CN1009955B - 为显色反应定量的纤维光学探针 - Google Patents

为显色反应定量的纤维光学探针

Info

Publication number
CN1009955B
CN1009955B CN86106159A CN86106159A CN1009955B CN 1009955 B CN1009955 B CN 1009955B CN 86106159 A CN86106159 A CN 86106159A CN 86106159 A CN86106159 A CN 86106159A CN 1009955 B CN1009955 B CN 1009955B
Authority
CN
China
Prior art keywords
light transmitting
optic
transmitting fiber
fibre
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN86106159A
Other languages
English (en)
Other versions
CN86106159A (zh
Inventor
戴维德·J·科斯特洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optex Biomedical Inc
Original Assignee
Optex Biomedical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optex Biomedical Inc filed Critical Optex Biomedical Inc
Publication of CN86106159A publication Critical patent/CN86106159A/zh
Publication of CN1009955B publication Critical patent/CN1009955B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides

Abstract

一个用于显色测量化合物性质的,适于插入活组织中的光学探针(12),一种待显色测量的化合物被注入到在靠近探针顶部(20)处的探针一侧的样品室(22),在该样品室(22)中装存的显色物质的颜色因待显色测量的化合物的化学性质而发生变化,因此,由光导纤维(10,12)所传输的经过样品室(22)的光改变了强度。

Description

本发明涉及到一个利用纤维光学对化学性质做显色测量的新型仪器,本发明特别是涉及到一个采用对面光学间隙的测量结构的纤维光学探针,它允许整个探针的直径小到可以直接将探针插入活组织中或者先装在一个16号或者更小的皮下注射用的针头上。
化学性质的显色测量是人们熟知的技术,酚酞溶液在碱中变红色,而在酸中变无色,就是一个简单的例子。很多参考文献报导了显色物质同一个纤维光学光源和一个光探测器结合在一起使用的方法。由发射光导纤维发出的光,通过待测化合物和显色物质的混合物,被接收光导纤维接收,该光导纤维把光传输到光探测器,显色物质的颜色变化会改变该混合物的光透过率,结果,光探测器测量到不同的光强。当测量如体内血液中的PH值这样一些量时,利用光测量法是优于电测法的,这是因为前者减少了对活组织的刺激和冲击。该光导纤维可用来传导光,以及制做通用尺寸的测量探针。
在已有技术的仪器结构中,是把第一光导纤维的一端连接到一个光发射器上,并使其另一端沿着与该光导纤维的轴线成90°的方向切成一个平面。第二光导纤维的一端连接到一个光探测器上,其另一端采用和第一光导纤维相同的方法切成一个平面。
在一般的仪器结构中,两个光导纤维的光学面是这样排列的,即这两个平面互相正对,以使从发射光导纤维发出的光对准待测化合物,並完全进入接收光导纤维的光学面,从而使这两个平面互相平行且相互离开一定的距离,以形成一个光学间隙,该距离通常取值为0.01 英寸。在这类仪器的最简单结构中,光导纤维可以沿各自的轴线,从光学间隙处分别延伸。在美国专利3123066中由Brumley提出一种结构,即用弯曲光导纤维的方法制成一个小尺寸且容易实现的结构,这种结构中光导纤维在离开光学间隙处是互相平行的。
采用Brumley所提出的结构,可以构成一个光学探针,该探针的主体由两个平行的光导纤维被适当地固定在一起所组成,以制成一个直径相当小的探针主体。因为各光导纤维必须在靠近探针顶部处,离开探针主体方向弯曲,而后彼此相对地向后弯曲,以使各自平面在光学间隙处能彼此精确相对,所以人们认为光学探针顶部尺寸存在一个固有的下限。探针尺寸的固有下限起因于光导纤维的弯曲半径有一个下限。有关纤维光学的技术文件指出:当一个光导纤维以一个接近其外径的弯曲半径弯曲时,它的光透射率会明显地减小。
一种具有较小尺寸的探针顶部的第二种结构也已经使用了。这种结构的实例已由Peterson等人在美国专利4200110中公开了。两个光导纤维沿着整个探针长度方向相互平行排列,在探针顶部,这些光导纤维的平面大致是平行放置的,但是它们的方向相同,而不是相互正对。在这种结构中,光照射到待测化合物上,然后反射回来在接收光导纤维的平面上被接收,此时光的接收或者是依靠待测化合物对光的散射,或者是依靠探针顶部的一个反射器对光的反射。虽然这第二种结构不要求弯曲光导纤维,但结果可能使到达接收光导纤维端面的光强减弱。
这两种结构有一个共同缺点-测量室放置在探针的顶部,这就限制了探针的锋利性。此外,如果探针直接地插入活组织中,探针的顶部很可能发生断裂。在已有技术中,一种保护探针顶部的方法是先 把探针装在一个皮下注射的针头上,再把这个针头插入活组织。在探针顶部放置的保护材料防碍了把待显色测试的化合物取入样品室。
本发明提供了一种对面光学间隙的测量结构,它没有已有技术中存在的探针端部尺寸过大的缺点。在本发明中,第一光导纤维既可以作发射光导纤维,又可以作接收光导纤维,在靠近其端面附近把该光导纤维作成一个180°的急弯,以形成一个钩状弯端。把该光导纤维的这端弯过来,使其与该光导纤维在急弯另一侧的部分相互平行,並且相隔很近。急弯部分是很锋利的,弯曲半径可小于光导纤维加工工艺所允许的数值,但不会严重降低光导纤维的透射率,特别是当光导纤维急弯处弯曲半径的数值和光导纤维的直径为同一数量级时更是如此。
第二光导纤维的端面和第一光导纤维的端面平行相对。把一种刚性适宜的环氧树脂涂料或类似的材料涂到这两根光导纤维上,以便这二根光导纤维固定在各自的位置上,並提高探针的结构强度。一个在保护涂层中开缝形成的样品室露出于光学间隙,並装有显色物质,待测的化合物将被放入显色物质中。一个半透膜复盖在这个样品室的开口上,利用此薄膜既可以保存显色物质,又可以使待测化合物进入样品室。
应该指出的是:关于薄膜半透的概念,在有关的文件中有两种含意,一种旧含意是指薄膜允许流体在一个方向上通过,而在相反方向上不能通过,第二种含意,也就是这里所采用的含意,是指所选择的流体可在两个方向上基本等同地通过,而其他流体则在两个方向上基本同样地不能通过。
以上列举了两种光导纤维的应用,其中一种在探针组装前使其有 一个急弯。实际上所公开的这种探针,可以通过一个单根的光导纤维制成一个急弯,而后从探针顶部开始,沿着光导纤维的两个长度方向向下移动把涂料涂上而制成探针。当涂料固化后形成一个硬的涂层时,就在该探针上切一个缝而制成样品室和光学间隙。在探针顶部的硬涂层上切割样品室的这种加工方法使得一根光导纤维被切断,从而形成上面列举的包括有两根光导纤维的结构。
本发明具有Brumely的对面光学间隙和Peterson等人的小尺寸探头的两个优点。此外本发明还具有Peterson和Brumely结构中所没有的优点,就是测量室放在探针的侧面,而不是探针的顶部,这样可以把探针顶部做得既坚固又小,足以能把探针直接插入活组织中,而不用预先装在一个注射针头上。
本发明除应用在生物医学领域外,还可应用在食品工业这类领域,例如使用这样既坚固尺寸又小的探针顶部,可以插到新鲜的水果里或肉里测量其化学性质,因为探针顶部的尺寸小,所以在插入水果和肉里时,只会引起其很小的变形。
关于附图的简要说明
结合附图阅读下面的说明可以更清楚地理解本发明的优点和特点。
图1是一个表明光学探针的剖视图,它展示了探针结构的细节和它与一个光源和探测器的连接。
图2是一个放大了的探针顶部的剖视图,它展示了样品室的细节。
图3说明了光导纤维的方向特性,因为这些性质与光学间隙宽度的确定有关。
最佳实施例的描述
参照图1,可以看到这个光学探针的剖视图,一个探针主体12 是由被保护罩14封装起来的第一光导纤维18和第二光导纤维16组成的。该保护罩14以一个约3.5英寸(8.9厘米)长的柔性园形导管为好,由例如聚四氟乙烯这样的材料制成。该聚四氟乙烯导管壁薄,其内径约为0.02英寸(0.5毫米),壁厚约为0.002英寸(0.05毫米)。顶部支撑涂层24复盖光导纤维16和18的一部分,该光导纤维从涂层保护罩14的一端伸出约0.2英寸(5毫米),並进一步延伸到保护罩14的里面。一个样品室22在顶部支撑涂层的表面开一个口並延伸到支撑涂层24的中间,其深度约0.5英寸(12.7毫米)。
图3展示了光导纤维16和18相隔开的距离大于光导纤维16和18的直径,主要是更清楚地展开了结构的细节,在图中还展示了在保护罩14的内壁和光导纤维16和18之间有相当大的间隙,再一次更清楚地展示了该结构的细节。在实际的仪器中,该保护罩14是紧凑地套在光导纤维16和18上,以使光导纤维16和18在整个保护罩14内相互接触。光导纤维最好是由材料为聚甲基丙烯酸甲酯的核心和比其折射率低的透明聚合物外表复盖层所构成。所使用的光导纤维外径通常取值为0.01英寸(0.25毫米),将这种光导纤维最多为64根一束捆在一起,然后用聚乙烯树脂套管套起来,它们是由Dupout公司出售的,注册商标为CROFON,另一种不用聚乙烯树脂套管套起来的光导纤维牌号为Dupono    EOO11,这是一种适用于本发明的光导纤维。
顶部支撑涂层24最好是环氧树脂材料,在液体状态下将它涂上去,经干燥固化形成硬的复盖层,虽然图1展示的顶部支撑涂层24是不透明的,但它同样可以是透明或半透明的,另外,还可给探头顶 部提供一种刚性保护,给上述样品室提供一种外层介质,顶部支撑涂层有助于固定保护罩14的一端。
光导纤维16和18的远端通过一个容易买到的标准光耦合器与一个光源10和一个光探测器12进行光学联接,这样,光就可以经由光导纤维16和18进行传输了。应该强调的是,在光探测器12与第二光导纤维16相连,光源10与第一光导纤维18相连时,这个探针也可以工作,这时,光在与图1所示的相反方向上传播。
可以看到,第二光导纤维16和第一光导纤维18互相平行,並且相互隔开。第一光导纤维18延伸到第二光导纤维16近端这边,並且回绕成一个180°的急弯,以使光导纤维16和18的近端从样品室22的对边相互正对着。顶端20是由这个180°急弯形成的。在实际结构中,当所提供的顶部支撑涂层24处于液体状态时,光导纤维16和18最初是一根光导纤维的一部分,将这根光导纤维对折,並经由保护罩14拉出,这样在顶部支撑涂层24固化后,随着一根光导纤维被切断而变成两根,如图1所示的光导纤维16和18,样品室22则在已固化的顶部支撑涂层24上切成了。
现在参考图2,从图上可以看到顶部20和样品室22附近的探针更详细更准确的结构。更准确地说,在顶部20的180°弯的锐度可以通过依据从急弯的曲率中心33到第一光导纤维18的轴线34的距离测量的弯曲半径32来确定。为实现一个小的顶部尺寸,弯曲半径要小于或等于第一光导纤维18的直径。纤维光学工艺指出,当把光导纤维以小于它直径的曲率半径弯曲时,它的透射率会降低到它在直线状态下的60%或更低。因此光导纤维的制造者建议在正确的光导加工中应用大的弯曲半径,因而采用小于或等于第一光导纤维18 的直径的曲率半径32对探针加工的成功,从已有技术的角度来看,是一个惊人的和预想不到的结果。
采用与光导纤维工艺中可接受的见解相矛盾的这样小的弯曲半径32对探针进行了正确的加工,看来是基于两个因素:第一、在很多应用中需要光导纤维的长度从数十呎到数百呎,在这样的长度上可能需要很多弯,在这样的应用中由于长的光导纤维和多次弯曲会引起透射率的累积减少,因而需要限定任何一个弯曲部分对光透射率的损失,而本发明需要的光导纤维长度仅为3呎(91.4厘米)或更短,而且只有一个高损失的弯。这样,由在顶部20的弯引起的高透射率损失对探针的工作来说不是致命的。
第二,在很多纤维光学的应用中,包含有传输很多象语言这样的复杂波形的信号,如果用本发明所用的这样小半径的弯曲部分则会使这种复杂的波形发生严重畸变。但在本发明中,只测量传输光的强度,因此在使用探针时,不考虑被传输信号波形的畸变和由此引起的不清晰度这些因素。
再参看图2,可以看到样品室22的细节和周围的构造,光导纤维16和18的近端分别和平面28和30一起制成。面28和30是平的,並且被切成大体上分别垂直于光导纤维16和18的轴线,且互相平行的两个面。平面28和30被隔开以形成一个光学间隙23。不难看出从平面30延伸到平面28的轴线34和轴线17是重合的。
光学间隙23的最大宽度由两个因素决定,第一,当光学间隙23增加时,接收面接到来自发射面的光将减少。注意:在图2中,因为第二个光导纤维16与光源10进行光学连接,所以平面28是发射面,如前所述,第一光导纤维18也可以与光源10进行光学连接, 同时把光探测器12连到第二光学纤维16上,这样把面28和30的发射和接收的任务分别调换一下。
影响光学间隙23最大宽度的第二个因素是应使接收面30接收来自光源的光,而不是接收发射面28的光。现在参看图3,可以看出面28和30它们各自的发射和接收功能是有方向性的。图3给出了DuPout    CROFON光导纤维平面的发射光和接收光的方向性曲线。从发射面28发射的光大部份被约束在与第二光导纤维16的轴线17成20°角的发射锥体内;接收面30吸收的光大部份被约束在绕第一光导纤维18的轴线34成60°角的接收锥体内。如果面28和30相隔开的距离X大于d/2tg30°=0.868d,式中d是光导纤维的直径,则可能接收到来自外界光源的光,而不是发射面28的光,这样就干拢了测量的精确性,试验已经表明,本发明的一些光学间隙23的宽度等于光导纤维16和18的直径的1.5倍的实例是切实可行的,而且效率不低。
再来看图2,可以看到样品室22填充有一种显色物质25。显色物质25可渗入待测化合物中。在测量过程中,待测化合物通过半透膜26进入样品室22,渗透到显色物质25中,如果在该化合物中存在所预期的性质,则显色物质就会改变颜色,这样,其对光的透射率将发生变化。从发射面28发射的光经样品室22后被接收面30接收,其光强的变化由光探测器12探测,从而发出反映所预期的性质的信号。
显色物质25是通过把一种染料放入一种多孔支撑介质中而制成的。所用的多孔支撑介质的一个实例是由一些直径约为10微米的与水混合的微型玻璃球所形成的含水稀浆。这种微型玻璃球可以用尺寸 在1-100微米范围的形状不规则的颗粒代替。尽管用玻璃已获得比较好的效果,但聚氨甲酸酯微粒也已经使用。染料是在水注入前粘附到颗粒或微球上的。把水加到颗粒或微球上,是为了在粘贴半透膜时,有助于微球或颗粒固定在应有的位置上。
在市场上可以买到各种颜色的种类繁多的染料,一种已经被某些研究者在血液吸氧性显色测量中使用过的染料是二萘嵌苯二丁酸,它是由BASF-Wyandotte公司作为热塑性亮黄色10G来销售的。通过使用象苝二丁酸这样的有机溶剂混合的染料清洗颗粒或微球的方法,可以把该染料粘到支撑介质上。由Feterson,Fitjgerald和Buckhold所著,1984年1月登在《分析化学》56卷一分册上的题目为“测量体内氧分压的纤维光学探针”的论文对染料的选择和多孔支撑介质的制备进行了更详细的说明。Harper在它的题目为“可重复使用的玻璃-粘接PH值显示器”(发表在《分析化学》47卷2分册,1975年2月)指出了一种用于PH测量的粘接玻璃碎片上的固定Subtheilein的指示计染料的使用方法。
多孔支撑介质还可以用例如玻璃或聚氨基甲酸酯这样的固体多孔材料填充样品室来实现。把一种适宜类型的染料填到介质的孔隙中去,並使其能粘到介质的壁上。试验表明,稀浆类型的介质填充到样品室中能较容易一些。
半透膜26最好是用把纤维素乙缩醛溶解在由50%丙酮和50%环乙酮制成的溶剂中而形成的2%的溶液来实现。在含水稀浆填入样品室22之后,把这种溶液以气溶胶形式喷射到上面,该气溶胶干燥后形成一个薄膜26,当水流过薄膜26的时候,该气溶胶有助于固定住多孔支撑介质上的玻璃颗粒。
在该溶液中增加纤维素乙缩醛的浓度,将会导致膜26上气孔尺寸的减小。现有的关于制造纤维素乙缩醛薄膜的大量文件指出,如果纤维素乙缩醛的浓度高于2%,可以用于制造一种能透过气体,但不能透过水的薄膜,这样的薄膜26被用于保存稀浆中的水,以便使得显色测量的气体溶在稀浆的水中。

Claims (10)

1、一个用于显色测量的光学探针,包括一根光导纤维,所说光导纤维的两端准备安装光学耦合器,以便光通过该光导纤维传输;所说的光导纤维被对折,並沿其长度方向在某处有一180°的急弯,由此形成顶部;沿所说光导纤维的长度方向上在离开顶部一定间隔的地方从所说的光导纤维上切去一个小薄片,以形成一个光学间隙;一个顶部支撑涂层,所说的顶部支撑涂层覆盖该顶部,并向后进一步延伸在超出该光学间隙的一段距离上覆盖所说的光导纤维的对折部分的一段;所说的顶部支撑涂层有一个样品室,该样品室通向该顶部支撑涂层的表面,并延伸到所说的支撑涂层的内部,以便露出所说的光导纤维在光学间隙处的端面;一种显色物质,所说的显色物质填满样品室,所说的显色物质对于待显色测量的化合物是可渗透的;一个半透膜,所说的半透膜用到顶部支撑涂层的表面上,以盖住样品室的开口。
2、如权利要求1所述的光学探针,所说的光学探针的外径小到足以使所说的光学探针插到一个16号皮下注射针头上。
3、如权利要求1所述的光学探针,所说的光学探针的外径小到足以使所说的光学探针插入血管里。
4、如权利要求1或2或3所述的光学探针,其中所说的显色物质是由一个粘有染料的多孔支撑介质所组成。
5、如权利要求4所述的光学探针,其中所说的多孔支撑介质是由一种其孔隙内粘有染料的固体多孔材料组成。
6、如权利要求4所述的光学探针,其中所说的多孔介质是由一种液体和固体颗粒混合形成的稀浆所组成。
7、如权利要求6所述的光学探针,其中所说的固体颗粒是由玻璃制成的。
8、如权利要求6所述的光学探针,其中所说的固体颗粒是微型球。
9、如权利要求6所述的光学探针,其中所说的液体是水。
10、一个用于显色测量的光学探针,包括第一光导纤维,它有一个准备与光耦合器耦合的远端和一个具有一个面的近端;所说的光导纤维在靠近它的近端有一个180°的弯曲部分形成一个顶部,其弯曲半径小于或等于所说的第一光导纤维的直径;第二光导纤维有一个准备与光耦合器耦合的远端和一个具有一个面的近端;所说的第二光导纤维与所说的第一光导纤维相距很近,並呈直线平行,以便使所说的第一光导纤维的近端面与所说的第二光导纤维的近端面正对而形成一个光学间隙;一个围绕光导纤维的柔性的保护罩,该光导纤维的各自的近端,从柔性保护涂层的近端伸出以便保存顶端和露出光学间隙,该光导纤维的远端从该柔性保护罩的顶端伸出;一个刚性顶部支撑涂层,覆盖着光导纤维露出保护套的近端部分,並延伸到保护套内,填满该保护套内近端部分;该顶部涂层有一个样品室通向该支撑涂层表面,并向里延伸到该支撑涂层和光学间隙中,从而暴露出该光导纤维的近端面;一个填充该样品室的显色物质,该显色物质是由粘有染料的玻璃碎片组成的,该碎片同水混合形成悬浮体;一个粘贴到该顶部支撑涂层表面上的半透膜,以便盖住该样品室的开口,该半透膜沿着该探针向后延伸,以便盖住该保护罩的一段;该半透膜选择为允许一个选定的待显色测试化合物通过,而阻止其他化合物通过。
CN86106159A 1985-08-06 1986-08-05 为显色反应定量的纤维光学探针 Expired CN1009955B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/763,019 US4682895A (en) 1985-08-06 1985-08-06 Fiber optic probe for quantification of colorimetric reactions
US763,019 1985-08-06

Publications (2)

Publication Number Publication Date
CN86106159A CN86106159A (zh) 1987-06-03
CN1009955B true CN1009955B (zh) 1990-10-10

Family

ID=25066670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN86106159A Expired CN1009955B (zh) 1985-08-06 1986-08-05 为显色反应定量的纤维光学探针

Country Status (9)

Country Link
US (1) US4682895A (zh)
EP (1) EP0232369B1 (zh)
JP (1) JPH0697206B2 (zh)
KR (1) KR880700259A (zh)
CN (1) CN1009955B (zh)
CA (1) CA1292665C (zh)
DE (1) DE3667541D1 (zh)
RU (1) RU1830141C (zh)
WO (1) WO1987000920A1 (zh)

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3001669A1 (de) * 1980-01-18 1981-08-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Anordnung zur optischen messung von physikalischen groessen und stoffkonzentrationen
US4929561A (en) * 1985-08-08 1990-05-29 Regents Of The University Of California Absorption-emission optrode and methods of use thereof
US4710623A (en) * 1986-02-27 1987-12-01 Eli Lilly And Company Optical fiber catheter with fiber-contained reactive element
US5006314A (en) * 1986-04-18 1991-04-09 Minnesota Mining And Manufacturing Company Sensor and method for sensing the concentration of a component in a medium
US4919891A (en) * 1986-04-18 1990-04-24 Minnesota Mining And Manufacturing Company Sensor with overcoating and process for making same
US4981779A (en) * 1986-06-26 1991-01-01 Becton, Dickinson And Company Apparatus for monitoring glucose
US5001054A (en) * 1986-06-26 1991-03-19 Becton, Dickinson And Company Method for monitoring glucose
US4800886A (en) * 1986-07-14 1989-01-31 C. R. Bard, Inc. Sensor for measuring the concentration of a gaseous component in a fluid by absorption
US4820490A (en) * 1986-09-11 1989-04-11 Miles Inc. Device and method for chemical analysis of fluids with a reagent coated light source
US4886338A (en) * 1986-10-10 1989-12-12 Minnesota Mining And Manufacturing Company Optical fiber event sensor
US5075127A (en) * 1986-10-10 1991-12-24 Minnesota Mining And Manufacturing Company Sensor with overcoating and process for making same
US5120510A (en) * 1986-10-10 1992-06-09 Minnesota Mining And Manufacturing Company Sensor and method for sensing the concentration of a component in a medium
US5070878A (en) * 1988-11-14 1991-12-10 Neoprobe Corporation Detector and localizer for low energy radiation emissions
US5151598A (en) * 1987-03-17 1992-09-29 Neoprobe Corporation Detector and localizer for low energy radiation emissions
FR2613074B1 (fr) * 1987-03-27 1990-06-08 Commissariat Energie Atomique Capteur chimique actif, a fibres optiques
US4810051A (en) * 1987-03-27 1989-03-07 Thomas & Betts Corporation Optical fiber modulator
US4849340A (en) * 1987-04-03 1989-07-18 Cardiovascular Diagnostics, Inc. Reaction system element and method for performing prothrombin time assay
US4842783A (en) * 1987-09-03 1989-06-27 Cordis Corporation Method of producing fiber optic chemical sensors incorporating photocrosslinked polymer gels
US5037615A (en) * 1987-10-30 1991-08-06 Cordis Corporation Tethered pair fluorescence energy transfer indicators, chemical sensors, and method of making such sensors
US4824206A (en) * 1987-11-25 1989-04-25 St&E, Inc. Modular fiber optic chemical sensor
US4925268A (en) * 1988-07-25 1990-05-15 Abbott Laboratories Fiber-optic physiological probes
US4991590A (en) * 1989-01-30 1991-02-12 Martin Goffman Associates Fiber optic intravascular blood pressure transducer
US4892383A (en) * 1989-02-17 1990-01-09 Fiberchem Inc. Reservoir fiber optic chemical sensors
US5047208A (en) * 1989-02-23 1991-09-10 Medtronic, Inc. Blood gas monitoring sensors
US5402241A (en) * 1989-03-30 1995-03-28 The Foxboro Company Optical probe for fluid light transmission properties
US5166073A (en) * 1989-05-05 1992-11-24 The Dow Chemical Company Miniaturized sensor for ionizing radiation
US5094819A (en) * 1989-06-16 1992-03-10 Washington Research Foundation Fluorescence-based optical sensor and method for detection of lipid-soluble analytes
US5176881A (en) * 1989-08-11 1993-01-05 The University Of Tennessee Research Corporation Fiber optic-based regenerable biosensor
US5056520A (en) * 1989-10-11 1991-10-15 Medex, Inc. Probe for blood gas sensing
US5132057A (en) * 1989-10-11 1992-07-21 Medex, Inc. Method of making an optical fiber probe
US5063178A (en) * 1990-03-19 1991-11-05 Medex, Inc. Freeze-dried blood gas sensor
US5109442A (en) * 1990-03-28 1992-04-28 Fiberchem Inc. Waterproof optical fiber chemical sensor and method of making same
US5059790A (en) * 1990-03-30 1991-10-22 Fiberchem, Inc. Reservoir fiber optic chemical sensors
US5124130A (en) * 1990-05-22 1992-06-23 Optex Biomedical, Inc. Optical probe
US5271073A (en) * 1990-08-10 1993-12-14 Puritan-Bennett Corporation Optical fiber sensor and method of manufacture
US5166990A (en) * 1990-08-10 1992-11-24 Puritan-Bennett Corporation Multiple optical fiber event sensor and method of manufacture
US5054882A (en) * 1990-08-10 1991-10-08 Puritan-Bennett Corporation Multiple optical fiber event sensor and method of manufacture
US5152287A (en) * 1990-08-15 1992-10-06 Cordis Corporation Cross-linked fluorinated polymers for use in gas sensors
US5212099A (en) * 1991-01-18 1993-05-18 Eastman Kodak Company Method and apparatus for optically measuring concentration of an analyte
US5187366A (en) * 1991-06-25 1993-02-16 Joram Hopenfeld Sensors for detecting leaks
US5200615A (en) * 1991-06-25 1993-04-06 Joram Hopenfeld Method and apparatus for detecting the presence of fluids
US5650331A (en) * 1991-10-03 1997-07-22 The United States Of America As Represented By The United States Department Of Energy Optical high acidity sensor
US5271398A (en) * 1991-10-09 1993-12-21 Optex Biomedical, Inc. Intra-vessel measurement of blood parameters
US5335305A (en) * 1991-12-19 1994-08-02 Optex Biomedical, Inc. Optical sensor for fluid parameters
EP0579257B1 (de) * 1992-07-17 1998-03-18 BARTEC Messtechnik und Sensorik GmbH Anordnung zur Bestimmung der durch physikalische bzw. chemische Effekte hervorgerufenen optischen Spektralverschiebung
US5342190A (en) * 1992-07-22 1994-08-30 Optex Biomedical, Inc. Apparatus for emplacing viscous material in a cavity
WO1994010553A1 (en) * 1992-10-23 1994-05-11 Optex Biomedical, Inc. Fibre-optic probe for the measurement of fluid parameters
GB9322352D0 (en) * 1993-10-29 1993-12-15 Univ Brunel Sensor device
US5515170A (en) * 1994-09-08 1996-05-07 Lifescan, Inc. Analyte detection device having a serpentine passageway for indicator strips
ATE209355T1 (de) * 1994-09-08 2001-12-15 Lifescan Inc Analyt-nachweisstreifen mit einem standard auf dem streifen
US5563031A (en) * 1994-09-08 1996-10-08 Lifescan, Inc. Highly stable oxidative coupling dye for spectrophotometric determination of analytes
US6335203B1 (en) * 1994-09-08 2002-01-01 Lifescan, Inc. Optically readable strip for analyte detection having on-strip orientation index
US5526120A (en) * 1994-09-08 1996-06-11 Lifescan, Inc. Test strip with an asymmetrical end insuring correct insertion for measuring
US5652810A (en) * 1996-05-09 1997-07-29 The United States Of America As Represented By The Secretary Of The Air Force Fiber optic sensor for site monitoring
US6008055A (en) * 1998-06-30 1999-12-28 Transgenomic, Inc. Modular component fiber optic fluorescence detector system, and method of use
US5763277A (en) * 1996-06-10 1998-06-09 Transgenomic Incorporated Fiber optic axial view fluorescence detector and method of use
US20070225612A1 (en) * 1996-07-15 2007-09-27 Mace Leslie E Metabolic measurements system including a multiple function airway adapter
US7335164B2 (en) 1996-07-15 2008-02-26 Ntc Technology, Inc. Multiple function airway adapter
US6815211B1 (en) 1998-08-04 2004-11-09 Ntc Technology Oxygen monitoring methods and apparatus (I)
US6325978B1 (en) 1998-08-04 2001-12-04 Ntc Technology Inc. Oxygen monitoring and apparatus
US5696592A (en) * 1996-12-11 1997-12-09 Kuan; Ching Fu Immersible apparatus for measuring light penetrability of liquids
US6144790A (en) * 1997-02-07 2000-11-07 Bledin; Anthony G Contact fiber optic impact sensor
US6023540A (en) 1997-03-14 2000-02-08 Trustees Of Tufts College Fiber optic sensor with encoded microspheres
US20030027126A1 (en) * 1997-03-14 2003-02-06 Walt David R. Methods for detecting target analytes and enzymatic reactions
US7622294B2 (en) 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
US6327410B1 (en) * 1997-03-14 2001-12-04 The Trustees Of Tufts College Target analyte sensors utilizing Microspheres
US6406845B1 (en) 1997-05-05 2002-06-18 Trustees Of Tuft College Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample
US7115884B1 (en) 1997-10-06 2006-10-03 Trustees Of Tufts College Self-encoding fiber optic sensor
US7348181B2 (en) 1997-10-06 2008-03-25 Trustees Of Tufts College Self-encoding sensor with microspheres
US6210910B1 (en) 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
US6299583B1 (en) 1998-03-17 2001-10-09 Cardiox Corporation Monitoring total circulating blood volume and cardiac output
US6922576B2 (en) * 1998-06-19 2005-07-26 Becton, Dickinson And Company Micro optical sensor device
EP2045334A1 (en) 1998-06-24 2009-04-08 Illumina, Inc. Decoding of array sensors with microspheres
US6429027B1 (en) 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
US7612020B2 (en) * 1998-12-28 2009-11-03 Illumina, Inc. Composite arrays utilizing microspheres with a hybridization chamber
US6244214B1 (en) 1999-01-06 2001-06-12 Embrex, Inc. Concurrent in ovo injection and detection method and apparatus
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US20030215821A1 (en) * 1999-04-20 2003-11-20 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
US6355431B1 (en) 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
WO2000075373A2 (en) 1999-05-20 2000-12-14 Illumina, Inc. Combinatorial decoding of random nucleic acid arrays
US6544732B1 (en) 1999-05-20 2003-04-08 Illumina, Inc. Encoding and decoding of array sensors utilizing nanocrystals
US8481268B2 (en) 1999-05-21 2013-07-09 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
US8080380B2 (en) * 1999-05-21 2011-12-20 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
CA2382157C (en) 1999-08-18 2012-04-03 Illumina, Inc. Compositions and methods for preparing oligonucleotide solutions
EP1212599A2 (en) 1999-08-30 2002-06-12 Illumina, Inc. Methods for improving signal detection from an array
US7167615B1 (en) 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same
US6913884B2 (en) * 2001-08-16 2005-07-05 Illumina, Inc. Compositions and methods for repetitive use of genomic DNA
US7361488B2 (en) * 2000-02-07 2008-04-22 Illumina, Inc. Nucleic acid detection methods using universal priming
US20050214825A1 (en) * 2000-02-07 2005-09-29 John Stuelpnagel Multiplex sample analysis on universal arrays
US7582420B2 (en) * 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
US7955794B2 (en) 2000-09-21 2011-06-07 Illumina, Inc. Multiplex nucleic acid reactions
US8076063B2 (en) 2000-02-07 2011-12-13 Illumina, Inc. Multiplexed methylation detection methods
US6812005B2 (en) 2000-02-07 2004-11-02 The Regents Of The University Of California Nucleic acid detection methods using universal priming
US7611869B2 (en) * 2000-02-07 2009-11-03 Illumina, Inc. Multiplexed methylation detection methods
US20020006617A1 (en) * 2000-02-07 2002-01-17 Jian-Bing Fan Nucleic acid detection methods using universal priming
US20020039728A1 (en) * 2000-02-10 2002-04-04 Robert Kain Alternative substrates and formats for bead-based array of arrays
US6770441B2 (en) 2000-02-10 2004-08-03 Illumina, Inc. Array compositions and methods of making same
AU2001238389B2 (en) * 2000-02-16 2006-09-21 Illumina, Inc. Parallel genotyping of multiple patient samples
US20050158702A1 (en) * 2000-09-05 2005-07-21 Stuelpnagel John R. Cellular arrays comprising encoded cells
US20040018491A1 (en) * 2000-10-26 2004-01-29 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
US6686206B2 (en) * 2001-04-04 2004-02-03 Altair Center, Llc Method of signal amplification in multi-chromophore luminescence sensors
US6782290B2 (en) * 2001-04-27 2004-08-24 Medtronic, Inc. Implantable medical device with rechargeable thin-film microbattery power source
US20050267326A1 (en) * 2001-10-02 2005-12-01 Alfred E. Mann Institute For Biomedical Eng. At The University Of Southern California Percutaneous chemical sensor based on fluorescence resonant energy transfer (FRET)
US6984307B2 (en) * 2001-10-05 2006-01-10 Stephen Eliot Zweig Dual glucose-hydroxybutyrate analytical sensors
US7758744B2 (en) * 2001-10-05 2010-07-20 Stephen Eliot Zweig Dual glucose-turbidimetric analytical sensors
AU2003215240A1 (en) 2002-02-14 2003-09-04 Illumina, Inc. Automated information processing in randomly ordered arrays
US20040259105A1 (en) * 2002-10-03 2004-12-23 Jian-Bing Fan Multiplex nucleic acid analysis using archived or fixed samples
US7887752B2 (en) * 2003-01-21 2011-02-15 Illumina, Inc. Chemical reaction monitor
US6943768B2 (en) 2003-02-21 2005-09-13 Xtellus Inc. Thermal control system for liquid crystal cell
US20060246576A1 (en) 2005-04-06 2006-11-02 Affymetrix, Inc. Fluidic system and method for processing biological microarrays in personal instrumentation
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
JP5266243B2 (ja) * 2006-11-03 2013-08-21 ヴォルカノ コーポレイション 検体を感知する方法及び装置
US7751863B2 (en) 2007-02-06 2010-07-06 Glumetrics, Inc. Optical determination of ph and glucose
EP2989975B1 (en) 2007-02-06 2018-06-13 Medtronic MiniMed, Inc. Optical systems and methods for rationmetric measurement of blood glucose concentration
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
WO2009067626A1 (en) 2007-11-21 2009-05-28 Glumetrics, Inc. Use of an equilibrium intravascular sensor to achieve tight glycemic control
AU2009206096A1 (en) 2008-01-15 2009-07-23 Nicholas L. Taro Method and apparatus for determining a deterioration of respiratory function
DE102009005162A1 (de) * 2009-01-15 2010-07-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Faseroptischer Sensor und Verfahren zur Herstellung
US9523701B2 (en) 2009-07-29 2016-12-20 Dynex Technologies, Inc. Sample plate systems and methods
GB0913258D0 (en) 2009-07-29 2009-09-02 Dynex Technologies Inc Reagent dispenser
US8694069B1 (en) 2009-12-21 2014-04-08 Kosense, LLC Fiber-optic probe with embedded peripheral sensors for in-situ continuous monitoring
ITFI20100237A1 (it) * 2010-12-03 2012-06-04 Consiglio Naz Delle Richerche "sonda a fibra ottica e sensore di misura utilizzante detta sonda"
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
JP2015532536A (ja) 2012-10-05 2015-11-09 デイビッド ウェルフォード, 光を増幅するためのシステムおよび方法
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
JP6322210B2 (ja) 2012-12-13 2018-05-09 ボルケーノ コーポレイション 標的化された挿管のためのデバイス、システム、および方法
JP2016504589A (ja) 2012-12-20 2016-02-12 ナサニエル ジェイ. ケンプ, 異なる撮像モード間で再構成可能な光コヒーレンストモグラフィシステム
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
EP2934282B1 (en) 2012-12-20 2020-04-29 Volcano Corporation Locating intravascular images
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
WO2014099672A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
JP2016502884A (ja) 2012-12-21 2016-02-01 ダグラス メイヤー, 延在カテーテル本体テレスコープを有する回転可能超音波撮像カテーテル
WO2014099896A1 (en) 2012-12-21 2014-06-26 David Welford Systems and methods for narrowing a wavelength emission of light
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
JP2016508757A (ja) 2012-12-21 2016-03-24 ジェイソン スペンサー, 医療データのグラフィカル処理のためのシステムおよび方法
CN105103163A (zh) 2013-03-07 2015-11-25 火山公司 血管内图像中的多模态分割
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
EP3895604A1 (en) 2013-03-12 2021-10-20 Collins, Donna Systems and methods for diagnosing coronary microvascular disease
US20140276923A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Vibrating catheter and methods of use
CN105120759B (zh) 2013-03-13 2018-02-23 火山公司 用于从旋转血管内超声设备产生图像的系统和方法
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
EP2967606B1 (en) 2013-03-14 2018-05-16 Volcano Corporation Filters with echogenic characteristics
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
CN104515771B (zh) * 2014-12-25 2017-10-17 贵州大学 一种基于光谱显色法的重金属光纤传感器及其制备方法
US10835718B2 (en) 2016-03-28 2020-11-17 Becton, Dickinson And Company Cannula with light-emitting optical fiber
US11478150B2 (en) 2016-03-28 2022-10-25 Becton, Dickinson And Company Optical fiber sensor
US10850046B2 (en) 2016-03-28 2020-12-01 Becton, Dickinson And Company Cannula locator device
US9689803B1 (en) * 2016-04-20 2017-06-27 Chroma Fish Corp. Method and system for measuring a colorimetric characteristic of a sample and calibration of same
CN108114347A (zh) * 2016-11-28 2018-06-05 爱本斯南京医疗器械有限公司 一种具有监测血液功能的注射装置及其工作方法
RU182181U1 (ru) * 2018-04-14 2018-08-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный медицинский университет имени В.И. Разумовского" Министерства здравоохранения Российской Федерации (ФГБОУ ВО Саратовский ГМУ им. В.И. Разумовского Минздрава России) Устройство для интраоперационного мониторинга регионарного насыщения гемоглобина кислородом и сосудистого тонуса микроциркуляторного русла

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123066A (en) * 1964-03-03 brumley
US3068742A (en) * 1959-06-15 1962-12-18 American Optical Corp Means for performing colorimetry
US3814081A (en) * 1971-04-02 1974-06-04 Olympus Optical Co Optical measuring catheter
JPS6034750B2 (ja) * 1977-03-10 1985-08-10 株式会社リコー 現像剤の残量検出装置
US4200110A (en) * 1977-11-28 1980-04-29 United States Of America Fiber optic pH probe
DE2833356A1 (de) * 1978-07-29 1980-02-14 Max Planck Gesellschaft Verfahren zur optischen messung von stoffkonzentrationen
US4344438A (en) * 1978-08-02 1982-08-17 The United States Of America As Represented By The Department Of Health, Education And Welfare Optical sensor of plasma constituents
JPS5537934A (en) * 1978-09-09 1980-03-17 Yoshihana Matsushima Engine oil checker
DE2856188C2 (de) * 1978-12-27 1985-09-05 Brown, Boveri & Cie Ag, 6800 Mannheim Einrichtung zur Erfassung von Störlichtbögen in Schaltanlagen
JPS56124036A (en) * 1981-01-26 1981-09-29 Sumitomo Electric Ind Ltd Spectroanalytic device for diagnosis of morbidity
JPS57199943A (en) * 1981-06-03 1982-12-08 Hitachi Ltd Measuring device for wetness of steam
EP0073558A3 (en) * 1981-08-25 1984-09-26 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Fiber optic ph probe for tissue measurements
JPS59154340A (ja) * 1983-02-23 1984-09-03 Mitsubishi Heavy Ind Ltd 湿り度計測装置
DE3476915D1 (en) * 1983-05-17 1989-04-06 Elf Uk Plc Optical fibre probe
JPS6039536A (ja) * 1983-08-12 1985-03-01 Hochiki Corp ガスセンサ

Also Published As

Publication number Publication date
EP0232369A1 (en) 1987-08-19
WO1987000920A1 (en) 1987-02-12
EP0232369B1 (en) 1989-12-13
CA1292665C (en) 1991-12-03
DE3667541D1 (de) 1990-01-18
JPH0697206B2 (ja) 1994-11-30
RU1830141C (ru) 1993-07-23
KR880700259A (ko) 1988-02-22
US4682895A (en) 1987-07-28
JPS63500737A (ja) 1988-03-17
CN86106159A (zh) 1987-06-03

Similar Documents

Publication Publication Date Title
CN1009955B (zh) 为显色反应定量的纤维光学探针
US5098659A (en) Apparatus for continuously monitoring a plurality of chemical analytes through a single optical fiber and method of making
US5119463A (en) Compound optical probe employing single optical waveguide
US4600310A (en) Optical fibre sensor
NZ238153A (en) Fibre optic blood gas sensor: em excitation causes blood molecules to phosphoresce
DE69634660T2 (de) Optischer fluoreszenzsensor
Weigl et al. Capillary optical sensors
EP0190829A2 (en) Optical sensor for monitoring the partial pressure of oxygen
CA2121152C (en) Chemically sensitive fiber optic cable
DE3630353A1 (de) Vorrichtung zur untersuchung einer fluessigkeitsprobe
CA2053449A1 (en) Optical fiber ph microsensor and method of manufacture
Wang et al. Fiber-optic liquid-level sensor
DE68920138D1 (de) Sensor für den brechungsindex aus optischen fasern unter verwendung einer metallbeschichtung.
CN105865614B (zh) 一种新型光纤珐珀超声水听器及其制作方法
JPH03500453A (ja) 免疫分析装置
EP1229322B1 (en) Cell for analyzing fluid and analyzing apparatus using the same
EP0190830A2 (en) Single optical fiber sensor for measuring the partial pressure of oxygen
CN208596113U (zh) 基于光纤马赫-曾德尔干涉仪的生物传感器
Schultz et al. [32] Optical fiber affinity sensors
WO1986005589A1 (en) Fibre optic chemical sensor
CN113281271A (zh) 微纳材料修饰生物医学检测系统及方法
Mansouri Optical glucose sensor based on affinity binding
AU589619B2 (en) Fibre optic chemical sensor
DE19631423B4 (de) Verfahren zum ortsaufgelösten Substanznachweis
CN115420312B (zh) Nv色心均布的光纤传感前端、制作方法及磁场传感系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee