一个处理单元中同时氢化和甲烷化可抑制杂质的形成。
在此所述的原位转化工艺气体的处理产生气体物流232。气体物流232和二氧化碳物流282进入氢化和甲烷化单元286。在氢化和甲烷化单元286中,在一种或多种催化剂和二氧化碳存在下气体物流232与氢源接触产生气体物流288。可以由气体物流232中的氢和/或烃提供氢源。在一些实施方案中,向氢化和甲烷化单元286或气体物流232中加入另外的氢源。可以控制氢化和甲烷化单元286中氢的数量和/或可以控制二氧化碳的流量以提供气体物流288中氢的最小数量。
气体物流288可包含水、氢、甲烷、乙烷和在一些实施方案中至少一部分来自气体物流232的含有大于2个碳原子的烃。在一些实施方案中,气体物流288包含0.05g至0.7g、0.1g至0.6g或0.2g至0.5g甲烷每克气体物流。气体物流288包含0.0001g至0.4g、0.001g至0.2g或0.01g至0.1g乙烷每克气体物流。在一些实施方案中,气体物流288包含痕量一氧化碳和烯烃。
氢化和甲烷化单元286可以在此处所述的温度和压力下操作或另外如本领域已知的那样操作。在一些实施方案中,氢化和甲烷化单元286在60-350℃的温度下和1-12MPa、2-10MPa或4-8MPa的压力下操作。
在一些实施方案中,需要分离乙烷与甲烷。可以使用膜和/或低温技术实施分离。低温工艺可要求气体物流中的水含量按重量至多为百万分之1-10份。
可以使用通常已知的水脱除技术脱除气体物流288中的水。气体物流288离开氢化和甲烷化单元286、通过换热器290和然后进入脱水单元254。在脱水单元254中,如先前所述的从气体物流288分离水以及通过与吸收单元和/或分子筛接触产生气体物流292和水258。气体物流292的水含量可为至多10ppm、至多5ppm或至多1ppm。在一些实施方案中,气体物流292中的水含量为0.01-10ppm、0.05-5ppm或0.1-1ppm。
低温分离器294将气体物流292分离成管道气体256和烃物流296。管道气体物流256包含甲烷和/或二氧化碳。烃物流296包含乙烷和在一些实施方案中残余的含有至少2个碳原子的烃。在一些实施方案中,可以将含有至少2个碳原子的烃分离成乙烷和另外的烃和/或送到其它操作单元。
图6给出了通过在过量氢存在下原位转化工艺气体同时氢化和甲烷化而提高管道气体中甲烷量的实施方案的示意图。在氢化和甲烷化工艺期间使用过量氢可能延长催化剂寿命、控制反应速率和/或抑制杂质的形成。
在此所述的原位转化工艺气体的处理产生气体物流232。气体物流232和氢源234进入氢化和甲烷化单元298。在一些实施方案中,将氢源234加入气体物流232中。在氢化和甲烷化单元298中,在一种或多种催化剂存在下气体物流232与氢源234接触产生气体物流300。在一些实施方案中,可以将二氧化碳加入氢化和甲烷化单元298中。可以控制氢化和甲烷化单元298中氢的数量以对氢化和甲烷化单元提供过量氢。
气体物流300可包含水、氢、甲烷、乙烷和在一些实施方案中至少一部分来自气体物流232的含有大于2个碳原子的烃。在一些实施方案中,气体物流300包含0.05g至0.9g、0.1g至0.6g或0.2g至0.5g甲烷每克气体物流。气体物流300包含0.0001g至0.4g、0.001g至0.2g或0.01g至0.1g乙烷每克气体物流。在一些实施方案中,气体物流300包含一氧化碳和痕量烯烃。
氢化和甲烷化单元298可以在此处所述的温度和压力下操作或另外如本领域已知的那样操作。在一些实施方案中,氢化和甲烷化单元298在60-400℃的温度下和1-12MPa、2-8MPa或3-5MPa的氢分压下操作。在一些实施方案中,氢化和甲烷化单元298中的氢分压为约4MPa。
气体物流300进入气体分离单元302。气体分离单元302是能够从气体物流300分离氢和/或二氧化碳的任何合适单元或单元组合。气体分离单元可以是变压吸附单元、膜单元、液体吸收单元或低温单元。在一些实施方案中,气体物流300离开氢化和甲烷化单元298和在进入气体分离单元302之前通过换热器。在气体分离单元302中,从气体物流300分离氢产生气体物流304和氢物流306。可以将氢物流306循环到氢化和甲烷化单元298、在氢化甲烷化单元的上游与气体物流232混合和/或与氢源234混合。在其中将二氧化碳加入氢化和甲烷化单元298的实施方案中,在分离单元302中从气体物流304分离二氧化碳。可以将分离的二氧化碳循环到氢化和甲烷化单元、在氢化和甲烷化单元的上游与气体物流232混合和/或与进入氢化和甲烷化单元的二氧化碳物流混合。
气体物流304进入脱水单元254。在脱水单元254中,从气体物流304分离水产生管道气体256和水258。
应当理解可以通过图2、3、4、5和6中所述过程的一种或多种的组合来处理气体物流232。例如可以在氢化和甲烷化单元276(图4)、286(图5)或296(图6)中处理来自重整单元262(图3)的全部或至少一部分气体物流。从氢化单元236产生的全部或至少一部分气体物流可进入如下单元或与进入如下单元的气体物流组合:重整单元262、氢化和甲烷化单元276和/或氢化和甲烷化单元286。在一些实施方案中,可以将气体物流232加氢处理和/或用于其它处理单元。
用于生产满足管道规格的天然气的催化剂可以是本体金属催化剂或负载的催化剂。本体金属催化剂包含第6-10列金属。负载的催化剂包含在载体上的第6-10列金属。第6-10列金属包括但不限于钒、铬、钼、钨、锰、锝、铼、铁、钴、镍、钌、钯、铑、锇、铱、铂或其混合物。催化剂的第6-10列金属总含量为每克催化剂至少0.0001g、至少0.001g、至少0.01g或为0.0001-0.6g、0.005-0.3g、0.001-0.1g或0.01-0.08g。在一些实施方案中,催化剂除第6-10列金属以外包含第15列元素。第15列元素的例子是磷。催化剂的第15列元素总含量为每克催化剂0.000001-0.1g、0.00001-0.06g、0.00005-0.03g或0.0001-0.001g。在一些实施方案中,催化剂包含第6列金属与一种或多种第7-10列金属的组合。第6列金属与第7-10列金属的摩尔比可以为0.1-20、1-10或2-5。在一些实施方案中,催化剂除第6列金属与一种或多种第7-10列金属的组合以外包含第15列元素。
在一些实施方案中,将第6-10列金属引入载体中或沉积在载体上以形成催化剂。在一些实施方案中,将与第15列元素组合的第6-10列金属引入载体中或沉积在载体上以形成催化剂。在其中将金属和/或元素负载的实施方案中,催化剂的重量包括所有载体、所有金属和所有元素。载体可以是多孔的和可包括:耐火氧化物;钽、铌、钒、钪或镧系元素金属的氧化物;多孔碳基材料;沸石;或其组合。耐火氢化物可包括但不限于氧化铝、二氧化硅、二氧化硅-氧化铝、氧化钛、氧化锆、氧化镁或其混合物。载体可以从商业制造商如CRI/CriterionInc.(休斯敦,德克萨斯,U.S.A.)获得。多孔碳基材料包括但不限于活性炭和/或多孔石墨。沸石的例子包括Y-沸石、β沸石、丝光沸石、ZSM-5沸石和镁碱沸石。沸石可以从商业制造商如Zeolyst(ValleyForge,宾夕法尼亚,U.S.A.)获得。
可以使用通常已知的催化剂制备技术制备负载的催化剂。催化剂制备的例子描述于Gabrielov等人的U.S.专利No.6218333、Gabrielov等人的U.S.专利No.6290841、Boon等人的U.S.专利No.5744025和Bhan的U.S.专利No.6759364中。
在一些实施方案中,用金属浸渍载体以形成催化剂。在一些实施方案中,在用金属浸渍之前将载体在400-1200℃、450-1000℃或600-900℃的温度下热处理。在一些实施方案中,在催化剂的制备期间使用浸渍助剂。浸渍助剂的例子包括柠檬酸组分、乙二胺四乙酸(EDTA)、氨或其混合物。
可以将第6-10列金属和载体采用合适的混合设备混合以形成第6-10列金属/载体混合物。可以使用合适的混合设备混合第6-10列金属/载体混合物。合适混合设备的例子包括转鼓混合机、固定壳或槽、Muller混合机(间歇类型或连续类型)、冲击混合机、任何其它通常已知的混合机或合适地提供第6-10列金属载体混合物的其它设备。在一些实施方案中,使材料混合直到将第6-10列金属基本均匀地分散在载体中。
在一些实施方案中,在结合载体与金属之后将催化剂在150-750℃、200-740℃或400-730℃的温度下热处理。在一些实施方案中,将催化剂在热空气和/或富氧空气存在下在400-1000℃的温度下热处理以脱除挥发性物质从而将至少一部分第6-10列金属转化成对应的金属氧化物。
在其它实施方案中,将催化剂前体在空气存在下在35-500℃的温度下热处理1-3小时的时间以脱除大部分挥发性组分而不将第6-10列金属转化成对应的金属氧化物。由这种方法制备的催化剂通常称为“未煅烧”催化剂。当采用此方式制备催化剂时,与硫化方法结合可以在载体中基本均匀地分散活性金属。这种催化剂的制备描述于Gabrielov等人的U.S.专利No.6218333和Gabrielov等人的U.S.专利No.6290841中。
在一些实施方案中,使用本领域已知的技术(例如ACTICATTM方法,CRI International,Inc.(休斯敦,德克萨斯,U.S.A.))将催化剂和/或催化剂前体硫化以形成金属硫化物(在使用之前)。在一些实施方案中,将催化剂干燥然后硫化。替代地,可以通过使催化剂与包含含硫化合物的气体物流接触而使催化剂原位硫化。原位硫化可采用在氢存在下的气态硫化氢或液相硫化剂如有机硫化合物(包括烷基硫化物、多硫化物、硫醇和亚砜)。离位(ex-situ)硫化方法描述于Seamans等人的U.S.专利No.5468372和Seamans等人的U.S.专利No.5688736中。
在一些实施方案中,第一种类型的催化剂(“第一催化剂”)包含第6-10列金属和载体。第一催化剂在一些实施方案中是未煅烧催化剂。在一些实施方案中,第一催化剂包含钼和镍。在某些催化剂中,第一催化剂包含磷。在一些实施方案中,第一催化剂包含在载体上的第9-10列金属。第9列金属可能是钴和第10列金属可能是镍。在一些实施方案中,第一催化剂包含第10-11列金属。第10列金属可能是镍和第11列金属可能是铜。
第一催化剂可协助烯烃到烷烃的氢化。在一些实施方案中,将第一催化剂在氢化单元中使用。第一催化剂每克载体可包含至少0.1g、至少0.2g或至少0.3g第10列金属。在一些实施方案中,第10列金属是镍。在一些实施方案中,第10列金属是钯和/或铂和钯的混合合金。使用混合合金催化剂可强化具有含硫化合物的气体物流的处理。在一些实施方案中,第一催化剂是商业催化剂。商业催化剂的例子包括但不限于Criterion 424、DN-140、DN-200和DN-3100、KL6566、KL6560、KL6562、KL6564、KL7756、KL7762、KL7763、KL7731、C-624、C654,其全部可由CRI/Criterion Inc获得。
在一些实施方案中,第二种类型的催化剂(“第二催化剂”)包含在载体上的第10列金属。第10列金属可能是铂和/或钯。在一些实施方案中,催化剂包含每克催化剂0.001g至0.05g或0.01g至0.02g铂和/或钯。第二催化剂可协助氢氧化形成水。在一些实施方案中,第二催化剂用于氧化单元。在一些实施方案中,第二催化剂是商业催化剂。商业第二催化剂的例子包括从CRI/Criterion Inc获得的KL87748。
在一些实施方案中,第三种类型的催化剂(“第三催化剂”)包含在载体上的第6-10列金属。在一些实施方案中,第三催化剂包含在载体上的第9-10列金属。第9列金属可能是钴和第10列金属可能是镍。在一些实施方案中,镍金属的含量是每克催化剂0.1g至0.3g。用于第三催化剂的载体可包括氧化锆。第三催化剂可协助含有大于2个碳原子的烃重整到一氧化碳和氢。第三催化剂可用于重整单元。在一些实施方案中,第三催化剂是商业催化剂。商业第三催化剂的例子包括但不限于从Johnson Matthey(伦敦,英格兰)获得的CRG-FR和/或CRG-LH。
在一些实施方案中,第四种类型的催化剂(“第四催化剂”)包含在载体上的第6-10列金属。在一些实施方案中,第四催化剂包含在载体上与第10列金属组合的第8列金属。第8列金属可能是钌和第10列金属可能是镍、钯、铂或其混合物。在一些实施方案中,第四催化剂载体包括钽、铌、钒、镧系元素、钪的氧化物或其混合物。第四催化剂可用于转化一氧化碳和氢成为甲烷和水。在一些实施方案中,第四催化剂用于甲烷化单元。在一些实施方案中,第四催化剂是商业催化剂。商业第四催化剂的例子包括但不限于从Johnson Matthey获得的KATALCO11-4和/或KATALCO11-4R。
在一些实施方案中,第五种类型的催化剂(“第五催化剂”)包含在载体上的第6-10列金属。在一些实施方案中,第四催化剂包含第10列金属。第五催化剂可包含每克第五催化剂0.1g至0.99g、0.3g至0.9g、0.5g至0.8g或0.6g至0.7g第10列金属。在一些实施方案中,第10列金属是镍。在一些实施方案中,含有至少0.5g镍每克第五催化剂的催化剂在氢化和甲烷化工艺中具有提高的稳定性。第五催化剂可协助烃和二氧化碳到甲烷的转化。第五催化剂可用于氢化和甲烷化单元和/或精制单元。在一些实施方案中,第五催化剂是商业催化剂。商业第五催化剂的例子是从CRI/Criterion Inc获得的KL6524-T。
考虑到上述内容,本发明的各个方面的进一步改进和替代实施方案对本领域技术人员是显然的。因此,此描述仅解释为说明性的和目的在于教导本领域技术人员实施本发明的通用方式。理解在此给出和描述的本发明形式为目前优选的实施方案。可以用元素和材料替代在此说明和描述的那些,可以逆转部件和方法,和本发明的某些特征可以单独利用,在获益于本发明的此描述之后所有以上情况对本领域技术人员是显然的。可以在此处所述的元素中进行变化而不背离以下权利要求所述的本发明的精神和范围。此外应理解可在一些实施方案中独立地组合在此所述的特征。

Claims (21)

1.一种生产甲烷的方法,所述方法包括:
按原位转化工艺从地表下提供地层流体;
分离所述地层流体以产生液体物流和第一气体物流,其中所述第一气体物流包含烯烃;
在一种或多种催化剂和蒸汽存在下使所述第一气体物流中的至少一部分所述烯烃与氢源接触以产生第二气体物流;和
在一种或多种附加催化剂存在下使所述第二气体物流与氢源接触以产生第三气体物流,其中所述第三气体物流包含甲烷。
2.权利要求1的方法,其中至少一种附加催化剂包含镍。
3.权利要求1或2的方法,其中所述氢源是所述第一气体物流或第二气体物流中存在的氢。
4.权利要求1-3任一项的方法,进一步包括处理所述第三气体物流以产生管道质量气体。
5.一种生产甲烷的方法,所述方法包括:
按原位转化工艺从地表下提供地层流体;
分离所述地层流体以产生液体物流和第一气体物流,其中所述第一气体物流包含一氧化碳、烯烃和氢;和
在一种或多种催化剂存在下使所述第一气体物流与氢源接触以产生第二气体混合物,其中所述第二气体混合物包含甲烷,并且其中所述氢源包含所述第一气体物流中存在的氢。
6.权利要求1-5任一项的方法,其中所述第一气体物流还包含乙烷。
7.权利要求5或6任一项的方法,其中至少一种催化剂包含每克催化剂至少0.3克镍。
8.权利要求5-7任一项的方法,进一步包括处理所述第二气体物流以产生管道质量气体。
9.一种生产甲烷的方法,所述方法包括:
按原位转化工艺从地表下提供地层流体;
分离所述地层流体以产生液体物流和第一气体物流,其中所述第一气体物流包含一氧化碳、氢和含有至少2个碳原子的烃,其中所述含有至少2个碳原子的烃包括链烷烃和烯烃;和
在一种或多种催化剂和二氧化碳存在下使所述第一气体物流与氢接触以产生第二气体物流,其中所述第二气体物流包含甲烷和链烷烃,并且其中所述氢源包含所述第一气体物流中存在的氢。
10.权利要求9的方法,其中所述链烷烃包括乙烷。
11.权利要求9或10任一项的方法,进一步包括分离甲烷与链烷烃。
12.权利要求9-11任一项的方法,其中至少一种催化剂包含每克催化剂至少0.1克镍。
13.权利要求9-12任一项的方法,其中所述第二气体物流包含水。
14.权利要求13的方法,进一步包括从所述第二气体物流分离水。
15.权利要求13的方法,进一步包括从所述第二气体物流分离水以产生第三气体物流,其中所述第三气体物流的水含量为约0.01ppm至约10ppm。
16.权利要求1-15任一项的方法,其中至少一种催化剂包含一种或多种周期表第6-10列的金属和/或一种或多种周期表第6-10列的金属的一种或多种化合物。
17.权利要求1-16任一项的方法,其中至少一种催化剂包含镍。
18.权利要求1-17任一项的方法,其中至少一种催化剂包含氧化铝、二氧化钛、氧化锆或其混合物。
19.权利要求1-18任一项的方法,其中所述烯烃包括乙烯和丙烯。
20.一种生产甲烷的方法,所述方法包括:按原位转化工艺从地表下提供地层流体;分离所述地层流体以产生液体物流和一个或多个气体物流,其中至少一个气体物流包含烯烃;和使用一种或多种权利要求1-19任一项的方法使气体物流的至少一种或多种接触。
21.一种组合物,包含使用一种或多种权利要求1-20任一项的方法生产的甲烷。
CN200680013130.2A 2005-04-22 2006-04-24 来自原位转化工艺的气体的处理 Expired - Fee Related CN101163780B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67408105P 2005-04-22 2005-04-22
US60/674,081 2005-04-22
PCT/US2006/015286 WO2006116207A2 (en) 2005-04-22 2006-04-24 Treatment of gas from an in situ conversion process

Publications (2)

Publication Number Publication Date
CN101163780A true CN101163780A (zh) 2008-04-16
CN101163780B CN101163780B (zh) 2015-01-07

Family

ID=36655240

Family Applications (12)

Application Number Title Priority Date Filing Date
CN200680013320.4A Expired - Fee Related CN101163856B (zh) 2005-04-22 2006-04-21 成组的暴露金属加热器
CN200680013121.3A Expired - Fee Related CN101163858B (zh) 2005-04-22 2006-04-21 从地下地层生产碳氢化合物的现场转换系统及相关方法
CN200680013090.1A Expired - Fee Related CN101163854B (zh) 2005-04-22 2006-04-21 利用非铁磁导体的温度限制加热器
CN200680013101.6A Expired - Fee Related CN101163855B (zh) 2005-04-22 2006-04-21 用于加热地表下地层的系统及耦联该系统中加热器的方法
CN200680013322.3A Expired - Fee Related CN101163853B (zh) 2005-04-22 2006-04-21 以三相y字构造结合的用于地下岩层加热的绝缘导体限温加热器
CN200680013092.0A Pending CN101163851A (zh) 2005-04-22 2006-04-21 用于原地转换过程的双阻挡层系统
CN200680013123.2A Expired - Fee Related CN101163860B (zh) 2005-04-22 2006-04-21 用于地下屏障的低温监视系统
CN200680013122.8A Expired - Fee Related CN101163852B (zh) 2005-04-22 2006-04-21 用于现场方法的低温屏障
CN200680013093.5A Expired - Fee Related CN101300401B (zh) 2005-04-22 2006-04-21 用于通过现场转化工艺生产流体的方法及系统
CN200680013312.XA Expired - Fee Related CN101163859B (zh) 2005-04-22 2006-04-21 利用井眼在地层的至少两个区域中的现场转化处理系统
CN200680013103.5A Expired - Fee Related CN101163857B (zh) 2005-04-22 2006-04-21 用于对地下岩层进行加热的系统和方法
CN200680013130.2A Expired - Fee Related CN101163780B (zh) 2005-04-22 2006-04-24 来自原位转化工艺的气体的处理

Family Applications Before (11)

Application Number Title Priority Date Filing Date
CN200680013320.4A Expired - Fee Related CN101163856B (zh) 2005-04-22 2006-04-21 成组的暴露金属加热器
CN200680013121.3A Expired - Fee Related CN101163858B (zh) 2005-04-22 2006-04-21 从地下地层生产碳氢化合物的现场转换系统及相关方法
CN200680013090.1A Expired - Fee Related CN101163854B (zh) 2005-04-22 2006-04-21 利用非铁磁导体的温度限制加热器
CN200680013101.6A Expired - Fee Related CN101163855B (zh) 2005-04-22 2006-04-21 用于加热地表下地层的系统及耦联该系统中加热器的方法
CN200680013322.3A Expired - Fee Related CN101163853B (zh) 2005-04-22 2006-04-21 以三相y字构造结合的用于地下岩层加热的绝缘导体限温加热器
CN200680013092.0A Pending CN101163851A (zh) 2005-04-22 2006-04-21 用于原地转换过程的双阻挡层系统
CN200680013123.2A Expired - Fee Related CN101163860B (zh) 2005-04-22 2006-04-21 用于地下屏障的低温监视系统
CN200680013122.8A Expired - Fee Related CN101163852B (zh) 2005-04-22 2006-04-21 用于现场方法的低温屏障
CN200680013093.5A Expired - Fee Related CN101300401B (zh) 2005-04-22 2006-04-21 用于通过现场转化工艺生产流体的方法及系统
CN200680013312.XA Expired - Fee Related CN101163859B (zh) 2005-04-22 2006-04-21 利用井眼在地层的至少两个区域中的现场转化处理系统
CN200680013103.5A Expired - Fee Related CN101163857B (zh) 2005-04-22 2006-04-21 用于对地下岩层进行加热的系统和方法

Country Status (14)

Country Link
US (1) US7831133B2 (zh)
EP (12) EP1871981A1 (zh)
CN (12) CN101163856B (zh)
AT (5) ATE437290T1 (zh)
AU (13) AU2006240175B2 (zh)
CA (12) CA2606165C (zh)
DE (5) DE602006007450D1 (zh)
EA (12) EA012901B1 (zh)
IL (12) IL186208A (zh)
IN (1) IN266867B (zh)
MA (12) MA29468B1 (zh)
NZ (12) NZ562242A (zh)
WO (12) WO2006115945A1 (zh)
ZA (13) ZA200708023B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012760A (zh) * 2013-10-31 2018-12-18 反应堆资源有限责任公司 原位催化剂硫化、钝化和焦化方法及系统

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ522139A (en) 2000-04-24 2004-12-24 Shell Int Research In situ recovery from a hydrocarbon containing formation
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
CA2463110C (en) 2001-10-24 2010-11-30 Shell Canada Limited In situ recovery from a hydrocarbon containing formation using barriers
AU2003285008B2 (en) 2002-10-24 2007-12-13 Shell Internationale Research Maatschappij B.V. Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
AU2004235350B8 (en) * 2003-04-24 2013-03-07 Shell Internationale Research Maatschappij B.V. Thermal processes for subsurface formations
CN1957158B (zh) 2004-04-23 2010-12-29 国际壳牌研究有限公司 用于对地下地层进行加热的温度受限加热器
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7694523B2 (en) 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7024796B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
EP1871981A1 (en) 2005-04-22 2008-01-02 Shell Internationale Research Maatschappij B.V. Grouped exposed metal heaters
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
NZ567415A (en) 2005-10-24 2010-12-24 Shell Int Research Solution mining systems and methods for treating hyrdocarbon containing formations
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
WO2008051822A2 (en) 2006-10-20 2008-05-02 Shell Oil Company Heating tar sands formations to visbreaking temperatures
DE102007040606B3 (de) * 2007-08-27 2009-02-26 Siemens Ag Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl
CN101636555A (zh) 2007-03-22 2010-01-27 埃克森美孚上游研究公司 用于原位地层加热的电阻加热器
AU2008242797B2 (en) 2007-04-20 2011-07-14 Shell Internationale Research Maatschappij B.V. In situ recovery from residually heated sections in a hydrocarbon containing formation
US7697806B2 (en) * 2007-05-07 2010-04-13 Verizon Patent And Licensing Inc. Fiber optic cable with detectable ferromagnetic components
US20080290719A1 (en) 2007-05-25 2008-11-27 Kaminsky Robert D Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant
RU2496067C2 (ru) 2007-10-19 2013-10-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Криогенная обработка газа
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8297355B2 (en) * 2008-08-22 2012-10-30 Texaco Inc. Using heat from produced fluids of oil and gas operations to produce energy
DE102008047219A1 (de) 2008-09-15 2010-03-25 Siemens Aktiengesellschaft Verfahren zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, zugehörige Anlage und Betriebsverfahren dieser Anlage
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
EP2341859B1 (en) 2008-10-06 2017-04-05 Virender K. Sharma Apparatus for tissue ablation
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
AU2009303610A1 (en) 2008-10-13 2010-04-22 Shell Internationale Research Maatschappij B.V. Systems and methods for treating a subsurface formation with electrical conductors
US20100200237A1 (en) * 2009-02-12 2010-08-12 Colgate Sam O Methods for controlling temperatures in the environments of gas and oil wells
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
FR2947587A1 (fr) 2009-07-03 2011-01-07 Total Sa Procede d'extraction d'hydrocarbures par chauffage electromagnetique d'une formation souterraine in situ
CN102031961A (zh) * 2009-09-30 2011-04-27 西安威尔罗根能源科技有限公司 井眼温度测量探头
US8257112B2 (en) 2009-10-09 2012-09-04 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
US8602103B2 (en) 2009-11-24 2013-12-10 Conocophillips Company Generation of fluid for hydrocarbon recovery
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
WO2011127275A1 (en) * 2010-04-09 2011-10-13 Shell Oil Company Insulated conductor heaters with semiconductor layers
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
CN102834585B (zh) * 2010-04-09 2015-06-17 国际壳牌研究有限公司 地下地层的低温感应加热
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8464792B2 (en) 2010-04-27 2013-06-18 American Shale Oil, Llc Conduction convection reflux retorting process
US8408287B2 (en) * 2010-06-03 2013-04-02 Electro-Petroleum, Inc. Electrical jumper for a producing oil well
US8476562B2 (en) 2010-06-04 2013-07-02 Watlow Electric Manufacturing Company Inductive heater humidifier
RU2444617C1 (ru) * 2010-08-31 2012-03-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи высоковязкой нефти методом парогравитационного воздействия на пласт
AT12463U1 (de) * 2010-09-27 2012-05-15 Plansee Se Heizleiteranordnung
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8586867B2 (en) 2010-10-08 2013-11-19 Shell Oil Company End termination for three-phase insulated conductors
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
WO2012087375A1 (en) * 2010-12-21 2012-06-28 Chevron U.S.A. Inc. System and method for enhancing oil recovery from a subterranean reservoir
RU2473779C2 (ru) * 2011-03-21 2013-01-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет" (С(А)ФУ) Способ глушения фонтана флюида из скважины
RU2587459C2 (ru) 2011-04-08 2016-06-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Системы для соединения изолированных проводников
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
EP2520863B1 (en) * 2011-05-05 2016-11-23 General Electric Technology GmbH Method for protecting a gas turbine engine against high dynamical process values and gas turbine engine for conducting said method
US9010428B2 (en) * 2011-09-06 2015-04-21 Baker Hughes Incorporated Swelling acceleration using inductively heated and embedded particles in a subterranean tool
CA2850741A1 (en) 2011-10-07 2013-04-11 Manuel Alberto GONZALEZ Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
JO3139B1 (ar) 2011-10-07 2017-09-20 Shell Int Research تشكيل موصلات معزولة باستخدام خطوة اختزال أخيرة بعد المعالجة الحرارية.
JO3141B1 (ar) 2011-10-07 2017-09-20 Shell Int Research الوصلات المتكاملة للموصلات المعزولة
CA2850756C (en) * 2011-10-07 2019-09-03 Scott Vinh Nguyen Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
CN102505731A (zh) * 2011-10-24 2012-06-20 武汉大学 一种毛细-引射协同作用的地下水采集系统
CA2845012A1 (en) 2011-11-04 2013-05-10 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
CN102434144A (zh) * 2011-11-16 2012-05-02 中国石油集团长城钻探工程有限公司 一种油田用“u”形井采油方法
US8908031B2 (en) * 2011-11-18 2014-12-09 General Electric Company Apparatus and method for measuring moisture content in steam flow
AU2012367826A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
CA2862463A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US9488027B2 (en) 2012-02-10 2016-11-08 Baker Hughes Incorporated Fiber reinforced polymer matrix nanocomposite downhole member
RU2496979C1 (ru) * 2012-05-03 2013-10-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи высоковязкой нефти и/или битума методом закачки пара в пласт
WO2014113724A2 (en) 2013-01-17 2014-07-24 Sharma Virender K Method and apparatus for tissue ablation
US9291041B2 (en) * 2013-02-06 2016-03-22 Orbital Atk, Inc. Downhole injector insert apparatus
US9403328B1 (en) 2013-02-08 2016-08-02 The Boeing Company Magnetic compaction blanket for composite structure curing
US10501348B1 (en) 2013-03-14 2019-12-10 Angel Water, Inc. Water flow triggering of chlorination treatment
RU2527446C1 (ru) * 2013-04-15 2014-08-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ ликвидации скважины
US9382785B2 (en) 2013-06-17 2016-07-05 Baker Hughes Incorporated Shaped memory devices and method for using same in wellbores
CN103321618A (zh) * 2013-06-28 2013-09-25 中国地质大学(北京) 油页岩原位开采方法
CN105473811A (zh) * 2013-07-05 2016-04-06 尼克森能源无限责任公司 加速的溶剂协助sagd启动
RU2531965C1 (ru) * 2013-08-23 2014-10-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ ликвидации скважины
CA2923681A1 (en) 2013-10-22 2015-04-30 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
MX2016003570A (es) * 2013-10-28 2016-06-02 Halliburton Energy Services Inc Comunicacion de fondo de pozo entre pozos mediante el uso de materiales dilatables.
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
CN103628856A (zh) * 2013-12-11 2014-03-12 中国地质大学(北京) 一种高产水煤层气区块的阻水产气布井方法
GB2523567B (en) 2014-02-27 2017-12-06 Statoil Petroleum As Producing hydrocarbons from a subsurface formation
WO2015153705A1 (en) * 2014-04-01 2015-10-08 Future Energy, Llc Thermal energy delivery and oil production arrangements and methods thereof
GB2526123A (en) * 2014-05-14 2015-11-18 Statoil Petroleum As Producing hydrocarbons from a subsurface formation
US20150360322A1 (en) * 2014-06-12 2015-12-17 Siemens Energy, Inc. Laser deposition of iron-based austenitic alloy with flux
RU2569102C1 (ru) * 2014-08-12 2015-11-20 Общество с ограниченной ответственностью Научно-инженерный центр "Энергодиагностика" Способ ликвидации отложений и предотвращения их образования в нефтяной скважине и устройство для его реализации
US9451792B1 (en) * 2014-09-05 2016-09-27 Atmos Nation, LLC Systems and methods for vaporizing assembly
WO2016081104A1 (en) 2014-11-21 2016-05-26 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation
RU2728107C2 (ru) * 2014-11-25 2020-07-28 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Пиролиз для создания давления в нефтяных пластах
US20160169451A1 (en) * 2014-12-12 2016-06-16 Fccl Partnership Process and system for delivering steam
CN105043449B (zh) * 2015-08-10 2017-12-01 安徽理工大学 监测冻结壁温度、应力及变形的分布式光纤及其埋设方法
US10352818B2 (en) * 2015-08-31 2019-07-16 Halliburton Energy Services, Inc. Monitoring system for cold climate
CN105257269B (zh) * 2015-10-26 2017-10-17 中国石油天然气股份有限公司 一种蒸汽驱与火驱的联合采油方法
US10125604B2 (en) * 2015-10-27 2018-11-13 Baker Hughes, A Ge Company, Llc Downhole zonal isolation detection system having conductor and method
RU2620820C1 (ru) * 2016-02-17 2017-05-30 Общество с ограниченной ответственностью "ЛУКОЙЛ-ПЕРМЬ" Индукционный скважинный нагреватель
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
RU2630018C1 (ru) * 2016-06-29 2017-09-05 Общество с ограниченной ответчственностью "Геобурсервис", ООО "Геобурсервис" Способ ликвидации, предотвращения образования отложений и интенсификации добычи нефти в нефтегазодобывающих скважинах и устройство для его реализации
US11486243B2 (en) * 2016-08-04 2022-11-01 Baker Hughes Esp, Inc. ESP gas slug avoidance system
RU2632791C1 (ru) * 2016-11-02 2017-10-09 Владимир Иванович Савичев Способ стимуляции скважин путём закачки газовых композиций
CN107289997B (zh) * 2017-05-05 2019-08-13 济南轨道交通集团有限公司 一种岩溶裂隙水探测系统及方法
US10626709B2 (en) * 2017-06-08 2020-04-21 Saudi Arabian Oil Company Steam driven submersible pump
CN107558950A (zh) * 2017-09-13 2018-01-09 吉林大学 用于油页岩地下原位开采区域封闭的定向堵漏方法
JP2021525598A (ja) 2018-06-01 2021-09-27 サンタ アナ テック エルエルシーSanta Anna Tech Llc 多段階蒸気ベースのアブレーション処理方法並びに蒸気発生及びデリバリー・システム
US10927645B2 (en) 2018-08-20 2021-02-23 Baker Hughes, A Ge Company, Llc Heater cable with injectable fiber optics
CN109379792A (zh) * 2018-11-12 2019-02-22 山东华宁电伴热科技有限公司 一种油井加热电缆及油井加热方法
CN109396168B (zh) * 2018-12-01 2023-12-26 中节能城市节能研究院有限公司 污染土壤原位热修复用组合换热器及土壤热修复系统
CN109399879B (zh) * 2018-12-14 2023-10-20 江苏筑港建设集团有限公司 一种吹填泥被的固化方法
FR3093588B1 (fr) * 2019-03-07 2021-02-26 Socomec Sa Dispositif de récupération d’energie sur au moins un conducteur de puissance et procédé de fabrication dudit dispositif de récupération
US11708757B1 (en) * 2019-05-14 2023-07-25 Fortress Downhole Tools, Llc Method and apparatus for testing setting tools and other assemblies used to set downhole plugs and other objects in wellbores
US11136514B2 (en) * 2019-06-07 2021-10-05 Uop Llc Process and apparatus for recycling hydrogen to hydroprocess biorenewable feed
GB2605722A (en) * 2019-12-11 2022-10-12 Aker Solutions As Skin-effect heating cable
DE102020208178A1 (de) * 2020-06-30 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Aufheizen eines Brennstoffzellensystems, Brennstoffzellensystem, Verwendung eines elektrischen Heizelements
CN112485119B (zh) * 2020-11-09 2023-01-31 临沂矿业集团有限责任公司 一种矿用提升绞车钢丝绳静拉力试验车
EP4113768A1 (en) * 2021-07-02 2023-01-04 Nexans Dry-mate wet-design branch joint and method for realizing a subsea distribution of electric power for wet cables

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85109420A (zh) * 1984-12-28 1986-07-09 法国气体公司 用抗硫化物催化剂生产甲烷的工艺以及实现该工艺的催化剂
US20040020642A1 (en) * 2001-10-24 2004-02-05 Vinegar Harold J. In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden

Family Cites Families (269)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA899987A (en) 1972-05-09 Chisso Corporation Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current
US438461A (en) * 1890-10-14 Half to william j
SE123138C1 (zh) 1948-01-01
US94813A (en) * 1869-09-14 Improvement in torpedoes for oil-wells
SE126674C1 (zh) 1949-01-01
US345586A (en) * 1886-07-13 Oil from wells
US326439A (en) * 1885-09-15 Protecting wells
SE123136C1 (zh) 1948-01-01
US2732195A (en) 1956-01-24 Ljungstrom
US48994A (en) * 1865-07-25 Improvement in devices for oil-wells
US2734579A (en) * 1956-02-14 Production from bituminous sands
US760304A (en) * 1903-10-24 1904-05-17 Frank S Gilbert Heater for oil-wells.
US1342741A (en) * 1918-01-17 1920-06-08 David T Day Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks
US1269747A (en) 1918-04-06 1918-06-18 Lebbeus H Rogers Method of and apparatus for treating oil-shale.
GB156396A (en) 1919-12-10 1921-01-13 Wilson Woods Hoover An improved method of treating shale and recovering oil therefrom
US1457479A (en) * 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US1510655A (en) * 1922-11-21 1924-10-07 Clark Cornelius Process of subterranean distillation of volatile mineral substances
US1634236A (en) * 1925-03-10 1927-06-28 Standard Dev Co Method of and apparatus for recovering oil
US1646599A (en) * 1925-04-30 1927-10-25 George A Schaefer Apparatus for removing fluid from wells
US1666488A (en) * 1927-02-05 1928-04-17 Crawshaw Richard Apparatus for extracting oil from shale
US1681523A (en) * 1927-03-26 1928-08-21 Patrick V Downey Apparatus for heating oil wells
US1913395A (en) * 1929-11-14 1933-06-13 Lewis C Karrick Underground gasification of carbonaceous material-bearing substances
US2244255A (en) * 1939-01-18 1941-06-03 Electrical Treating Company Well clearing system
US2244256A (en) * 1939-12-16 1941-06-03 Electrical Treating Company Apparatus for clearing wells
US2319702A (en) 1941-04-04 1943-05-18 Socony Vacuum Oil Co Inc Method and apparatus for producing oil wells
US2365591A (en) * 1942-08-15 1944-12-19 Ranney Leo Method for producing oil from viscous deposits
US2423674A (en) * 1942-08-24 1947-07-08 Johnson & Co A Process of catalytic cracking of petroleum hydrocarbons
US2390770A (en) * 1942-10-10 1945-12-11 Sun Oil Co Method of producing petroleum
US2484063A (en) * 1944-08-19 1949-10-11 Thermactor Corp Electric heater for subsurface materials
US2472445A (en) * 1945-02-02 1949-06-07 Thermactor Company Apparatus for treating oil and gas bearing strata
US2481051A (en) * 1945-12-15 1949-09-06 Texaco Development Corp Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations
US2444755A (en) * 1946-01-04 1948-07-06 Ralph M Steffen Apparatus for oil sand heating
US2634961A (en) * 1946-01-07 1953-04-14 Svensk Skifferolje Aktiebolage Method of electrothermal production of shale oil
US2466945A (en) * 1946-02-21 1949-04-12 In Situ Gases Inc Generation of synthesis gas
US2497868A (en) * 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits
US2939689A (en) * 1947-06-24 1960-06-07 Svenska Skifferolje Ab Electrical heater for treating oilshale and the like
US2786660A (en) * 1948-01-05 1957-03-26 Phillips Petroleum Co Apparatus for gasifying coal
US2548360A (en) 1948-03-29 1951-04-10 Stanley A Germain Electric oil well heater
US2685930A (en) * 1948-08-12 1954-08-10 Union Oil Co Oil well production process
US2757738A (en) * 1948-09-20 1956-08-07 Union Oil Co Radiation heating
US2630307A (en) * 1948-12-09 1953-03-03 Carbonic Products Inc Method of recovering oil from oil shale
US2595979A (en) * 1949-01-25 1952-05-06 Texas Co Underground liquefaction of coal
US2642943A (en) * 1949-05-20 1953-06-23 Sinclair Oil & Gas Co Oil recovery process
US2593477A (en) * 1949-06-10 1952-04-22 Us Interior Process of underground gasification of coal
US2670802A (en) * 1949-12-16 1954-03-02 Thermactor Company Reviving or increasing the production of clogged or congested oil wells
US2714930A (en) * 1950-12-08 1955-08-09 Union Oil Co Apparatus for preventing paraffin deposition
US2695163A (en) * 1950-12-09 1954-11-23 Stanolind Oil & Gas Co Method for gasification of subterranean carbonaceous deposits
US2630306A (en) * 1952-01-03 1953-03-03 Socony Vacuum Oil Co Inc Subterranean retorting of shales
US2757739A (en) * 1952-01-07 1956-08-07 Parelex Corp Heating apparatus
US2777679A (en) * 1952-03-07 1957-01-15 Svenska Skifferolje Ab Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ
US2780450A (en) * 1952-03-07 1957-02-05 Svenska Skifferolje Ab Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ
US2789805A (en) 1952-05-27 1957-04-23 Svenska Skifferolje Ab Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member
GB774283A (en) * 1952-09-15 1957-05-08 Ruhrchemie Ag Process for the combined purification and methanisation of gas mixtures containing oxides of carbon and hydrogen
US2780449A (en) * 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale
US2825408A (en) * 1953-03-09 1958-03-04 Sinclair Oil & Gas Company Oil recovery by subsurface thermal processing
US2771954A (en) * 1953-04-29 1956-11-27 Exxon Research Engineering Co Treatment of petroleum production wells
US2703621A (en) * 1953-05-04 1955-03-08 George W Ford Oil well bottom hole flow increasing unit
US2743906A (en) * 1953-05-08 1956-05-01 William E Coyle Hydraulic underreamer
US2803305A (en) * 1953-05-14 1957-08-20 Pan American Petroleum Corp Oil recovery by underground combustion
US2914309A (en) * 1953-05-25 1959-11-24 Svenska Skifferolje Ab Oil and gas recovery from tar sands
US2902270A (en) * 1953-07-17 1959-09-01 Svenska Skifferolje Ab Method of and means in heating of subsurface fuel-containing deposits "in situ"
US2890754A (en) * 1953-10-30 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2890755A (en) * 1953-12-19 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2841375A (en) * 1954-03-03 1958-07-01 Svenska Skifferolje Ab Method for in-situ utilization of fuels by combustion
US2794504A (en) 1954-05-10 1957-06-04 Union Oil Co Well heater
US2793696A (en) * 1954-07-22 1957-05-28 Pan American Petroleum Corp Oil recovery by underground combustion
US2923535A (en) * 1955-02-11 1960-02-02 Svenska Skifferolje Ab Situ recovery from carbonaceous deposits
US2801089A (en) * 1955-03-14 1957-07-30 California Research Corp Underground shale retorting process
US2862558A (en) * 1955-12-28 1958-12-02 Phillips Petroleum Co Recovering oils from formations
US2819761A (en) * 1956-01-19 1958-01-14 Continental Oil Co Process of removing viscous oil from a well bore
US2857002A (en) * 1956-03-19 1958-10-21 Texas Co Recovery of viscous crude oil
US2906340A (en) * 1956-04-05 1959-09-29 Texaco Inc Method of treating a petroleum producing formation
US2991046A (en) 1956-04-16 1961-07-04 Parsons Lional Ashley Combined winch and bollard device
US2997105A (en) 1956-10-08 1961-08-22 Pan American Petroleum Corp Burner apparatus
US2932352A (en) * 1956-10-25 1960-04-12 Union Oil Co Liquid filled well heater
US2804149A (en) * 1956-12-12 1957-08-27 John R Donaldson Oil well heater and reviver
US2942223A (en) * 1957-08-09 1960-06-21 Gen Electric Electrical resistance heater
US2906337A (en) * 1957-08-16 1959-09-29 Pure Oil Co Method of recovering bitumen
US2954826A (en) * 1957-12-02 1960-10-04 William E Sievers Heated well production string
US2994376A (en) * 1957-12-27 1961-08-01 Phillips Petroleum Co In situ combustion process
US3051235A (en) 1958-02-24 1962-08-28 Jersey Prod Res Co Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation
US2911047A (en) * 1958-03-11 1959-11-03 John C Henderson Apparatus for extracting naturally occurring difficultly flowable petroleum oil from a naturally located subterranean body
US2958519A (en) * 1958-06-23 1960-11-01 Phillips Petroleum Co In situ combustion process
US2974937A (en) * 1958-11-03 1961-03-14 Jersey Prod Res Co Petroleum recovery from carbonaceous formations
US2998457A (en) * 1958-11-19 1961-08-29 Ashland Oil Inc Production of phenols
US2970826A (en) * 1958-11-21 1961-02-07 Texaco Inc Recovery of oil from oil shale
US3097690A (en) 1958-12-24 1963-07-16 Gulf Research Development Co Process for heating a subsurface formation
US2969226A (en) * 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US3150715A (en) 1959-09-30 1964-09-29 Shell Oil Co Oil recovery by in situ combustion with water injection
US3170519A (en) * 1960-05-11 1965-02-23 Gordon L Allot Oil well microwave tools
US3058730A (en) 1960-06-03 1962-10-16 Fmc Corp Method of forming underground communication between boreholes
US3138203A (en) 1961-03-06 1964-06-23 Jersey Prod Res Co Method of underground burning
US3057404A (en) 1961-09-29 1962-10-09 Socony Mobil Oil Co Inc Method and system for producing oil tenaciously held in porous formations
US3194315A (en) * 1962-06-26 1965-07-13 Charles D Golson Apparatus for isolating zones in wells
US3272261A (en) 1963-12-13 1966-09-13 Gulf Research Development Co Process for recovery of oil
US3332480A (en) 1965-03-04 1967-07-25 Pan American Petroleum Corp Recovery of hydrocarbons by thermal methods
US3358756A (en) * 1965-03-12 1967-12-19 Shell Oil Co Method for in situ recovery of solid or semi-solid petroleum deposits
US3262741A (en) 1965-04-01 1966-07-26 Pittsburgh Plate Glass Co Solution mining of potassium chloride
US3278234A (en) 1965-05-17 1966-10-11 Pittsburgh Plate Glass Co Solution mining of potassium chloride
US3362751A (en) 1966-02-28 1968-01-09 Tinlin William Method and system for recovering shale oil and gas
DE1615192B1 (de) 1966-04-01 1970-08-20 Chisso Corp Induktiv beheiztes Heizrohr
US3410796A (en) 1966-04-04 1968-11-12 Gas Processors Inc Process for treatment of saline waters
US3372754A (en) * 1966-05-31 1968-03-12 Mobil Oil Corp Well assembly for heating a subterranean formation
US3399623A (en) 1966-07-14 1968-09-03 James R. Creed Apparatus for and method of producing viscid oil
NL153755C (nl) 1966-10-20 1977-11-15 Stichting Reactor Centrum Werkwijze voor het vervaardigen van een elektrisch verwarmingselement, alsmede verwarmingselement vervaardigd met toepassing van deze werkwijze.
US3465819A (en) 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation
NL6803827A (zh) 1967-03-22 1968-09-23
US3542276A (en) * 1967-11-13 1970-11-24 Ideal Ind Open type explosion connector and method
US3485300A (en) 1967-12-20 1969-12-23 Phillips Petroleum Co Method and apparatus for defoaming crude oil down hole
US3578080A (en) 1968-06-10 1971-05-11 Shell Oil Co Method of producing shale oil from an oil shale formation
US3537528A (en) 1968-10-14 1970-11-03 Shell Oil Co Method for producing shale oil from an exfoliated oil shale formation
US3593789A (en) 1968-10-18 1971-07-20 Shell Oil Co Method for producing shale oil from an oil shale formation
US3565171A (en) 1968-10-23 1971-02-23 Shell Oil Co Method for producing shale oil from a subterranean oil shale formation
US3554285A (en) 1968-10-24 1971-01-12 Phillips Petroleum Co Production and upgrading of heavy viscous oils
US3629551A (en) 1968-10-29 1971-12-21 Chisso Corp Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current
US3513249A (en) * 1968-12-24 1970-05-19 Ideal Ind Explosion connector with improved insulating means
US3614986A (en) * 1969-03-03 1971-10-26 Electrothermic Co Method for injecting heated fluids into mineral bearing formations
US3542131A (en) 1969-04-01 1970-11-24 Mobil Oil Corp Method of recovering hydrocarbons from oil shale
US3547192A (en) 1969-04-04 1970-12-15 Shell Oil Co Method of metal coating and electrically heating a subterranean earth formation
US3529075A (en) * 1969-05-21 1970-09-15 Ideal Ind Explosion connector with ignition arrangement
US3572838A (en) 1969-07-07 1971-03-30 Shell Oil Co Recovery of aluminum compounds and oil from oil shale formations
US3614387A (en) * 1969-09-22 1971-10-19 Watlow Electric Mfg Co Electrical heater with an internal thermocouple
US3679812A (en) 1970-11-13 1972-07-25 Schlumberger Technology Corp Electrical suspension cable for well tools
US3893918A (en) 1971-11-22 1975-07-08 Engineering Specialties Inc Method for separating material leaving a well
US3757860A (en) 1972-08-07 1973-09-11 Atlantic Richfield Co Well heating
US3761599A (en) 1972-09-05 1973-09-25 Gen Electric Means for reducing eddy current heating of a tank in electric apparatus
US3794113A (en) 1972-11-13 1974-02-26 Mobil Oil Corp Combination in situ combustion displacement and steam stimulation of producing wells
US4199025A (en) 1974-04-19 1980-04-22 Electroflood Company Method and apparatus for tertiary recovery of oil
US4037655A (en) 1974-04-19 1977-07-26 Electroflood Company Method for secondary recovery of oil
US3894769A (en) 1974-06-06 1975-07-15 Shell Oil Co Recovering oil from a subterranean carbonaceous formation
US4029360A (en) 1974-07-26 1977-06-14 Occidental Oil Shale, Inc. Method of recovering oil and water from in situ oil shale retort flue gas
US3933447A (en) 1974-11-08 1976-01-20 The United States Of America As Represented By The United States Energy Research And Development Administration Underground gasification of coal
US3950029A (en) 1975-06-12 1976-04-13 Mobil Oil Corporation In situ retorting of oil shale
US4199024A (en) 1975-08-07 1980-04-22 World Energy Systems Multistage gas generator
US4037658A (en) 1975-10-30 1977-07-26 Chevron Research Company Method of recovering viscous petroleum from an underground formation
US4018279A (en) 1975-11-12 1977-04-19 Reynolds Merrill J In situ coal combustion heat recovery method
US4017319A (en) 1976-01-06 1977-04-12 General Electric Company Si3 N4 formed by nitridation of sintered silicon compact containing boron
US4487257A (en) 1976-06-17 1984-12-11 Raytheon Company Apparatus and method for production of organic products from kerogen
US4083604A (en) 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4169506A (en) 1977-07-15 1979-10-02 Standard Oil Company (Indiana) In situ retorting of oil shale and energy recovery
US4119349A (en) 1977-10-25 1978-10-10 Gulf Oil Corporation Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale
US4228853A (en) 1978-06-21 1980-10-21 Harvey A Herbert Petroleum production method
US4446917A (en) 1978-10-04 1984-05-08 Todd John C Method and apparatus for producing viscous or waxy crude oils
US4311340A (en) 1978-11-27 1982-01-19 Lyons William C Uranium leeching process and insitu mining
JPS5576586A (en) * 1978-12-01 1980-06-09 Tokyo Shibaura Electric Co Heater
US4457365A (en) * 1978-12-07 1984-07-03 Raytheon Company In situ radio frequency selective heating system
US4232902A (en) 1979-02-09 1980-11-11 Ppg Industries, Inc. Solution mining water soluble salts at high temperatures
US4289354A (en) 1979-02-23 1981-09-15 Edwin G. Higgins, Jr. Borehole mining of solid mineral resources
US4290650A (en) 1979-08-03 1981-09-22 Ppg Industries Canada Ltd. Subterranean cavity chimney development for connecting solution mined cavities
CA1168283A (en) 1980-04-14 1984-05-29 Hiroshi Teratani Electrode device for electrically heating underground deposits of hydrocarbons
CA1165361A (en) 1980-06-03 1984-04-10 Toshiyuki Kobayashi Electrode unit for electrically heating underground hydrocarbon deposits
US4401099A (en) * 1980-07-11 1983-08-30 W.B. Combustion, Inc. Single-ended recuperative radiant tube assembly and method
US4385661A (en) 1981-01-07 1983-05-31 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator with improved preheating, combustion and protection features
US4382469A (en) * 1981-03-10 1983-05-10 Electro-Petroleum, Inc. Method of in situ gasification
GB2110231B (en) * 1981-03-13 1984-11-14 Jgc Corp Process for converting solid wastes to gases for use as a town gas
US4384614A (en) * 1981-05-11 1983-05-24 Justheim Pertroleum Company Method of retorting oil shale by velocity flow of super-heated air
US4401162A (en) 1981-10-13 1983-08-30 Synfuel (An Indiana Limited Partnership) In situ oil shale process
US4549073A (en) 1981-11-06 1985-10-22 Oximetrix, Inc. Current controller for resistive heating element
US4418752A (en) 1982-01-07 1983-12-06 Conoco Inc. Thermal oil recovery with solvent recirculation
US4441985A (en) 1982-03-08 1984-04-10 Exxon Research And Engineering Co. Process for supplying the heat requirement of a retort for recovering oil from solids by partial indirect heating of in situ combustion gases, and combustion air, without the use of supplemental fuel
CA1196594A (en) 1982-04-08 1985-11-12 Guy Savard Recovery of oil from tar sands
US4460044A (en) 1982-08-31 1984-07-17 Chevron Research Company Advancing heated annulus steam drive
US4485868A (en) 1982-09-29 1984-12-04 Iit Research Institute Method for recovery of viscous hydrocarbons by electromagnetic heating in situ
US4498531A (en) * 1982-10-01 1985-02-12 Rockwell International Corporation Emission controller for indirect fired downhole steam generators
US4609041A (en) 1983-02-10 1986-09-02 Magda Richard M Well hot oil system
US4886118A (en) 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4545435A (en) 1983-04-29 1985-10-08 Iit Research Institute Conduction heating of hydrocarbonaceous formations
EP0130671A3 (en) 1983-05-26 1986-12-17 Metcal Inc. Multiple temperature autoregulating heater
US4538682A (en) * 1983-09-08 1985-09-03 Mcmanus James W Method and apparatus for removing oil well paraffin
US4572229A (en) * 1984-02-02 1986-02-25 Thomas D. Mueller Variable proportioner
US4637464A (en) 1984-03-22 1987-01-20 Amoco Corporation In situ retorting of oil shale with pulsed water purge
US4570715A (en) * 1984-04-06 1986-02-18 Shell Oil Company Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US4577691A (en) 1984-09-10 1986-03-25 Texaco Inc. Method and apparatus for producing viscous hydrocarbons from a subterranean formation
JPS61104582A (ja) * 1984-10-25 1986-05-22 株式会社デンソー シ−ズヒ−タ
US4662437A (en) * 1985-11-14 1987-05-05 Atlantic Richfield Company Electrically stimulated well production system with flexible tubing conductor
CA1253555A (en) 1985-11-21 1989-05-02 Cornelis F.H. Van Egmond Heating rate variant elongated electrical resistance heater
CN1006920B (zh) * 1985-12-09 1990-02-21 国际壳牌研究有限公司 小型井的温度测量方法
CN1010864B (zh) * 1985-12-09 1990-12-19 国际壳牌研究有限公司 安装电加热器到井中的方法和装置
US4716960A (en) 1986-07-14 1988-01-05 Production Technologies International, Inc. Method and system for introducing electric current into a well
CA1288043C (en) 1986-12-15 1991-08-27 Peter Van Meurs Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil
US4793409A (en) 1987-06-18 1988-12-27 Ors Development Corporation Method and apparatus for forming an insulated oil well casing
US4852648A (en) 1987-12-04 1989-08-01 Ava International Corporation Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead
US4974425A (en) 1988-12-08 1990-12-04 Concept Rkk, Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4860544A (en) 1988-12-08 1989-08-29 Concept R.K.K. Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US5152341A (en) 1990-03-09 1992-10-06 Raymond S. Kasevich Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes
CA2015460C (en) 1990-04-26 1993-12-14 Kenneth Edwin Kisman Process for confining steam injected into a heavy oil reservoir
US5050601A (en) 1990-05-29 1991-09-24 Joel Kupersmith Cardiac defibrillator electrode arrangement
US5042579A (en) 1990-08-23 1991-08-27 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers
US5066852A (en) 1990-09-17 1991-11-19 Teledyne Ind. Inc. Thermoplastic end seal for electric heating elements
US5065818A (en) 1991-01-07 1991-11-19 Shell Oil Company Subterranean heaters
US5626190A (en) 1991-02-06 1997-05-06 Moore; Boyd B. Apparatus for protecting electrical connection from moisture in a hazardous area adjacent a wellhead barrier for an underground well
CN2095278U (zh) * 1991-06-19 1992-02-05 中国石油天然气总公司辽河设计院 油井电加热装置
US5133406A (en) 1991-07-05 1992-07-28 Amoco Corporation Generating oxygen-depleted air useful for increasing methane production
US5420402A (en) * 1992-02-05 1995-05-30 Iit Research Institute Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles
CN2183444Y (zh) * 1993-10-19 1994-11-23 刘犹斌 深井石油电磁加热器
US5507149A (en) 1994-12-15 1996-04-16 Dash; J. Gregory Nonporous liquid impermeable cryogenic barrier
EA000057B1 (ru) * 1995-04-07 1998-04-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Система скважин для добычи вязкой нефти
US5730550A (en) * 1995-08-15 1998-03-24 Board Of Trustees Operating Michigan State University Method for placement of a permeable remediation zone in situ
US5759022A (en) * 1995-10-16 1998-06-02 Gas Research Institute Method and system for reducing NOx and fuel emissions in a furnace
US5619611A (en) 1995-12-12 1997-04-08 Tub Tauch-Und Baggertechnik Gmbh Device for removing downhole deposits utilizing tubular housing and passing electric current through fluid heating medium contained therein
GB9526120D0 (en) * 1995-12-21 1996-02-21 Raychem Sa Nv Electrical connector
CA2177726C (en) * 1996-05-29 2000-06-27 Theodore Wildi Low-voltage and low flux density heating system
US5782301A (en) 1996-10-09 1998-07-21 Baker Hughes Incorporated Oil well heater cable
US6039121A (en) 1997-02-20 2000-03-21 Rangewest Technologies Ltd. Enhanced lift method and apparatus for the production of hydrocarbons
US6540018B1 (en) 1998-03-06 2003-04-01 Shell Oil Company Method and apparatus for heating a wellbore
MA24902A1 (fr) 1998-03-06 2000-04-01 Shell Int Research Rechauffeur electrique
US6248230B1 (en) * 1998-06-25 2001-06-19 Sk Corporation Method for manufacturing cleaner fuels
US6130398A (en) * 1998-07-09 2000-10-10 Illinois Tool Works Inc. Plasma cutter for auxiliary power output of a power source
NO984235L (no) 1998-09-14 2000-03-15 Cit Alcatel Oppvarmingssystem for metallrør for rõoljetransport
AU761606B2 (en) * 1998-09-25 2003-06-05 Errol A. Sonnier System, apparatus, and method for installing control lines in a well
US6609761B1 (en) 1999-01-08 2003-08-26 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
JP2000340350A (ja) 1999-05-28 2000-12-08 Kyocera Corp 窒化ケイ素製セラミックヒータおよびその製造方法
US6257334B1 (en) 1999-07-22 2001-07-10 Alberta Oil Sands Technology And Research Authority Steam-assisted gravity drainage heavy oil recovery process
WO2001065055A1 (en) 2000-03-02 2001-09-07 Shell Internationale Research Maatschappij B.V. Controlled downhole chemical injection
US20020036085A1 (en) 2000-01-24 2002-03-28 Bass Ronald Marshall Toroidal choke inductor for wireless communication and control
US7259688B2 (en) 2000-01-24 2007-08-21 Shell Oil Company Wireless reservoir production control
US6633236B2 (en) 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
US7170424B2 (en) 2000-03-02 2007-01-30 Shell Oil Company Oil well casting electrical power pick-off points
MY128294A (en) 2000-03-02 2007-01-31 Shell Int Research Use of downhole high pressure gas in a gas-lift well
US6632047B2 (en) * 2000-04-14 2003-10-14 Board Of Regents, The University Of Texas System Heater element for use in an in situ thermal desorption soil remediation system
US6918444B2 (en) 2000-04-19 2005-07-19 Exxonmobil Upstream Research Company Method for production of hydrocarbons from organic-rich rock
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US20030066642A1 (en) 2000-04-24 2003-04-10 Wellington Scott Lee In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
NZ522139A (en) 2000-04-24 2004-12-24 Shell Int Research In situ recovery from a hydrocarbon containing formation
US20030075318A1 (en) 2000-04-24 2003-04-24 Keedy Charles Robert In situ thermal processing of a coal formation using substantially parallel formed wellbores
EA006419B1 (ru) * 2000-04-24 2005-12-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Устройство и способ электрического подогрева скважины
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
US20030085034A1 (en) 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
GB2383633A (en) * 2000-06-29 2003-07-02 Paulo S Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
US6585046B2 (en) 2000-08-28 2003-07-01 Baker Hughes Incorporated Live well heater cable
US20020112987A1 (en) 2000-12-15 2002-08-22 Zhiguo Hou Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts
US20020112890A1 (en) 2001-01-22 2002-08-22 Wentworth Steven W. Conduit pulling apparatus and method for use in horizontal drilling
US20020153141A1 (en) 2001-04-19 2002-10-24 Hartman Michael G. Method for pumping fluids
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
CA2668385C (en) 2001-04-24 2012-05-22 Shell Canada Limited In situ recovery from a tar sands formation
US20030079877A1 (en) 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
AU2002212320B2 (en) * 2001-04-24 2006-11-02 Shell Internationale Research Maatschappij B.V. In-situ combustion for oil recovery
US20030029617A1 (en) 2001-08-09 2003-02-13 Anadarko Petroleum Company Apparatus, method and system for single well solution-mining
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
CA2463108C (en) 2001-10-24 2011-11-22 Shell Canada Limited Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil
CA2463110C (en) 2001-10-24 2010-11-30 Shell Canada Limited In situ recovery from a hydrocarbon containing formation using barriers
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US6679326B2 (en) 2002-01-15 2004-01-20 Bohdan Zakiewicz Pro-ecological mining system
CA2474064C (en) * 2002-01-22 2008-04-08 Weatherford/Lamb, Inc. Gas operated pump for hydrocarbon wells
US6958195B2 (en) * 2002-02-19 2005-10-25 Utc Fuel Cells, Llc Steam generator for a PEM fuel cell power plant
CA2486582C (en) * 2002-05-31 2008-07-22 Sensor Highway Limited Parameter sensing apparatus and method for subterranean wells
US7066283B2 (en) * 2002-08-21 2006-06-27 Presssol Ltd. Reverse circulation directional and horizontal drilling using concentric coil tubing
AU2003285008B2 (en) 2002-10-24 2007-12-13 Shell Internationale Research Maatschappij B.V. Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7048051B2 (en) 2003-02-03 2006-05-23 Gen Syn Fuels Recovery of products from oil shale
US6796139B2 (en) 2003-02-27 2004-09-28 Layne Christensen Company Method and apparatus for artificial ground freezing
AU2004235350B8 (en) * 2003-04-24 2013-03-07 Shell Internationale Research Maatschappij B.V. Thermal processes for subsurface formations
US7331385B2 (en) 2003-06-24 2008-02-19 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US7147057B2 (en) 2003-10-06 2006-12-12 Halliburton Energy Services, Inc. Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore
US7337841B2 (en) 2004-03-24 2008-03-04 Halliburton Energy Services, Inc. Casing comprising stress-absorbing materials and associated methods of use
CN1957158B (zh) 2004-04-23 2010-12-29 国际壳牌研究有限公司 用于对地下地层进行加热的温度受限加热器
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
EP1871981A1 (en) 2005-04-22 2008-01-02 Shell Internationale Research Maatschappij B.V. Grouped exposed metal heaters
NZ567415A (en) 2005-10-24 2010-12-24 Shell Int Research Solution mining systems and methods for treating hyrdocarbon containing formations
US7124584B1 (en) 2005-10-31 2006-10-24 General Electric Company System and method for heat recovery from geothermal source of heat
EP1984599B1 (en) 2006-02-16 2012-03-21 Chevron U.S.A., Inc. Kerogen extraction from subterranean oil shale resources
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
WO2008051822A2 (en) 2006-10-20 2008-05-02 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US20080216321A1 (en) 2007-03-09 2008-09-11 Eveready Battery Company, Inc. Shaving aid delivery system for use with wet shave razors
AU2008242797B2 (en) 2007-04-20 2011-07-14 Shell Internationale Research Maatschappij B.V. In situ recovery from residually heated sections in a hydrocarbon containing formation
RU2496067C2 (ru) 2007-10-19 2013-10-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Криогенная обработка газа
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85109420A (zh) * 1984-12-28 1986-07-09 法国气体公司 用抗硫化物催化剂生产甲烷的工艺以及实现该工艺的催化剂
US20040020642A1 (en) * 2001-10-24 2004-02-05 Vinegar Harold J. In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012760A (zh) * 2013-10-31 2018-12-18 反应堆资源有限责任公司 原位催化剂硫化、钝化和焦化方法及系统
CN109012760B (zh) * 2013-10-31 2022-01-21 反应堆资源有限责任公司 原位催化剂硫化、钝化和焦化方法及系统

Also Published As

Publication number Publication date
WO2006116087A1 (en) 2006-11-02
AU2006239958A1 (en) 2006-11-02
ZA200708022B (en) 2008-10-29
AU2006239958B2 (en) 2010-06-03
WO2006115943A1 (en) 2006-11-02
WO2006115945A1 (en) 2006-11-02
EA013555B1 (ru) 2010-06-30
ATE434713T1 (de) 2009-07-15
WO2006116207A3 (en) 2007-06-14
AU2006239961B2 (en) 2010-03-18
IL186212A0 (en) 2008-01-20
IL186214A0 (en) 2008-01-20
WO2006116097A1 (en) 2006-11-02
NZ562241A (en) 2010-12-24
EA200702298A1 (ru) 2008-04-28
CN101163859B (zh) 2012-10-10
EP1871982A1 (en) 2008-01-02
EP1871978B1 (en) 2016-11-23
IN266867B (zh) 2015-06-10
WO2006116133A1 (en) 2006-11-02
MA29471B1 (fr) 2008-05-02
CA2606217C (en) 2014-12-16
CN101163855B (zh) 2011-09-28
IL186212A (en) 2014-08-31
IL186203A0 (en) 2008-01-20
EP1871985A1 (en) 2008-01-02
EA012077B1 (ru) 2009-08-28
NZ562247A (en) 2010-10-29
EP1871985B1 (en) 2009-07-08
IL186211A0 (en) 2008-01-20
CN101300401A (zh) 2008-11-05
EA012767B1 (ru) 2009-12-30
ZA200708136B (en) 2008-09-25
MA29473B1 (fr) 2008-05-02
CN101163860B (zh) 2013-01-16
CN101163853B (zh) 2012-03-21
CA2606210A1 (en) 2006-11-02
CA2606210C (en) 2015-06-30
CN101163852B (zh) 2012-04-04
CN101163860A (zh) 2008-04-16
AU2006240173A1 (en) 2006-11-02
EA200702304A1 (ru) 2008-02-28
EA200702303A1 (ru) 2008-04-28
CA2606216A1 (en) 2006-11-02
IL186206A0 (en) 2008-01-20
NZ562244A (en) 2010-12-24
EA200702302A1 (ru) 2008-04-28
IL186208A0 (en) 2008-01-20
EP1871987B1 (en) 2009-04-01
WO2006116130A1 (en) 2006-11-02
MA29472B1 (fr) 2008-05-02
CA2606176C (en) 2014-12-09
EA200702306A1 (ru) 2008-02-28
EA200702305A1 (ru) 2008-02-28
MA29468B1 (fr) 2008-05-02
DE602006007450D1 (de) 2009-08-06
ZA200708135B (en) 2008-10-29
EP1871980A1 (en) 2008-01-02
CN101300401B (zh) 2012-01-11
MA29475B1 (fr) 2008-05-02
AU2011201030A1 (en) 2011-03-31
CA2606216C (en) 2014-01-21
EP1871986A1 (en) 2008-01-02
NZ562250A (en) 2010-12-24
DE602006007693D1 (de) 2009-08-20
ZA200708089B (en) 2008-10-29
WO2006116078A1 (en) 2006-11-02
CN101163854B (zh) 2012-06-20
MA29469B1 (fr) 2008-05-02
CA2605720C (en) 2014-03-11
ZA200708020B (en) 2008-09-25
ZA200708023B (en) 2008-05-28
AU2006239963B2 (en) 2010-07-01
NZ562251A (en) 2011-09-30
EA200702296A1 (ru) 2008-04-28
CN101163858A (zh) 2008-04-16
NZ562249A (en) 2010-11-26
US20070108201A1 (en) 2007-05-17
AU2006239962B2 (en) 2010-04-01
AU2006240033B2 (en) 2010-08-12
AU2006240175A1 (en) 2006-11-02
WO2006116131A1 (en) 2006-11-02
MA29470B1 (fr) 2008-05-02
EP1871983B1 (en) 2009-07-22
US7831133B2 (en) 2010-11-09
AU2006239997B2 (en) 2010-06-17
IL186210A (en) 2011-10-31
CA2606165C (en) 2014-07-29
CA2605729C (en) 2015-07-07
ZA200708090B (en) 2008-10-29
AU2006239999A1 (en) 2006-11-02
EP1871858A2 (en) 2008-01-02
IL186209A (en) 2013-03-24
AU2006240175B2 (en) 2011-06-02
EP1871990B1 (en) 2009-06-24
CN101163780B (zh) 2015-01-07
EA014031B1 (ru) 2010-08-30
EA014760B1 (ru) 2011-02-28
AU2006239961A1 (en) 2006-11-02
EP1871990A1 (en) 2008-01-02
EA011226B1 (ru) 2009-02-27
EP1871981A1 (en) 2008-01-02
AU2006239886A1 (en) 2006-11-02
IL186213A (en) 2011-08-31
EA200702300A1 (ru) 2008-04-28
CN101163856B (zh) 2012-06-20
IL186204A0 (en) 2008-01-20
ZA200708087B (en) 2008-10-29
EA200702307A1 (ru) 2008-02-28
EA012554B1 (ru) 2009-10-30
EP1880078A1 (en) 2008-01-23
CN101163851A (zh) 2008-04-16
CA2606181A1 (en) 2006-11-02
AU2006240173B2 (en) 2010-08-26
EA200702297A1 (ru) 2008-04-28
EP1871983A1 (en) 2008-01-02
IL186203A (en) 2011-12-29
IL186207A (en) 2011-12-29
IL186205A0 (en) 2008-01-20
AU2006240043A1 (en) 2006-11-02
CN101163857A (zh) 2008-04-16
CN101163852A (zh) 2008-04-16
CN101163855A (zh) 2008-04-16
CA2606218A1 (en) 2006-11-02
ATE463658T1 (de) 2010-04-15
CA2606165A1 (en) 2006-11-02
ZA200708021B (en) 2008-10-29
CN101163858B (zh) 2012-02-22
CN101163856A (zh) 2008-04-16
NZ562242A (en) 2010-12-24
IL186206A (en) 2011-12-29
AU2006239996A1 (en) 2006-11-02
AU2011201030B2 (en) 2013-02-14
EA012171B1 (ru) 2009-08-28
CA2606295A1 (en) 2006-11-02
EA012901B1 (ru) 2010-02-26
IL186208A (en) 2011-11-30
WO2006116095A1 (en) 2006-11-02
CA2606176A1 (en) 2006-11-02
EA011905B1 (ru) 2009-06-30
NZ562248A (en) 2011-01-28
AU2006239963A1 (en) 2006-11-02
IL186209A0 (en) 2008-01-20
AU2006240033A1 (en) 2006-11-02
AU2006239962B8 (en) 2010-04-29
ZA200708134B (en) 2008-10-29
CA2606217A1 (en) 2006-11-02
CN101163854A (zh) 2008-04-16
IL186210A0 (en) 2008-01-20
ATE437290T1 (de) 2009-08-15
AU2006239996B2 (en) 2010-05-27
CA2605724C (en) 2014-02-18
CN101163859A (zh) 2008-04-16
CA2606295C (en) 2014-08-26
CA2605737A1 (en) 2006-11-02
ZA200708137B (en) 2008-10-29
ZA200708316B (en) 2009-05-27
MA29719B1 (fr) 2008-09-01
WO2006116207A2 (en) 2006-11-02
EA200702299A1 (ru) 2008-04-28
CA2606181C (en) 2014-10-28
CA2606218C (en) 2014-04-15
NZ562243A (en) 2010-12-24
EA012900B1 (ru) 2010-02-26
AU2006239999B2 (en) 2010-06-17
CA2605737C (en) 2015-02-10
IL186205A (en) 2012-06-28
IL186204A (en) 2012-06-28
NZ562239A (en) 2011-01-28
AU2006239886B2 (en) 2010-06-03
EP1871978A1 (en) 2008-01-02
AU2011201030A8 (en) 2011-04-21
ATE435964T1 (de) 2009-07-15
CA2605729A1 (en) 2006-11-02
MA29478B1 (fr) 2008-05-02
WO2006116096A1 (en) 2006-11-02
EP1871979A1 (en) 2008-01-02
IL186207A0 (en) 2008-01-20
EP1871987A1 (en) 2008-01-02
NZ562252A (en) 2011-03-31
ATE427410T1 (de) 2009-04-15
AU2006239997A1 (en) 2006-11-02
CA2605720A1 (en) 2006-11-02
EA014258B1 (ru) 2010-10-29
NZ562240A (en) 2010-10-29
DE602006013437D1 (de) 2010-05-20
MA29477B1 (fr) 2008-05-02
CN101163857B (zh) 2012-11-28
IL186214A (en) 2011-12-29
DE602006006042D1 (de) 2009-05-14
MA29476B1 (fr) 2008-05-02
DE602006007974D1 (de) 2009-09-03
EA200702301A1 (ru) 2008-04-28
AU2006240043B2 (en) 2010-08-12
MA29474B1 (fr) 2008-05-02
ZA200708088B (en) 2008-10-29
CA2605724A1 (en) 2006-11-02
AU2006239962A1 (en) 2006-11-02
CN101163853A (zh) 2008-04-16
WO2006116092A1 (en) 2006-11-02
EP1871982B1 (en) 2010-04-07
IL186211A (en) 2011-12-29
IL186213A0 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
CN101163780B (zh) 来自原位转化工艺的气体的处理
AU2002360301B2 (en) In situ thermal processing and upgrading of produced hydrocarbons
EP1276967B1 (en) A method for treating a hydrocarbon containing formation
AU2001260241B2 (en) A method for treating a hydrocarbon containing formation
AU2006306471B2 (en) Cogeneration systems and processes for treating hydrocarbon containing formations
CN100534581C (zh) 对来自氢源的含氢物流中氢的控制
AU2002360301A1 (en) In situ thermal processing and upgrading of produced hydrocarbons
JP3933580B2 (ja) ビチューメンからのディーゼル燃料油の製造
WO2009052042A1 (en) Cryogenic treatment of gas
Trinh et al. Mechanistic insights into the catalytic elimination of tar and the promotional effect of boron on it: first-principles study using toluene as a model compound
AU2001260241A1 (en) A method for treating a hydrocarbon containing formation
WO2008051831A2 (en) Heating hydrocarbon containing formations in a line drive staged process
KR20220112268A (ko) 수소, 석유화학제품 및 전력의 통합 제조
RU2305175C2 (ru) Термообработка углеводородсодержащего пласта по месту залегания и повышение качества получаемых флюидов перед последующей обработкой
US20130118076A1 (en) Integrated process for treatment and gasification of bituminous feedstocks by chemical looping combustion
Minet et al. Cost-effective methods for hydrogen production
CN110214048B (zh) 用于轻质链烷烃转化的固定床径流式反应器
CN101316982B (zh) 用于处理含烃地层的联产系统和方法
Maddox et al. Natural gas
Idol et al. Natural Gas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150107

Termination date: 20170424

CF01 Termination of patent right due to non-payment of annual fee