CN101103377B - 进行局部可变形运动分析的系统和方法 - Google Patents

进行局部可变形运动分析的系统和方法 Download PDF

Info

Publication number
CN101103377B
CN101103377B CN2004800359288A CN200480035928A CN101103377B CN 101103377 B CN101103377 B CN 101103377B CN 2004800359288 A CN2004800359288 A CN 2004800359288A CN 200480035928 A CN200480035928 A CN 200480035928A CN 101103377 B CN101103377 B CN 101103377B
Authority
CN
China
Prior art keywords
motion
left ventricle
image
background image
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2004800359288A
Other languages
English (en)
Other versions
CN101103377A (zh
Inventor
B·格奥尔格斯库
X·S·周
D·科马尼秋
S·克里什南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Medical Solutions USA Inc
Original Assignee
Siemens Medical Solutions USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Medical Solutions USA Inc filed Critical Siemens Medical Solutions USA Inc
Publication of CN101103377A publication Critical patent/CN101103377A/zh
Application granted granted Critical
Publication of CN101103377B publication Critical patent/CN101103377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/251Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Abstract

公开了一种用于进行局部可变形运动分析并且用于准确跟踪将对象局部运动与对象的全局运动隔离的对象运动的系统和方法。所述对象在图像序列中被观察,并且图像区域被取样,以识别对象图像区域和背景图像区域。所识别的背景图像区域中的至少一个背景图像区域的运动被估计,以识别那些受到全局运动的影响的背景图像区域。来自多个背景图像区域的运动被组合,以测量该图像帧中的全局运动。对象图像区域中的所测量的全局运动被补偿以测量对象的局部运动,并且对象的局部运动被跟踪;公开了一种用于将对象的局部可变形运动准确测量为两个控制点集之间的相对运动的系统和方法;所述点集被定义为对象的内轮廓和外轮廓。估计控制点集的运动,并且用相对运动来表征对象的局部变形和局部运动。

Description

进行局部可变形运动分析的系统和方法
相关申请的交叉引用
本申请要求于2003年10月3日提交的序列号为No.60/508,367的美国临时申请、于2003年10月13日提交的序列号为No.60/510,856的美国临时申请、于2003年10月2日提交的序列号为No.60/508,210的美国临时申请和于2004年4月30日提交的序列号为No.60/566,833的美国临时申请的权益,这些申请全文引入作为参考。
发明领域
本发明涉及用于进行局部可变形运动分析的系统和方法,并且更特别地涉及用于准确跟踪将对象的局部运动与对象的全局运动隔离的对象的运动的系统和方法。
发明背景
对象跟踪是在许多成像软件应用中使用的重要工具。在跟踪对象的运动中经常出现的一个问题是从移动的背景中区分出对象的运动。场景的实例是识别人的特征的运动,诸如识别头部运动、面部特征、手部运动或其它身体运动。在对目标图像进行成像的过程中,很明显在图像中背景景物也正在移动(例如,树木、车辆和人)。这就使得跟踪对象、例如跟踪面部特征变得困难。成像软件必须能够恰当区分目标(也就是,特定面部特征)和其它图像数据。
在诸如超声心动描记术这样的医疗成像应用中,对象跟踪也是十分重要的。正确分析心脏超声波图像中的心肌壁运动对于心脏功能的评价是至关重要的。跟踪心肌壁功能的困难之一是要补偿由呼吸、身体运动或超声波探头引起的附加运动。在图像采集期间通过阻止患者运动(屏气、谨慎放置探头)或者在后处理阶段中通过基于图像的校正技术减小由这些运动造成的影响。但是,在没有补偿外部运动的情况下,真正的心脏运动不能被获得。
心脏运动能够被分解成局部运动和全局运动。局部运动是指心脏的内部运动。换句话说,局部运动是心肌在心脏收缩和心脏舒张期间的运动。全局运动是除局部运动之外的外部运动。如上所述,全局运动能够源自多种起因,这些起因诸如成像时患者轻微的身体运动或呼吸、或者成像装置或放射科医师手部的运动。
如果没有对全局运动进行补偿,则可能发生误诊。例如,在没有补偿的情况下,患者可能被诊断为左心室右侧局部缺血,因为右侧段的收缩看起来比其它段小很多。这有可能发生,因为向右侧的全局运动抵消了右侧壁的运动,并且增强了左侧壁的运动。在补偿之后,每段中的收缩是相同的,这表示心脏的正常运动.同样,患者可能被诊断为心脏正常,但患者患有局部缺血。如果全局运动存在,则局部缺血的左心室可能被认为是正常的。在许多情况下,不管是由医生还是由智能机器进行诊断,全局运动的存在都可能影响诊断的准确性。
以前用于对全局运动进行补偿的方法包括长轴和主轴方法。主轴被定义为空间中的线,该线距所有给定横截面的质心具有加权的最小二乘距离。心脏收缩结束时的左心室质心和主轴一起被用于确定平移和旋转因子。针对两个连续的图像帧,图像数据和主轴被获得。质心由某个预定的帧(例如,心脏收缩末期)决定。然后,两帧被叠加,以便通过质心的运动来决定平移。在平移之后,旋转角度能够被决定,并且能够通过平移和旋转因子实现补偿。因为主轴并没有恰当识别心脏的局部缺血区域或进行类似分析,所以主轴没有被广泛用于全局运动补偿。主轴会受到异常区域运动的影响,并且不能被用于确定真正的运动。
另一种方法假设,正常心脏的形状在心脏收缩期间基本保持不变。在局部缺血的心脏的情况下,在导致运动机能减退、运动不能或运动功能障碍(dyskiniesia)的梗塞区中或其周围的运动被明显改变。在心搏周期期间,全局形状和曲线分布以及针对多个数据点(例如,顶点、前部(anterior)和凹点(pit))的局部形状被观测。全局和局部形状以及每个数据点的曲线分布被组合到一起,以便与正常的心脏数据进行比较,并然后能够确定异常区域。在局部区域跟踪中,主轴被用于补偿全局运动。利用这种方法在识别异常区域中的问题在于所做的初始假设。如上所述,假设正常心脏的形状在心脏收缩期间保持不变。但是,心脏自身具有局部旋转或扭转,并且在许多情况下,正常心脏的形状在心脏收缩期间非常不同。需要恰当地补偿全局运动,以便提高医疗诊断的准确性。
发明内容
本发明涉及一种用于进行局部可变形运动分析的系统和方法.在本发明的第一实施方案中,对象在图像序列中被观察。图像区域被取样,以识别对象图像区域和背景图像区域。所识别出的背景图像区域中的至少一个背景图像区域的运动被估计,以识别那些受到全局运动影响的背景图像区域。来自多个背景图像区域的运动被组合,以测量该图像帧中的全局运动。对象图像区域中的所测量的全局运动被补偿,以测量对象的局部运动,并且对象的局部运动被跟踪。光流技术和信息融合技术被用于估计对象的运动。
在本发明的第二实施方案中,通过识别被包括在背景图像区域中的多个控制点,对象图像的局部运动变形被测量。包括所识别出的多个控制点的不确定性的局部运动向量被测量。随后的图像帧中的每个控制点被独立跟踪。控制点的位置及其不确定性用协方差矩阵来表示。位置和协方差矩阵被用于估计全局运动。全局运动被用作参考,以获得真正的局部对象变形。
根据本发明的第三实施方案,通过识别表示对象的外轮廓的第一组多个点来测量对象图像的局部运动变形。表示对象的内轮廓的第二组多个点被识别出。第一组多个点的运动和第二组多个点的运动通过图像帧被跟踪,使得每个图像帧表示预定的时间周期。
根据本发明的第四实施方案,通过识别表示对象的轮廓的多个控制点来测量对象图像的局部变形。随后的图像帧中的控制点的运动被跟踪。二元直方图被用于表示所跟踪的控制点附近的强度的分布。
根据本发明的第五实施方案,公开了一种方法,用于确定图像中的包括超声波信号的区域。图像的静态和动态区域被识别出。动态区域的边界点被确定。参数形状模型被拟合到边界点。
附图简述
参考附图,下面将更详细地描述本发明的优选实施方案,其中相同的参考编号表示相同元件:
图1是示例性系统的框图,所述系统用于实施一种根据本发明的、用于跟踪对象的局部可变形运动的方法;
图2图解说明了在心脏收缩期间的短轴视图中的左心室的四种不同状态;
图3是超声心动图在短轴视图和心尖四腔视图(apical fout-chamber view)中的超声波图像和根据本发明的被用于补偿全局运动的各个样本区域;
图4是描绘左心室面积大小随时间变化的曲线图;
图5a-5d图解说明了针对左心室及其对应的PCA模型的两个视图的主特征形状;
图6a-6c图解说明了在轮廓点的金字塔底部处所计算的不确定性;
图7a和7b图解说明了左心室的心内膜壁的轮廓的第一帧初始状态;
图8图解说明了一对直方图,所述直方图图解说明根据本发明的超声心动描记术图像的强度和空间分布;
图9图解说明了一种根据本发明的、分割感兴趣窗口以确定轮廓的内侧和外侧的方法;以及
图10a-10e图解说明了一种根据本发明的、用于自动检测超声波图像中的扇形区域的方法。
详细说明
本发明涉及一种用于跟踪对象的局部可变形运动的方法。其中利用这样一种方法的实例用于跟踪心肌壁的局部运动,以检测心脏中的区域性壁运动异常。该方法也可被用于跟踪心脏的心内膜壁或心外膜壁。本领域技术人员应当理解,本发明可被用在其中运动跟踪有用的其它应用中,这些其它应用诸如(但不限于)识别诸如头部运动、面部特征、手部运动或其它身体运动的人的特征的运动。本发明也能够在随时间发展的解剖学结构(诸如心脏、肺或肿瘤)的二维、三维和四维(3D+时间)医学分析中被使用。
为了描述本发明,将描述用于跟踪左心室的心内膜壁的实例。图1图解说明了超声心动描记术系统的示例性结构,该系统使用了根据本发明的、用于跟踪左心室的心内膜壁的局部运动的方法。诸如超声换能器的医用传感器102被用于执行对患者的检查。传感器102被用于获得与特定的医学检查相一致的医学测量结果。例如,可以对经历心脏问题的患者执行超声心动图,以帮助诊断特定的心脏疾病。超声波系统从各种透视角度来提供心脏的二维、三维和四维(3D+时间)图像。
由传感器102所获得的信息被传送到处理器104,该处理器104可以是工作站或个人计算机。处理器104将传感器数据转换成图像,所述图像被传送给显示器108。显示器108也可以传送其它图形信息或涉及图像的信息的表格。根据本发明,也可以向处理器104提供表示心内膜壁的初始轮廓的数据。所述数据可以由用户(诸如医生或超声波检查医师)人工提供,或由处理器104自动提供。所述轮廓包括一系列单独的点,这些点的运动由处理器104跟踪并被显示在显示器108上。下文将更详细地描述关于这些单独的点如何被跟踪的详细说明。
除了来自医用传感器102的数据以外,处理器104也可以接收其它数据输入。例如,处理器可以从与处理器104相关联的数据库106中接收数据。这样的数据可以包括表示心内膜壁的可能的轮廓形状的子空间模型。这些子空间模型可以是代表多个患者的左心室的图像,或者是以统计学信息为基础的轮廓形状的、由计算机所生成的模型。处理器104使用诸如贝叶斯核匹配(Bayesian kernel matching)或者基于光流的方法的公知方法来跟踪轮廓形状的单独的点。跟踪期间的误差累积通过使用多模板自适应匹配框架来补救。跟踪的不确定性在每点以协方差矩阵的形式来表示,该协方差矩阵基本上完全由使用非正交投影的子空间形状约束来利用。
在本发明的实施方案中,心内膜壁的局部运动以及全局运动被跟踪。全局运动可以由于多种原因而出现。例如,患者的呼吸或由技术人员引起的传感器运动可以导致全局运动。为了准确跟踪心内膜壁的局部运动,全局运动必须被测量并在心脏图像中被补偿。在心脏图像中补偿全局运动的困难在于区分全局运动和局部运动。确定运动是否是外部的(也就是,全局的)运动而不是内部的(也就是,局部的)运动是十分困难的。当由于心脏病的存在而导致左心室的局部运动不规则时,所述确定甚至可能变得更加困难。
如图2中所示,不同类型的心脏病可能不同地影响心内膜壁的运动。这样的心脏病的实例包括运动功能障碍、运动不能和运动机能减退。正常心壁由实线202、204示出。运动机能减退对应于壁的运动幅度沿如虚线206所示的段减小。运动不能对应于如由虚线208所示的没有运动。当如虚线210所示的那样心肌不能抵抗心脏收缩压力时,运动功能障碍可能发生。因为与患者的运动相比内部运动非常小,所以数据对全局运动十分敏感。患者很小的运动会导致非常不同的结果。例如,正常左心室会看起来像局部缺血。通常,医生凭经验或人眼的机理消除这种类型的全局运动。但是,全局运动的自动消除会使诊断变得更容易并且更准确.
根据本发明,全局运动能够使用基于光流的方法被补偿。这些方法基于下述事实:局部运动和全局运动之间的大部分表观差别是左心室周围的组织的运动.如果没有全局运动,那么周围组织并不会像左心室那样收缩或扩大。但是,如果存在全局运动,那么整个图像受到全局运动的影响,即在每个像素中产生一定的平移和/或旋转。为了补偿全局运动,左心室周围的组织区域中的运动被测量,以实现补偿测量。
现在描述根据本发明的光流方法的实例,这种光流方法能够被用于补偿全局运动。这种方法包括四个部分:取样、光流估计、对准(align)和补偿。第一部分致力于对那些仅受全局运动影响的像点进行取样。
图3是心脏的超声波图像,该超声波图像被用于图解说明根据本发明的被用于在顶面视图(apical view)和短轴视图中计算全局运动的区域。如图3中所示的典型的超声波图像形成了其中图像被显示的扇形302、304。图像302描绘了短轴视图中的心脏的超声心动图,而图像304描绘了心尖四腔视图中的心脏的超声心动图。如果在左心室边界上有N个点被取样(标记为P1、P2、...、PN),则质心点C被计算为∑Pi/N,其中Pf表示在Pi(i∈{1,N})中距离C最远的点,而r表示C和Pf之间的距离。以C为圆心、半径为1.3×r的圆形区域被裁减掉。常数1.3被选择,但是该常数可以是任何合适的常数。所述圆形区域被选择,以裁减掉随左心室收缩和扩大的心肌的部分。这种方法安全地去掉了心外膜之内的区域306、310,并且留下了周围区域308、312,用于测量全局运动。
该方法的下一个部分是测量所选区域308、312内的运动。光流估计和融合技术被用于测量超声心动图中的每个像素的运动。D.Comaniciu在CVPR 2003上发表的文章“Nonparametric Information Fusion for Motion Estimation(用于运动估计的非参数信息融合)”描述了这些技术的实例,该文章全文引入作为参考。在所选区域中,多个点被取样。对于每两个连续帧,每个样本点的运动利用不确定性来计算。然后,所述点被形状匹配,以得到全局旋转和平移。一旦全局旋转和平移被获得,就能够实现补偿.
在这一点上,对于每两个连续图像帧,存在相应的一组样本点。由于2D超声心动图的物理特性,全局运动只能够包括平移和旋转。为了得到平移向量t和旋转θ,形状对准技术被应用。对于两个连续帧中的两组n个点xi和xi’和变换x’=Tt(x),执行最小二乘匹配,以找到参数t来最小化
E = Σ l = 1 n ( x i ′ - T t ( x i ) ) T w i ( x i ′ - T t ( x i ) ) - - - ( 1 )
其中Wi是对每个点进行加权并反映点对应不确定性的加权矩阵。
如果只允许平移,那么
Figure B2004800359288D00072
其中t=(tx,.ty)T.。
通过令成立来求解,并且通过下述方程获得(tx,ty):
( Σ i = 1 n W i ) t x t y = ( Σ i = 1 n W i ( x i ′ - x i ) ) - - - ( 2 )
如果允许平移、旋转和按比例缩放,那么
Figure B2004800359288D00075
其中t=(a,b,tx,ty)T
再次通过应用
Figure B2004800359288D00076
能够获得(a,b,tx,ty)。
Σ x i T W i x i Σ x i T W i J x i ( Σ W i x i ) T Σ x i T W i J x i Σ x i T J T W i J x i ( Σ W i J x i ) T Σ W i x i Σ W i J x i Σ W i a b t x t y = Σ x i T W i x i ′ Σ x i T J W i x i ′ Σ W i x i ′ - - - ( 3 )
尽管当平移、旋转和按比例缩放全部被允许时能够求出类似方程(3)中的解,但是,当如在本发明中那样只有平移和旋转被允许时,则求出所述解是不重要的。这是因为,当只有平移和旋转被允许时,问题是
T i ( x ) = a - b b a x + t x t y ,
但是现在有非线性约束a2+b2=1。
为了解决上述问题,全局旋转θ不能超出一定范围。在大多数情况下,θ在-5°与5°之间。为了对于-10°与10°之间所有度数是稳定的,变换(tx,ty)由方程(2)计算,并然后找到最小化方程(1)中的E的t。
Figure B2004800359288D00081
其中E在(1)中被定义。
一旦针对所有图像帧找到t,就能够获得补偿结果。通过下述公式,能够针对任意特定图像帧m获得补偿结果:
f m ′ = R m - 1 - 1 ( R m - 2 - 1 ( . . . . ( R 0 - 1 ( f m - t 0 ) ) . . . ) - t m - 2 ) - t m - 1
其中f0、...、fn表示n个连续帧;
ti表示从帧i到帧i+1的平移向量;
Ri表示从帧I到帧i+1的平移矩阵。
通过光流的全局运动(GMCOF,Global Motion by Optical Flow)算法如下所述:
1.Framef0←特定帧
2.Framef1←下一帧
3.Point F0_points[n]=Random_sample(f0);//在帧f0中随机取样n个点
4.float W[n][n];                        //不确定性矩阵
5.Point F1_points[n]=Optical_Flow_Estimation(F0_points,W);
6.float Tv,Th,θ;      //垂直平移、水平平移和旋转
7.Least_Square_Shape_Matching(F0_points,F1_points,n,W,&Tv,&Th,&θ);
8.Framef←R×f0+T;
9. R ← cos θ - sin θ sin θ cos θ , T←[Tv,Th]
10. f C m = R m - 1 - 1 ( R m - 2 - 1 ( . . . ( R 0 - 1 ( f m - T 0 ) ) . . . ) - T m - 2 ) - T m - 1 //fc表示补偿结果
其它方法能够被用于补偿全局运动。由于心脏运动是周期性的,所以对周期P做出下述假设:在没有全局运动的情况下,某个帧I和任意帧(i±nP)的特征(也就是,形状)应当几乎相同,其中n是正整数。换句话说,如果存在使左心室轮廓平移或旋转某一角度的全局运动,那么关于帧I和帧(i±nP)之间的差别能做出确定,以识别出全局平移和旋转。
为了计算心脏运动的周期,根据左心室壁轮廓上的点来计算每个帧中的左心室的面积。图4图解说明了描绘在心脏运动期间左心室的面积大小随时间变化的曲线图.该曲线图的纵轴是左心室面积的大小,而横轴是时间。自相关分析被用于识别P。自相关分析的目的是在数据集内搜索周期性。在自相关分析中,一组相等的时间“区间(bin)”被定义。每个区间的大小为(总时间)/(区间的#)。这些区间对应于数据集中各对点之间的时间差。对于数据集中的每对点,其时间值之间的差值的绝对值被用于识别与其对应的特定区间。然后,这对点的幅度值之间的差值的绝对值被加到所述区间上。最后,在每对点均被考虑之后,通过将在该区间中的幅度的总和除以对应于该区间的点对的数目,对每个区间中的值求平均。
利用P,第一帧0和帧0+P处的左心室轮廓能够被匹配,以得到全局平移和旋转。点在轮廓上被匹配,而不是在样本区域中被匹配。帧0与P之间的多个帧处的旋转和平移能够通过内插技术获得。通过周期的全局运动补偿(GMCP)算法如下所述:
1.Frame f0←特定帧
2.Frame fI←下一帧
3.Point F0_points[m]=GetContour(f0);//在帧f0处的LV轮廓上得到m个点
4.Point FP_points[m]=GetContour(fP);//在帧fP处的LV轮廓上得到m个点
5.float Tv,Th,θ;//垂直平移、水平平移和旋转
6.Least_Square_Shape_Matching(F0_points,FP_points,n,&Tv,&Th,&θ);
7.Compensation(f0,fP,W,Tv,Th,θ)
8.Framef←R1×fθ+Tv
9. R i ← cos ( θ * i m ) - sin ( θ * i m ) sin ( θ * i m ) cos ( θ * i m ) , Ti←(i/m)[Tv,Th]
10. f C i ← R i - 1 ( f i - T i ) //fc表示补偿结果
根据本发明的另一个实施方案,描述了一种将具有多外观模型的稳定的光流计算与稳定的全局运动参数的估计整合在一起的自动方法。首先,在所选择数量的控制点上计算带有其不确定性的局部运动向量。所述控制点的位置必须仔细加以选择,使得这些控制点在超声波扇形区域(图3)之内但不对应于包括左心室的心肌壁的图像区域。与有用的超声波信号相关联的图像区域根据以下事实被自动检测,即由于运动和斑点噪声,相对应的像素具有随时间的高的强度变化.给定参考图像和心肌壁轮廓的对应位置,建立所述控制点的候选位置的掩膜(mask)。在掩膜内的带(band)中,相对于超声波扇形区域的尖端径向地放置所述控制点。通过针对以扇形区域的尖端作为中心的每条半径建立所述数量的允许位置(给定掩膜)的直方图来确定所述带。在直方图中具有最高密度的区域将对应于该带的位置。
然后,在随后的帧中,使用具有多个外观模型的稳定的光流技术来对所述控制点进行独立地跟踪。所述跟踪方法能够处理超声波成像中遇到的困难:信号遗失、信噪比很低或外观改变。作为这种估计过程的结果,控制点位置及其不确定性能通过协方差矩阵来表示。
对于全局运动,使用二维旋转模型,其中超声波扇形区域的尖端是坐标系统的原点。所述模型对应于超声波探头相对于心脏的平面旋转并且也接近小的平移.针对每个控制点确定相对于参考帧的角度参数。最终的估计是加权的最小二乘法的结果,其中所述权重由协方差矩阵的逆矩阵给出。所述结果是在给定测量结果及其由协方差矩阵表征的不确定性的情况下的最大似然估计。
在本发明的另一个实施方案中,系统动态和静态形状约束中的不确定性被解耦,以提供用于将具有系统动态特性的子空间形状模型与具有有异方差噪声的测量值相融合的统一的框架。针对所耦合的双轮廓建立模型,使得特别是对于每个噪声数据能够整合更多的信息。所述双轮廓方法也更好地保持拓扑结构。为了适应单独的形状特征,使用关于当前情况所给出的信息来对通用的形状模型进行很大程度地修改。子空间模型能够采用特定子空间分布的形式(例如高斯分布)或采用简单的子空间约束的形式(例如本征空间模型)。在2004年3月5日提交的序列号为10/794,476的、发明名称为“System and Method forTracking a Global Shape of an Object in Motion(跟踪运动对象的全局形状的系统和方法)”的共同未决的专利申请中公开了形状跟踪方法,该申请全文引入作为参考。
如上面所描述的那样,在形状跟踪应用中,噪声是个严重的问题.尤其是在医疗成像应用中,超声波是在诸如磁共振成像(MRI)或计算机断层扫描(CT)的普通医疗成像形式中噪声最大的。由于心肌的快速运动和呼吸干扰,超声心动图像(即超声波心脏图像)在噪声方面甚至更差。
根据本发明,在超声心动描记术图像中,左心室边界被跟踪。左心室的各种视图可以被跟踪,这些视图诸如但不限于:心尖二腔或四腔视图和胸骨旁的(parasternal)长轴和短轴视图。标志点(Landmark point)可根据解剖学特征(诸如顶点、乳头肌和隔膜)来分配。标志点位置的某些变化性可以由于应用强适应-主成分分析(Strongly Adapted-Principal Component Analysis)SA-PCA而被容许。所述轮廓被对准,以抵消全局变换、旋转和按比例缩放。然后,执行PCA,并且原始尺寸被减小来保留80-97%的能量,针对每个模型独立地调谐。
图5a-5d针对左心室的两幅视图以及其单和双轮廓的模型图解说明了没有进行样条化(splining)的主特征形状。图5a图解说明了左心室的心内膜壁的顶面视图的单轮廓的主特征形状。图5b图解说明了左心室的心内膜壁的短轴视图的单轮廓的主特征形状。图5c图解说明了左心室的心内膜壁的顶面视图的双轮廓的主特征形状。图5d图解说明了左心室的心内膜壁的短轴视图的双轮廓的主特征形状。在图5a-5d中的每幅图中,短划线表示该模型均值。在高维空间中,双轮廓被视为单个点。
为了测量每个控制点的运动,使用帧到帧运动估计算法的修改算法,所述算法在由Comaniciu,D.在IEEE Conf.中在“Computer Vision and Pattern Recognition(计算机视觉和模式识别)”(Madison,Wisconsin,Volume 1,(2003))上发表的、标题为“Nonparametric Information Fusion for Motion Estimation(用于运动估计的非参数信息融合)”的文章中被描述,该文章全文引入作为参考。该算法假设,某一邻域中的运动能够被稳定地估计为(用平均向量和相关联的协方差矩阵来表示的)某些初始运动估计的最显著的模式。所述最显著的模式由跨尺度(across scales)的模式跟踪来限定,而用于模式检测的根本机制取决于可变的带宽平均移位。
对于每个控制点,初始估计使用17×17个窗口来计算,并且结果在n=5×5个相邻点上被融合。利用三级(level)的金字塔和跨级的协方差传播。图6a-6c图解说明了针对所述轮廓点在金字塔底部处所计算的不确定性.图6a图解说明了心内膜的单轮廓.图6b和6c图解说明了心内膜和心外膜的耦合的双轮廓。
为了避免从图像帧到图像帧的误差累积,参考在所述序列的前面几帧的控制点的邻域来计算所述运动(即,当前帧总是与几个从前面帧提取的外观模型相比较)。由于该模型的位置在每帧处被更新,所以所述运动估计过程总是以好的初始化开始,由此消除了误差累积。双轮廓方法是有益的,因为该方法整合了更多的空间信息.因此,可以提供两个边界的更稳定的跟踪。在许多情况下,心外膜比心内膜更不可见。双轮廓图像能够传播来自心内膜的信息,以引导心外膜的定位(或反之亦然,即双轮廓图像能够传播来自心外膜的信息,以引导心内膜的定位)。而且,双轮廓图像能够更好地保持拓扑结构和减少交叉的机会。
根据本发明的另一实施方案,轮廓跟踪可通过估计局部强度分布来执行,而不需要假设预定的结构、诸如边缘。这种方法的优点在于,强度分布倾向于更少地受到噪声的影响。而且,这种方法能够跟踪任意的强度结构,因为所述结构倾向于在帧与帧之间保持一致。根据本发明,可以使用直方图来表示强度分布。控制点被用于表示轮廓。针对第一帧的轮廓能够人工绘制或者自动生成。从第二帧开始跟踪。
帧初始化的例子在图7a和7b中进行图解说明。图7a图解说明了左心室的心内膜壁的胸骨旁的视图。图7b图解说明了左心室的心内膜壁的顶面视图。在每种情况下,在心内膜壁周围的轮廓被人工绘制。在跟踪期间,所述查找位置随着前面的假设为第0级动态模型的轮廓来更新。可替代地,可采用更复杂的动态模型来整合关于心脏的周期运动的信息。从初始帧获得的分布被维持为参考模板。可替代地,如果对误差累加进行了补偿,那么能够使用来自前面帧的分布。
为了实现控制点邻域的全局和局部表示之间的折衷,使用了二元直方图方法。为了跟踪轮廓,感兴趣区域被划分为两个矩形,以便获得两个直方图。计算一个直方图用于捕获轮廓之内的分布,而计算第二直方图用于捕获轮廓之外的分布。图8图解说明了根据本发明的这两个直方图的例子。
接着,针对每个感兴趣窗口,必须针对窗口中的每个点确定,每个点是在轮廓之内还是在轮廓之外。由于关于特定图像帧的轮廓的特定情况未知,所以做出这样的确定是困难的。关于轮廓的假设能够被做出以简化计算。例如,如果图像是胸骨旁的短轴视图,那么可以假设,轮廓是圆形的并且圆形分割能够被用于帧中的所有控制点。根据本发明,两个相邻的控制点被用于找到位置轮廓定向.曲率由半径d控制,该半径d通过使用领域知识根据左心室腔的大小和形状凭经验来确定。
图9图解说明了如何使用窗口分割方法。虚线902表示轮廓的边界。元素P(i,t)表示帧t的第i个控制点。元素O(i,t)是第i个控制点的对应的重心。元素P(i+1,t+1)是相邻控制点。主成分分析被用于利用先前的模型来调整轮廓。为了获得更快并且更准确的跟踪,三级金字塔被使用。第一级是1/4大小的图像。第二级是1/2大小的图像,并且第三级是实际大小的图像。从一级到下一级的位置被繁殖。使用多尺度级在计算上是高效的,并且顶级提供了较少受到局部噪声干扰的平滑的较小的图像。
根据本发明的另一个实施方案,所述超声波信号(扇形区域)的识别在输入图像中被自动地确定。只有在该扇形区域之内的信息才应被用于图像分析算法(诸如心肌壁运动跟踪、检测或全局运动补偿)中。扇形区域的自动检测基于下述事实:由于对象运动和噪声斑点,相对应的像素具有随时间的高的强度变化。
图10a-10e图解说明了根据本发明的、用于检测超声波图象中的扇形区域的示例性方法。图10a图解说明了超声心动描记术图像序列,其中与有用的超声波信号相关联的图像区域自动被检测。通过计算随时间变化的帧间强度,得到的图象被显示在图10b中。使用扇形边界的可能的位置的现有知识,通过分别在所述变型图像的左侧和右侧应用以±45°定向的阶梯滤波器来搜索和保持边界点。所得到的被保持的点被显示在图10c中。
对每个扇形侧,应用稳定的回归来对所保持的边界点上的线进行拟合。该解决方案由总体最小二乘(TLS,Total Least Squares)估计给出。因为TLS估计相对于离群值(即在真正的扇形边界之内或之外的错误点)不稳定,所以使用双权重M-估计器。因此,通过由双权重损失函数置入最小化的误差,所述估计过程的稳定特性能够被实现。通过加权的总体最小二乘来迭代地求得所述解。为了起动迭代,通过将候选点投影到多个预定的方向上(参见图10c)并找到点直方图的模式和标准偏差,找到对所述线位置和误差尺度的最初的估计。使用可能的扇形定向的现有知识来确定投影方向。从时间强度变化图像的径向直方图中找到扇形的底部。扇形的半径与径向直方图中的突然下降相关联。图10d示出了该直方图,而图10e图解说明了被自动检测的扇形。
在已经描述了用于对象的局部可变形运动的方法的实施方案的情况下,应当注意,本领域技术人员根据上面的教导可以做出修改和变型。因此,应当理解,可改变所公开的本发明的特定实施方案,这些实施方案在如由所附权利要求所限定的本发明的精神和范围内。因此,在已由专利法所要求详细地和特定地对本发明进行了说明的情况下,专利证书所要求和希望保护的内容在后附的权利要求书中被阐述。

Claims (12)

1.一种用于跟踪左心室的心肌壁的局部可变形心脏运动的方法,所述左心室在图像序列中被观察,所述方法包括以下步骤:
对连续图像序列中左心室轮廓上的若干点进行取样,以识别左心室图像区域和背景图像区域;
估计所识别的背景图像区域中的至少一个背景图像区域的运动,以识别那些受到全局运动的影响的背景图像区域;
组合来自多个背景图像区域的运动,以测量该连续图像序列中的全局运动;
识别左心室的壁上的点,通过跟踪所识别的点的运动来测量左心室的大小随时间的变化,并且使用对所测量的点的自相关分析来计算左心室的心脏运动的周期;
基于左心室的心脏运动的周期来补偿左心室图像区域中的所测量的全局运动,以便测量左心室的心肌壁的局部可变形运动;
跟踪左心室的心肌壁的局部可变形运动。
2.根据权利要求1所述的方法,其中,使用光流估计技术来执行所述估计运动步骤。
3.根据权利要求2所述的方法,其中,使用信息融合技术来执行所述估计运动步骤。
4.根据权利要求1所述的方法,其中,最小二乘匹配被用于测量背景图像区域的旋转和平移。
5.根据权利要求1所述的方法,其中,所述图像是超声波图像。
6.根据权利要求1所述的方法,其中,所述图像是左心室的3D容积的图像。
7.一种用于跟踪左心室的心肌壁的局部可变形心脏运动的系统,所述左心室在图像序列中被观察,所述系统包括:
用于对连续图像序列中左心室轮廓上的若干点进行取样以识别左心室图像区域和背景图像区域的装置;
用于估计所识别的背景图像区域中的至少一个背景图像区域的运动以识别那些受到全局运动的影响的背景图像区域的装置;
用于组合来自多个背景图像区域的运动以测量该连续图像序列中的全局运动的装置;
用于识别左心室的壁上的点、通过跟踪所识别的点的运动来测量左心室的大小随时间的变化并且使用对所测量的点的自相关分析来计算左心室的心脏运动的周期的装置;
用于基于左心室的心脏运动的周期来补偿左心室图像区域中的所测量的全局运动以便测量左心室的心肌壁的局部可变形运动的装置;
用于跟踪左心室的心肌壁的局部可变形运动的装置。
8.根据权利要求7所述的系统,其中,使用光流估计技术来估计所述运动。
9.根据权利要求8所述的系统,其中,使用信息融合技术来估计所述运动。
10.根据权利要求7所述的系统,其中,最小二乘匹配被用于测量背景图像区域的旋转和平移。
11.根据权利要求7所述的系统,其中,所述图像是超声波图像。
12.根据权利要求7所述的系统,其中,所述图像是左心室的3D容积的图像。
CN2004800359288A 2003-10-02 2004-10-04 进行局部可变形运动分析的系统和方法 Active CN101103377B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US50821003P 2003-10-02 2003-10-02
US60/508,210 2003-10-02
US50836703P 2003-10-03 2003-10-03
US60/508,367 2003-10-03
US51085603P 2003-10-13 2003-10-13
US60/510,856 2003-10-13
US56683304P 2004-04-30 2004-04-30
US60/566,833 2004-04-30
PCT/US2004/032724 WO2005034039A2 (en) 2003-10-02 2004-10-04 System and method for local deformable motion analysis

Publications (2)

Publication Number Publication Date
CN101103377A CN101103377A (zh) 2008-01-09
CN101103377B true CN101103377B (zh) 2010-10-06

Family

ID=34427062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800359288A Active CN101103377B (zh) 2003-10-02 2004-10-04 进行局部可变形运动分析的系统和方法

Country Status (5)

Country Link
US (1) US7421101B2 (zh)
JP (2) JP4427548B2 (zh)
CN (1) CN101103377B (zh)
DE (1) DE112004001861B4 (zh)
WO (1) WO2005034039A2 (zh)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907764B2 (en) * 2004-08-09 2011-03-15 Hirochika Matsuoka Apparatus, program and method for motion analysis in internal body
US7460733B2 (en) * 2004-09-02 2008-12-02 Siemens Medical Solutions Usa, Inc. System and method for registration and modeling of deformable shapes by direct factorization
WO2006044996A2 (en) * 2004-10-15 2006-04-27 The Trustees Of Columbia University In The City Of New York System and method for automated boundary detection of body structures
WO2006044997A2 (en) * 2004-10-15 2006-04-27 The Trustees Of Columbia University In The City Of New York System and method for localized measurement and imaging of viscosity of tissues
US20060247544A1 (en) * 2005-02-03 2006-11-02 Maleeha Qazi Characterization of cardiac motion with spatial relationship
US7986836B2 (en) * 2005-02-10 2011-07-26 Koninklijke Philips Electronics N.V. Method, a system and a computer program for segmenting a surface in a multidimensional dataset
US10687785B2 (en) 2005-05-12 2020-06-23 The Trustees Of Columbia Univeristy In The City Of New York System and method for electromechanical activation of arrhythmias
US7672540B2 (en) * 2005-07-13 2010-03-02 Siemens Medical Solutions USA, Inc, Nonrigid registration of cardiac perfusion MR images using adaptive local template matching
US8131043B2 (en) * 2005-09-16 2012-03-06 The Ohio State University Method and apparatus for detecting interventricular dyssynchrony
WO2007035688A2 (en) * 2005-09-16 2007-03-29 The Ohio State University Method and apparatus for detecting intraventricular dyssynchrony
EP1937151A4 (en) * 2005-09-19 2011-07-06 Univ Columbia SYSTEMS AND METHOD FOR OPENING THE BLOOD-BRAIN BARRIER OF A PERSON WITH ULTRASOUND
US7724929B2 (en) * 2005-10-17 2010-05-25 Siemens Medical Solutions Usa, Inc. System and method for myocardium segmentation in realtime cardiac MR data
EP1963805A4 (en) * 2005-12-09 2010-01-06 Univ Columbia SYSTEMS AND METHODS FOR ELASTOGRAPHIC IMAGING
US8150128B2 (en) * 2006-08-30 2012-04-03 The Trustees Of Columbia University In The City Of New York Systems and method for composite elastography and wave imaging
JP2008217526A (ja) * 2007-03-06 2008-09-18 Canon Inc 画像処理装置、画像処理プログラム及び画像処理方法
JP5414157B2 (ja) * 2007-06-06 2014-02-12 株式会社東芝 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム
WO2008157843A1 (en) * 2007-06-21 2008-12-24 Guardian Technologies International Inc. System and method for the detection, characterization, visualization and classification of objects in image data
US20090105578A1 (en) * 2007-10-19 2009-04-23 Siemens Medical Solutions Usa, Inc. Interactive Medical Imaging Processing and User Interface System
US20110105931A1 (en) * 2007-11-20 2011-05-05 Siemens Medical Solutions Usa, Inc. System for Determining Patient Heart related Parameters for use in Heart Imaging
WO2011035312A1 (en) 2009-09-21 2011-03-24 The Trustees Of Culumbia University In The City Of New York Systems and methods for opening of a tissue barrier
US8170321B2 (en) * 2008-05-23 2012-05-01 Siemens Aktiengesellschaft System and method for contour tracking in cardiac phase contrast flow MR images
JP2009290827A (ja) * 2008-06-02 2009-12-10 Sony Corp 画像処理装置および画像処理方法
WO2010014977A1 (en) * 2008-08-01 2010-02-04 The Trustees Of Columbia University In The City Of New York Systems and methods for matching and imaging tissue characteristics
US8229192B2 (en) * 2008-08-12 2012-07-24 General Electric Company Methods and apparatus to process left-ventricle cardiac images
WO2010030819A1 (en) 2008-09-10 2010-03-18 The Trustees Of Columbia University In The City Of New York Systems and methods for opening a tissue
JP2010069099A (ja) * 2008-09-19 2010-04-02 Toshiba Corp 画像処理装置及びx線コンピュータ断層撮影装置
US8469890B2 (en) * 2009-03-24 2013-06-25 General Electric Company System and method for compensating for motion when displaying ultrasound motion tracking information
CN101926657B (zh) * 2009-06-18 2013-10-02 深圳迈瑞生物医疗电子股份有限公司 一种超声图像特征追踪方法及其系统
WO2011025893A1 (en) 2009-08-28 2011-03-03 The Trustees Of Columbia University In The City Of New York Systems, methods, and devices for production of gas-filled microbubbles
US8617892B2 (en) 2009-09-01 2013-12-31 The Trustees Of Columbia University In The City Of New York Microbubble devices, methods and systems
US8478012B2 (en) * 2009-09-14 2013-07-02 General Electric Company Methods, apparatus and articles of manufacture to process cardiac images to detect heart motion abnormalities
US8698888B2 (en) * 2009-10-30 2014-04-15 Medical Motion, Llc Systems and methods for comprehensive human movement analysis
US10010709B2 (en) 2009-12-16 2018-07-03 The Trustees Of Columbia University In The City Of New York Composition for on-demand ultrasound-triggered drug delivery
CN102111530B (zh) * 2009-12-24 2013-01-02 财团法人工业技术研究院 移动物体检测装置与方法
JP2011199716A (ja) * 2010-03-23 2011-10-06 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
WO2011153268A2 (en) 2010-06-01 2011-12-08 The Trustees Of Columbia University In The City Of New York Devices, methods, and systems for measuring elastic properties of biological tissues
JP5797197B2 (ja) * 2010-07-14 2015-10-21 国立大学法人東北大学 信号処理装置、信号処理プログラム及び信号処理プログラムを記録したコンピュータ読み取り可能な記録媒体
US9265483B2 (en) 2010-08-06 2016-02-23 The Trustees Of Columbia University In The City Of New York Medical imaging contrast devices, methods, and systems
JP2013542046A (ja) * 2010-11-10 2013-11-21 エコーメトリックス,エルエルシー 超音波画像処理のシステムおよび方法
US9123115B2 (en) 2010-11-23 2015-09-01 Qualcomm Incorporated Depth estimation based on global motion and optical flow
US9171372B2 (en) 2010-11-23 2015-10-27 Qualcomm Incorporated Depth estimation based on global motion
JP5756812B2 (ja) * 2010-11-25 2015-07-29 株式会社日立メディコ 超音波動画像処理方法、装置、およびプログラム
WO2012117321A1 (en) * 2011-03-02 2012-09-07 Koninklijke Philips Electronics N.V. Visualization for navigation guidance
DE102011005046A1 (de) * 2011-03-03 2012-09-06 Siemens Aktiengesellschaft Verfahren zum Erzeugen eines MR-Bildes mit einem Trackinfaktor und entsprechende Magnetresonanzanlage
US9320491B2 (en) 2011-04-18 2016-04-26 The Trustees Of Columbia University In The City Of New York Ultrasound devices methods and systems
WO2012162664A1 (en) 2011-05-26 2012-11-29 The Trustees Of Columbia University In The City Of New York Systems and methods for opening of a tissue barrier in primates
JP5788230B2 (ja) 2011-06-09 2015-09-30 株式会社東芝 超音波診断装置、超音波画像処理装置、超音波画像処理プログラム
CN102890824B (zh) * 2011-07-19 2015-07-29 株式会社东芝 运动对象轮廓跟踪方法和装置
US9886552B2 (en) 2011-08-12 2018-02-06 Help Lighting, Inc. System and method for image registration of multiple video streams
JP2013048717A (ja) 2011-08-31 2013-03-14 Sony Corp 画像処理装置及び方法、記録媒体、並びにプログラム
US9734430B2 (en) * 2012-01-02 2017-08-15 Mackay Memorial Hospital Evaluation system or determination of cardiovascular function parameters
JP5386001B2 (ja) * 2012-03-26 2014-01-15 雅彦 中田 超音波診断装置
US9020203B2 (en) * 2012-05-21 2015-04-28 Vipaar, Llc System and method for managing spatiotemporal uncertainty
JP5444408B2 (ja) * 2012-05-21 2014-03-19 株式会社東芝 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム
US9508140B2 (en) 2012-08-27 2016-11-29 Agency For Science, Technology And Research Quantifying curvature of biological structures from imaging data
WO2014059170A1 (en) 2012-10-10 2014-04-17 The Trustees Of Columbia University In The City Of New York Systems and methods for mechanical mapping of cardiac rhythm
US10499884B2 (en) 2012-12-06 2019-12-10 White Eagle Sonic Technologies, Inc. System and method for scanning for a second object within a first object using an adaptive scheduler
US9773496B2 (en) 2012-12-06 2017-09-26 White Eagle Sonic Technologies, Inc. Apparatus and system for adaptively scheduling ultrasound system actions
US9529080B2 (en) 2012-12-06 2016-12-27 White Eagle Sonic Technologies, Inc. System and apparatus having an application programming interface for flexible control of execution ultrasound actions
US10076313B2 (en) 2012-12-06 2018-09-18 White Eagle Sonic Technologies, Inc. System and method for automatically adjusting beams to scan an object in a body
US9983905B2 (en) 2012-12-06 2018-05-29 White Eagle Sonic Technologies, Inc. Apparatus and system for real-time execution of ultrasound system actions
US9091628B2 (en) 2012-12-21 2015-07-28 L-3 Communications Security And Detection Systems, Inc. 3D mapping with two orthogonal imaging views
US9665935B2 (en) * 2013-05-16 2017-05-30 Konica Minolta, Inc. Image processing device and program
US9247921B2 (en) 2013-06-07 2016-02-02 The Trustees Of Columbia University In The City Of New York Systems and methods of high frame rate streaming for treatment monitoring
US9940750B2 (en) 2013-06-27 2018-04-10 Help Lighting, Inc. System and method for role negotiation in multi-reality environments
US10322178B2 (en) 2013-08-09 2019-06-18 The Trustees Of Columbia University In The City Of New York Systems and methods for targeted drug delivery
US10028723B2 (en) 2013-09-03 2018-07-24 The Trustees Of Columbia University In The City Of New York Systems and methods for real-time, transcranial monitoring of blood-brain barrier opening
KR20150078275A (ko) * 2013-12-30 2015-07-08 삼성전자주식회사 움직이는 피사체 촬영 장치 및 방법
US9324155B2 (en) * 2014-03-10 2016-04-26 General Electric Company Systems and methods for determining parameters for image analysis
CN107072638B (zh) * 2014-10-27 2020-11-06 皇家飞利浦有限公司 对超声图像的序列进行可视化的方法、计算机程序产品和超声系统
DE102014117141A1 (de) * 2014-11-24 2016-05-25 Carl Zeiss Meditec Ag Messverfahren und Messvorrichtung
US9811732B2 (en) 2015-03-12 2017-11-07 Qualcomm Incorporated Systems and methods for object tracking
US9836118B2 (en) 2015-06-16 2017-12-05 Wilson Steele Method and system for analyzing a movement of a person
US9569736B1 (en) * 2015-09-16 2017-02-14 Siemens Healthcare Gmbh Intelligent medical image landmark detection
EP3369039A1 (en) * 2015-10-28 2018-09-05 Ent. Services Development Corporation LP Identification of images
WO2017171658A1 (en) * 2016-03-31 2017-10-05 Agency For Science, Technology And Research Object motion detection
DE102016117889B3 (de) * 2016-09-22 2018-03-15 Tomtec Imaging Systems Gmbh Verfahren und Vorrichtung zur Korrektur von durch Tracking-Verfahren ermittelten dynamischen Modellen
US10499867B2 (en) * 2018-01-08 2019-12-10 Shenzhen Keya Medical Technology Corporation Method, storage medium, and system for analyzing image sequences of periodic physiological activities
KR102468309B1 (ko) * 2018-04-26 2022-11-17 한국전자통신연구원 영상 기반 건물 검색 방법 및 장치
CN109410244B (zh) * 2018-08-28 2021-02-26 浙江工业大学 一种基于全局光流法的肺部肿瘤自动检测跟踪方法
JP7346192B2 (ja) * 2018-09-21 2023-09-19 キヤノンメディカルシステムズ株式会社 装置、医用情報処理装置、及びプログラム
CN109727270B (zh) * 2018-12-10 2021-03-26 杭州帝视科技有限公司 心脏核磁共振图像的运动机理和纹理特征分析方法和系统
US10930386B2 (en) * 2018-12-11 2021-02-23 International Business Machines Corporation Automated normality scoring of echocardiograms
US11931207B2 (en) 2018-12-11 2024-03-19 Eko.Ai Pte. Ltd. Artificial intelligence (AI) recognition of echocardiogram images to enhance a mobile ultrasound device
US10631828B1 (en) 2018-12-11 2020-04-28 Eko.Ai Pte. Ltd. Automatic clinical workflow that recognizes and analyzes 2D and doppler modality echocardiogram images for automated cardiac measurements and the diagnosis, prediction and prognosis of heart disease
US11301996B2 (en) 2018-12-11 2022-04-12 Eko.Ai Pte. Ltd. Training neural networks of an automatic clinical workflow that recognizes and analyzes 2D and doppler modality echocardiogram images
US11446009B2 (en) 2018-12-11 2022-09-20 Eko.Ai Pte. Ltd. Clinical workflow to diagnose heart disease based on cardiac biomarker measurements and AI recognition of 2D and doppler modality echocardiogram images
US11426131B2 (en) * 2018-12-17 2022-08-30 Siemens Medical Solutions Usa, Inc. Automated motion correction in PET imaging
DE102019116383A1 (de) * 2019-06-17 2020-12-17 Schölly Fiberoptic GmbH Verfahren zum Markieren eines Bildbereichs in einem Bild einer Bildfolge
DE102019116381A1 (de) * 2019-06-17 2020-12-17 Schölly Fiberoptic GmbH Verfahren zur Bestimmung der Bildposition eines Markierungspunktes in einem Bild einer Bildsequenz
CN111493931A (zh) * 2019-08-01 2020-08-07 深圳迈瑞生物医疗电子股份有限公司 一种超声成像方法及设备、计算机可读存储介质
US11497475B2 (en) * 2020-01-31 2022-11-15 Caption Health, Inc. Ultrasound image acquisition optimization according to different respiration modes
US20220031281A1 (en) * 2020-07-29 2022-02-03 Liminal Sciences, Inc. Methods and apparatus for pulsatility-mode sensing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335985B1 (en) * 1998-01-07 2002-01-01 Kabushiki Kaisha Toshiba Object extraction apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69131798T2 (de) * 1990-06-12 2000-05-11 Univ Florida Verfahren zur automatischen qantisierung von digitalisierten bilddaten
JP4116122B2 (ja) * 1997-11-28 2008-07-09 株式会社東芝 超音波診断装置及び超音波画像処理装置
JP3603737B2 (ja) * 2000-03-30 2004-12-22 日本電気株式会社 移動体追尾方法及びその装置
FR2819919A1 (fr) * 2001-01-23 2002-07-26 Koninkl Philips Electronics Nv Suivi de la deformation d'une structure lineique sur une image d'une sequence d'images d'un organe deformable dans le temps

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335985B1 (en) * 1998-01-07 2002-01-01 Kabushiki Kaisha Toshiba Object extraction apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
40 2.40(2),
A. Hein et al.Current Time-Domain Methods for Assessing TissueMotionbyAnalysis from Reflected Ultrasound Echoes-AReview.IEEE TRANSACTIONS ON ULTRASONICS,FERROELECTRICS AND FREQUENCY CONTROL40 2.1993,40(2),84-102.
A. Hein et al.Current Time-Domain Methods for Assessing TissueMotionbyAnalysis from Reflected Ultrasound Echoes-AReview.IEEE TRANSACTIONS ON ULTRASONICS,FERROELECTRICS AND FREQUENCY CONTROL40 2.1993,40(2),84-102.40 2.40(2), *
US 6335985 B1,说明书第19栏第1-29行、第53-56行.

Also Published As

Publication number Publication date
WO2005034039A3 (en) 2005-07-21
JP2007509642A (ja) 2007-04-19
CN101103377A (zh) 2008-01-09
US20050074154A1 (en) 2005-04-07
DE112004001861T5 (de) 2006-09-07
WO2005034039A2 (en) 2005-04-14
JP4427548B2 (ja) 2010-03-10
DE112004001861B4 (de) 2013-01-24
US7421101B2 (en) 2008-09-02
JP2009226226A (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
CN101103377B (zh) 进行局部可变形运动分析的系统和方法
US7555151B2 (en) System and method for tracking anatomical structures in three dimensional images
US10321892B2 (en) Computerized characterization of cardiac motion in medical diagnostic ultrasound
CN1781123B (zh) 用于跟踪运动对象的整体形状的系统及方法
US8265363B2 (en) Method and apparatus for automatically identifying image views in a 3D dataset
US7764817B2 (en) Method for database guided simultaneous multi slice object detection in three dimensional volumetric data
US20030038802A1 (en) Automatic delineation of heart borders and surfaces from images
US8559689B2 (en) Medical image processing apparatus, method, and program
US20030160786A1 (en) Automatic determination of borders of body structures
Laporte et al. Multi-hypothesis tracking of the tongue surface in ultrasound video recordings of normal and impaired speech
US8538109B2 (en) Method and system for dynamic pulmonary trunk modeling and intervention planning
Xu et al. Ultrasound intima–media segmentation using Hough transform and dual snake model
KR20110128197A (ko) 심장 m-모드 뷰들의 자동 분석
Mazaheri et al. Echocardiography image segmentation: A survey
US9129392B2 (en) Automatic quantification of mitral valve dynamics with real-time 3D ultrasound
De Luca et al. Estimation of large-scale organ motion in B-mode ultrasound image sequences: a survey
US20220207771A1 (en) Heart Position Estimation
CN100378750C (zh) 用于管状器官的三维重建的系统和方法
Karimi et al. Fully-automated tongue detection in ultrasound images
CN100507947C (zh) 利用外观和形状来检测和匹配解剖结构的系统和方法
Zhang et al. Intelligent measurement of spinal curvature using cascade gentle AdaBoost classifier and region-based DRLSE
Snare et al. Automatic real-time view detection
Chen et al. Tracking pylorus in ultrasonic image sequences with edge-based optical flow
Park et al. Automatic computation of 2D cardiac measurements from B-mode echocardiography
Pednekar et al. Intensity and morphology-based energy minimization for the automatic segmentation of the myocardium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant