CA2649320A1 - Tetrahedron beam computed tomography - Google Patents

Tetrahedron beam computed tomography Download PDF

Info

Publication number
CA2649320A1
CA2649320A1 CA002649320A CA2649320A CA2649320A1 CA 2649320 A1 CA2649320 A1 CA 2649320A1 CA 002649320 A CA002649320 A CA 002649320A CA 2649320 A CA2649320 A CA 2649320A CA 2649320 A1 CA2649320 A1 CA 2649320A1
Authority
CA
Canada
Prior art keywords
ray
ray source
fan
computed tomography
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002649320A
Other languages
French (fr)
Other versions
CA2649320C (en
Inventor
Tiezhi Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
William Beaumont Hospital
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2649320A1 publication Critical patent/CA2649320A1/en
Application granted granted Critical
Publication of CA2649320C publication Critical patent/CA2649320C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • A61B6/4028Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot resulting in acquisition of views from substantially different positions, e.g. EBCT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/70Circuit arrangements for X-ray tubes with more than one anode; Circuit arrangements for apparatus comprising more than one X ray tube or more than one cathode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4405Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly

Abstract

A method of imaging an object that includes directing a plurality of x-ray beams (212) in a fan-shaped form towards an object (P), detecting x-rays (212) that pass through the object (P) due to the directing a plurality of x-ray beams and generatmg a plurality of imaging data regarding the object from the detected x-rays The method further includes forming either a three-dimensional cone-bea computed tomography, digital tomosynthesis or Megavoltage image from the plurality of imaging data and displaying the image

Claims (80)

1. A cone-beam computed tomography system comprising:
an x-ray source that emits an x-ray beam;
a slot that intercepts said x-ray beam so that a plurality of fan-shaped x-ray beams emanate from said slot towards an object;
a detector receiving fan-shaped x-rays after they pass through said object, said detector generating an imaging signal for each of said received fan-shaped x-rays; and a computer connected to said detector so as to receive said imaging signals for each of said received fan-shaped x-rays, wherein said x-ray source, said slot and said detector rotate about said object so that multiple imaging signals are reconstructed by said computer to generate a three-dimensional cone-beam computed tomography image therefrom; and a display connected to said computer and displaying said three-dimensional cone-beam computed tomography image.
2. The cone-beam computed tomography system of claim 1, wherein said x-ray source comprises a kV x-ray source.
3. The cone-beam computed tomography system of claim 1, wherein said slot moves relative to said x-ray source.
4. The cone-beam computed tomography system of claim 1, wherein said slot rotates about said x-ray source.
5. The cone-beam computed tomography system of claim 1, wherein said slot is stationary with respect a housing that contains said x-ray source.
6. The cone-beam computed tomography system of claim 1, wherein said detector is a flat panel imager.
7. The cone-beam computed tomography system of claim 6, wherein said flat panel imager comprises an array of amorphous silicon detector elements.
8. The cone-beam computed tomography system of claim 7, wherein said array is a two-dimensional array.
9. The cone-beam computed tomography system of claim 1, wherein said x-ray source comprises an anode and a cathode, wherein said cathode emits electrons which strike a single area of space occupied by said anode.
10. The cone-beam computed tomography system of claim 3, wherein said x-ray source comprises an anode and a cathode, wherein said cathode emits electrons which strike a single area of space occupied by said anode.
11. The cone-beam computed tomography system of claim 1, wherein said x-ray source comprises an anode and a cathode, wherein said cathode emits electrons which strike multiple, discrete areas of space occupied by said anode.
12. The cone-beam computed tomography system of claim 5, wherein said x-ray source comprises an anode and a cathode, wherein said cathode emits electrons which strike multiple, discrete areas of space occupied by said anode.
13. The cone-beam computed tomography system of claim 1, wherein said computer causes said detector to read only certain areas of said detector for each fan-shaped x-ray beam received.
14. The cone-beam computed tomography system of claim 1, wherein said x-ray source comprises a source of particles that strike a target, wherein an intensity of each of said plurality of fan-shaped x-ray beams is modulated by modulating a current of said particles striking said target.
15. A method of imaging an object, comprising:
i) emitting from an x-ray source an x-ray beam in a fan-shaped form towards an object;

ii) detecting x-rays that pass through said object due to said emitting an x-ray beam with a detector;
iii) generating image data regarding said object from said detected x-rays; and iv) rotating said x-ray source and said detector relative to said object and continuously repeating steps i)-iv) until a sufficient number of imaging data regarding said object is generated so as to form a three-dimensional cone-beam computed tomography image therefrom;
forming a three-dimensional cone-beam computed tomography image from said sufficient number of imaging data; and displaying said three-dimensional cone-beam computed tomography image.
16. The method of claim 15, wherein said three-dimensional cone-beam computed tomography image is formed from at most one full rotation of said x-ray source and detector about said object.
17. The method of claim 15, wherein said emitting comprises emitting a plurality of x-ray beams in fan-shaped form towards the object and said two-dimensional image of said object is generated from detecting said plurality of x-ray beams.
18. The method of claim 17, wherein said emitting comprises collimating a single x-ray beam with a moving collimator.
19. The method of claim 18, wherein said moving collimator rotates.
20. The method of claim 17, wherein said emitting comprises sequentially forming x-ray beams off of different areas of an anode of said x-ray source.
21. The method of claim 20, wherein said emitting comprises sequentially forming x-ray beams off of said different areas of said anode by sequentially directing electrons from a single cathode of said x-ray source towards said different areas.
22. The method of claim 15, wherein said x-ray beam has an energy in the kilovolt range.
23. The method of claim 15, further comprising modulating intensities of each of said plurality of fan-shaped x-ray beams by modulating a current of particles striking a target that generate said plurality of fan-shaped x-ray beams.
24. A method of imaging an object, comprising:
directing a plurality of x-ray beams in a fan-shaped form towards an object;
detecting x-rays that pass through said object due to said directing a plurality of x-ray beams;
generating a plurality of imaging data regarding said object from said detected x-rays;
forming a three-dimensional cone-beam computed tomography image from said plurality of imaging data; and displaying said three-dimensional cone-beam computed tomography image.
25. The method of claim 24, wherein said directing comprises collimating a single x-ray beam with a moving collimator.
26. The method of claim 25, wherein said moving collimator rotates.
27. The method of claim 24, wherein said directing comprises sequentially forming x-ray beams off of different areas of an anode of an x-ray source.
28. The method of claim 27, wherein said directing comprises sequentially forming x-ray beams off of said different areas of said anode by sequentially directing electrons from a single cathode of said x-ray source towards said different areas.
29. The method of claim 24, wherein said x-ray beam has an energy in the kilovolt range.
30. A digital tomosynthesis system comprising:
an x-ray source that emits an x-ray beam;
a slot that intercepts said x-ray beam so that a plurality of fan-shaped x-ray beams emanate from said slot towards an object;
a detector receiving fan-shaped x-rays after they pass through said object, said detector generating an imaging signal for each of said received fan-shaped x-rays; and a computer connected to said detector so as to receive said imaging signals for each of said received fan-shaped x-rays, wherein said x-ray source, said slot and said detector rotate about said object so that multiple imaging signals are reconstructed by said computer to generate a digital tomosynthesis image therefrom; and a display connected to said computer and displaying said digital tomosynthesis image.
31. The digital tomosynthesis system of claim 30, wherein said x-ray source comprises a kV x-ray source.
32. The digital tomosynthesis system of claim 30, wherein said slot moves relative to said x-ray source.
33. The digital tomosynthesis system of claim 30, wherein said detector is a flat panel imager.
34. The digital tomosynthesis system of claim 30, wherein said x-ray source comprises an anode and a cathode, wherein said cathode emits electrons which strike a single area of space occupied by said anode.
35. The digital tomosynthesis of claim 30, wherein said x-ray source comprises an anode and a cathode, wherein said cathode emits electrons which strike multiple, discrete areas of space occupied by said anode.
36. The digital tomosynthesis system of claim 30, wherein said x-ray source comprises a source of particles that strike a target, wherein an intensity of each of said plurality of fan-shaped x-ray beams is modulated by modulating a current of said particles striking said target.
37. A method of imaging an object, comprising:
i) emitting from an x-ray source an x-ray beam in a fan-shaped form towards an object;
ii) detecting x-rays that pass through said object due to said emitting an x-ray beam with a detector;
iii) generating image data regarding said object from said detected x-rays; and iv) rotating said x-ray source and said detector relative to said object and continuously repeating steps i)-iv) until a sufficient number of imaging data regarding said object is generated so as to form a digital tomosynthesis image therefrom;
forming a digital tomosynthesis image from said sufficient number of imaging data; and displaying said digital tomosynthesis image.
38. The method of claim 37, wherein said x-ray beam has an energy in the kilovolt range.
39. The method of claim 37, further comprising modulating intensities of each of said plurality of fan-shaped x-ray beams by modulating a current of particles striking a target that generate said plurality of fan-shaped x-ray beams.
40. A quasi-cone-beam computed tomography system comprising:
an x-ray source that sequentially emits a plurality of x-ray beams at different positions along a scanning direction;
a collimator that intercepts said plurality of x-ray beams so that a plurality of fan-shaped x-ray beams emanate from said collimator towards an object;
a detector receiving fan-shaped x-rays after they pass through said object, said detector generating an imaging signal for each of said received fan-shaped x-rays; and a computer connected to said detector so as to receive said imaging signals for each of said received fan-shaped x-rays, wherein said x-ray source, said slot and said detector rotate about said object so that multiple imaging signals are reconstructed by said computer to generate a three-dimensional cone-beam computed tomography image therefrom; and a display connected to said computer and displaying said three-dimensional cone-beam computed tomography image.
41. The quasi-cone-beam computed tomography system of claim 40, wherein said x-ray source comprises a kV x-ray source.
42. The quasi-cone-beam computed tomography system of claim 40, wherein said collimator comprising a plurality of slots, wherein each of said plurality of said slots corresponds to one of said different positions.
43. The quasi-cone-beam computed tomography system of claim 42, wherein said collimator is stationary with respect to said x-ray source.
44. The quasi-cone-beam computed tomography system of claim 40, wherein said detector is a flat panel imager.
45. The quasi-cone-beam computed tomography system of claim 40, wherein said detector is a two-dimensional array of individual detector elements.
46. The quasi-cone-beam computed tomography system of claim 40, wherein said detector is a one-dimensional array of individual detector elements.
47. The quasi-cone-beam computed tomography system of claim 46, wherein said collimator focuses said fan-shaped x-ray beams onto said detector.
48. The quasi-cone-beam computed tomography system of claim 40, wherein said x-ray source comprises an anode and a plurality of distinct cathodes aligned along said scanning direction, wherein each of said plurality of cathodes emits electrons which strike areas of space occupied by said anode that correspond to said different positions.
49. The quasi-cone-beam computed tomography system of claim 40, wherein said x-ray source comprises an anode and a single cathodes aligned along said scanning direction, wherein electrons are emitted from different areas of said single cathode so as to strike areas of space occupied by said anode that correspond to said different positions.
50. The quasi-cone-beam computed tomography system of claim 40, further comprising a controller to control said x-ray source to sequentially emit said plurality of x-ray beams at said different positions along said scanning direction;
51. A method of imaging an object, comprising:
i) emitting from an x-ray source a plurality of x-ray beams at different positions along a scanning direction;
ii) forming a plurality of fan-shaped x-ray beams from said plurality of x-ray beams emitted from said x-ray source;
ii) detecting x-rays that pass through said object due to said emitting an x-ray beam with a detector;
iii) generating image data regarding said object from said detected x-rays; and iv) rotating said x-ray source and said detector relative to said object and continuously repeating steps i)-iv) until a sufficient number of imaging data regarding said object is generated so as to form a three-dimensional cone-beam computed tomography image therefrom;
forming a three-dimensional cone-beam computed tomography image from said sufficient number of two-dimensional images;
and displaying said three-dimensional cone-beam computed tomography image.
52. The method of claim 51, wherein said three-dimensional cone-beam computed tomography image is formed from at most one full rotation of said x-ray source and detector about said object.
53. The method of claim 51, wherein said emitting comprises sequentially forming x-ray beams off of different areas of an anode of said x-ray source.
54. The method of claim 53, wherein said emitting comprises sequentially forming x-ray beams off of said different areas of said anode by sequentially directing electrons from a single cathode of said x-ray source towards said different areas.
55. The method of claim 51, wherein said x-ray beam has an energy in the kilovolt range.
56. The method of claim 51, further comprising modulating intensities of each of said plurality of fan-shaped x-ray beams by modulating a current of particles striking a target that generate said plurality of fan-shaped x-ray beams.
57. A linear scanning system comprising:
an x-ray source that sequentially emits a plurality of x-ray beams at different positions along a scanning direction, said x-ray source comprising:

an anode; and a single cathode aligned along said scanning direction, wherein electrons are emitted from different areas of said single cathode so as to strike areas of space occupied by said anode that correspond to said different positions;
and a controller to control said x-ray source to sequentially emit said plurality of x-ray beams at said different positions along said scanning direction.
58. The linear scanning system of claim 57, further comprising a collimator that intercepts said plurality of x-ray beams so that a plurality of fan-shaped x-ray beams emanate from said collimator.
59. The linear scanning system of claim 57, wherein said x-ray source comprises a kV x-ray source.
60. A method of scanning, comprising:

sequentially forming x-ray beams off of different areas of an anode of an x-ray source; and sequentially forming x-ray beams off of said different areas of said anode by sequentially directing electrons from a single cathode of said x-ray source towards said different areas.
61. The method of claim 60, further comprising forming a plurality of fan-shaped x-ray beams from said plurality of x-ray.
62. The method of claim 60, wherein said x-ray beam has an energy in the kilovolt range.
63. The method of claim 60, further comprising modulating intensities of each of said plurality of fan-shaped x-ray beams by modulating a current of particles striking a target that generate said plurality of fan-shaped x-ray beams.
64. A scanning system comprising:
an x-ray source that sequentially emits a plurality of x-ray beams at different positions along a scanning direction, said x-ray source comprising:
an anode; and a cathode system aligned along said scanning direction, wherein electrons are emitted from different areas of said cathode system so as to strike areas of space occupied by said anode that correspond to said different positions;
and a controller to modulate intensities of each of said plurality of x-ray beams by modulating a current of said electrons striking said anode.
65. The scanning system of claim 64, further comprising a collimator that intercepts said plurality of x-ray beams so that a plurality of fan-shaped x-ray beams emanate from said collimator.
66. The scanning system of claim 64, wherein said x-ray source comprises a kV x-ray source.
67. The scanning system of claim 64, wherein said cathode system comprises a single cathode.
68. The scanning system of claim 67, wherein said cathode system comprises a plurality of cathodes.
69. A method of scanning, comprising:

generating a plurality of x-ray beams that strike different areas of an object; and modulating intensities of each of said plurality of x-ray beams by modulating a current of particles striking a target that generate said plurality of x-ray beams.
70. The method of claim 69, wherein said x-ray beam has an energy in the kilovolt range.
71. A megavoltage imaging system comprising:
a megavoltage x-ray source that emits an x-ray beam having a range of energies therein that range from 0 to 4 MV;
a slot that intercepts said x-ray beam so that a plurality of fan-shaped x-ray beams emanate from said slot towards an object;
a detector receiving fan-shaped x-rays after they pass through said object, said detector generating an imaging signal for each of said received fan-shaped x-rays; and a computer connected to said detector so as to receive said imaging signals for each of said received fan-shaped x-rays, and a display connected to said computer and displaying an image of said object based on said imaging signals.
72. The megavoltage imaging system of claim 71, wherein said slot moves relative to said x-ray source.
73. The megavoltage imaging system of claim 71, wherein said slot rotates about said x-ray source.
74. The megavoltage imaging system of claim 71, wherein said detector is a flat panel imager.
75. The megavoltage imaging system of claim 74, wherein said flat panel imager comprises an array of amorphous silicon detector elements.
76. The megavoltage imaging system of claim 71, wherein said computer causes said detector to read only certain areas of said detector for each fan-shaped x-ray beam received.
77. The megavoltage imaging system of claim 71, wherein said x-ray source comprises a source of particles that strike a target, wherein an intensity of each of said plurality of fan-shaped x-ray beams is modulated by modulating a current of said particles striking said target.
78. A method of imaging an object, comprising:
directing a plurality of x-ray beams in a fan-shaped form towards an object, wherein each of said plurality of x-ray beams has a range of energies therein that range from 0 to 4 MV;
detecting x-rays that pass through said object due to said directing a plurality of x-ray beams;
generating a plurality of imaging data regarding said object from said detected x-rays;
forming an image from said plurality of imaging data; and displaying said image.
79. The method of claim 78, wherein said directing comprises collimating a single x-ray beam with a moving collimator.
80. The method of claim 79, wherein said moving collimator rotates.
CA2649320A 2006-04-14 2007-04-12 Tetrahedron beam computed tomography Active CA2649320C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US79220706P 2006-04-14 2006-04-14
US60/792,207 2006-04-14
PCT/US2007/008996 WO2007120744A2 (en) 2006-04-14 2007-04-12 Scanning slot cone-beam computed tomography and scanning focus spot cone-beam computed tomography

Publications (2)

Publication Number Publication Date
CA2649320A1 true CA2649320A1 (en) 2007-10-25
CA2649320C CA2649320C (en) 2011-09-20

Family

ID=38610167

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2649320A Active CA2649320C (en) 2006-04-14 2007-04-12 Tetrahedron beam computed tomography

Country Status (6)

Country Link
US (2) US7760849B2 (en)
EP (1) EP2010058B1 (en)
JP (2) JP5538880B2 (en)
CN (4) CN102961159A (en)
CA (1) CA2649320C (en)
WO (1) WO2007120744A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11558950B2 (en) 2017-09-02 2023-01-17 Cetteen Gmbh Control device for an x-ray tube and method for operating an x-ray tube

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US9782229B2 (en) 2007-02-16 2017-10-10 Globus Medical, Inc. Surgical robot platform
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
CA2649320C (en) * 2006-04-14 2011-09-20 William Beaumont Hospital Tetrahedron beam computed tomography
US8983024B2 (en) * 2006-04-14 2015-03-17 William Beaumont Hospital Tetrahedron beam computed tomography with multiple detectors and/or source arrays
US9339243B2 (en) 2006-04-14 2016-05-17 William Beaumont Hospital Image guided radiotherapy with dual source and dual detector arrays tetrahedron beam computed tomography
US8073104B2 (en) * 2006-05-25 2011-12-06 William Beaumont Hospital Portal and real time imaging for treatment verification
CA2905989C (en) * 2006-05-25 2017-01-24 Di Yan Real-time, on-line and offline treatment dose tracking and feedback process for volumetric image guided adaptive radiotherapy
WO2009026587A1 (en) 2007-08-23 2009-02-26 Fischer Medical Technologies, Inc. Improved computed tomography breast imaging and biopsy system
US7936858B2 (en) * 2007-09-28 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method for tomosynthesis
US8144829B2 (en) * 2008-02-27 2012-03-27 The Board Of Trustees Of The Leland Stanford Junior University Cone-beam CT imaging scheme
JP5398157B2 (en) * 2008-03-17 2014-01-29 キヤノン株式会社 X-ray imaging apparatus and control method thereof
WO2009129488A1 (en) * 2008-04-17 2009-10-22 University Of Florida Research Foundation, Inc. Method and apparatus for computed imaging backscatter radiography
US20090285356A1 (en) * 2008-05-16 2009-11-19 Sirona Dental Systems Gmbh System and method for patient positioning in cone-beam tomography
JP5677301B2 (en) 2008-09-10 2015-02-25 アナロジック コーポレーション Computed tomography scanning system and method using multiple pixel x-ray sources
JP2010075620A (en) * 2008-09-29 2010-04-08 Fujifilm Corp Radiation tomosynthesis photographing apparatus
EP2250967A1 (en) * 2009-05-13 2010-11-17 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Tomography apparatus and tomography method
US20110006224A1 (en) * 2009-07-09 2011-01-13 Maltz Jonathan S Digital Tomosynthesis in Ion Beam Therapy Systems
CN102498540A (en) * 2009-09-15 2012-06-13 皇家飞利浦电子股份有限公司 Distributed x-ray source and x-ray imaging system comprising the same
US8254518B2 (en) * 2009-10-05 2012-08-28 Siemens Medical Solutions Usa, Inc. Acquisition of projection images for tomosynthesis
BR112012016558A2 (en) 2010-01-05 2016-04-26 Beaumont Hospital William Intensity modulated arc therapy with examination bed rotation and displacement and simultaneous cone beam imaging
US8917813B2 (en) 2010-02-24 2014-12-23 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
US8509380B2 (en) 2010-03-19 2013-08-13 The Board Of Trustees Of The Leland Stanford Junior University Inverse geometry volume computed tomography systems
DE102010026674B4 (en) 2010-07-09 2012-09-27 Siemens Aktiengesellschaft Imaging device and radiotherapy device
US9125570B2 (en) * 2010-07-16 2015-09-08 The Board Of Trustees Of The Leland Stanford Junior University Real-time tomosynthesis guidance for radiation therapy
US8989846B2 (en) * 2010-08-08 2015-03-24 Accuray Incorporated Radiation treatment delivery system with outwardly movable radiation treatment head extending from ring gantry
JP5837090B2 (en) * 2010-12-13 2015-12-24 フィリップス デジタル マンモグラフィー スウェーデン アーベー Collimator apparatus and method
US8989469B2 (en) 2010-12-20 2015-03-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for simultaneous acquisition of scatter and image projection data in computed tomography
US9555264B1 (en) * 2011-02-15 2017-01-31 Velayudhan Sahadevan MEMS based parallel microbeam radiosurgery without adaptive resistance to radiation
US9237880B2 (en) 2011-03-17 2016-01-19 Koninklijke Philips N.V. Composite acoustic backing with high thermal conductivity for ultrasound transducer array
US9308050B2 (en) 2011-04-01 2016-04-12 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system and method for spinal and other surgeries
DE102011085773B4 (en) * 2011-11-04 2014-08-21 Siemens Aktiengesellschaft Dose reconstruction in radiotherapy
EP2816956B1 (en) 2012-02-22 2018-01-17 Carestream Health, Inc. Mobile radiographic apparatus/methods with tomosynthesis capability
KR101323034B1 (en) 2012-04-30 2013-11-06 재단법인 아산사회복지재단 Cone beam computered tomography apparatus using single energy photon source and method for acquiring image using the same
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US10874466B2 (en) 2012-06-21 2020-12-29 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US10842461B2 (en) 2012-06-21 2020-11-24 Globus Medical, Inc. Systems and methods of checking registrations for surgical systems
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11786324B2 (en) 2012-06-21 2023-10-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US11589771B2 (en) 2012-06-21 2023-02-28 Globus Medical Inc. Method for recording probe movement and determining an extent of matter removed
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US10646280B2 (en) 2012-06-21 2020-05-12 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US10799298B2 (en) 2012-06-21 2020-10-13 Globus Medical Inc. Robotic fluoroscopic navigation
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11896446B2 (en) 2012-06-21 2024-02-13 Globus Medical, Inc Surgical robotic automation with tracking markers
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
EP2920791B1 (en) 2012-11-16 2023-12-27 NeuroLogica Corporation Multi-slit rotatable collimator
US20140169519A1 (en) * 2012-12-18 2014-06-19 Elekta Ab (Publ) Cone-beam CT Scanning
JP2016503721A (en) * 2013-01-23 2016-02-08 ケアストリーム ヘルス インク Directed X-ray field for tomosynthesis
EP2810600B1 (en) * 2013-06-05 2018-08-08 General Electric Company Medical imaging method varying collimation of emitted radiation beam
CN105358062B (en) * 2013-07-03 2018-11-02 筑波科技株式会社 Medical miniature low-power X-ray filming apparatus
KR102139661B1 (en) 2013-07-12 2020-07-30 삼성전자주식회사 Computed tomography system comprising rotatable collimator
CN103961129B (en) * 2013-09-11 2016-03-30 梁月强 Rotating grating conical beam CT
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
EP3073927A4 (en) * 2013-11-26 2017-08-16 The Johns Hopkins University Dual-energy cone-beam computed tomography with a multiple source, single-detector configuration
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
US10039605B2 (en) 2014-02-11 2018-08-07 Globus Medical, Inc. Sterile handle for controlling a robotic surgical system from a sterile field
US9333376B2 (en) * 2014-03-07 2016-05-10 Pyramid Technical Consultants Inc. Method and apparatus for calibrating a charged particle pencil beam used for therapeutic purposes
US10004562B2 (en) 2014-04-24 2018-06-26 Globus Medical, Inc. Surgical instrument holder for use with a robotic surgical system
WO2015168473A1 (en) * 2014-05-01 2015-11-05 Sigray, Inc. X-ray interferometric imaging system
EP3517037A1 (en) * 2014-05-19 2019-07-31 3Shape A/S Radiographic system and method for reducing motion blur and scatter radiation
CN103977506B (en) * 2014-05-22 2016-06-22 中国工程物理研究院流体物理研究所 One kind of proton tomography method and device
EP3157446B1 (en) 2014-06-19 2018-08-15 KB Medical SA Systems for performing minimally invasive surgery
US10765438B2 (en) 2014-07-14 2020-09-08 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
CN107072673A (en) 2014-07-14 2017-08-18 Kb医疗公司 Anti-skidding operating theater instruments for preparing hole in bone tissue
CN106572823B (en) * 2014-07-15 2020-11-20 皇家飞利浦有限公司 Projection data acquisition device
CN106796860B (en) 2014-10-06 2019-03-15 皇家飞利浦有限公司 Adjustment arragement construction for X-ray generator
EP3226781B1 (en) 2014-12-02 2018-08-01 KB Medical SA Robot assisted volume removal during surgery
EP3248208B1 (en) * 2015-01-21 2019-11-27 California Institute of Technology Fourier ptychographic tomography
CN104548374B (en) * 2015-02-03 2017-03-08 李宝生 CBCT image capturing system based on rotary collimator and its preprocess method
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
US10555782B2 (en) 2015-02-18 2020-02-11 Globus Medical, Inc. Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
JP6050905B2 (en) * 2015-02-25 2016-12-21 株式会社モリタ製作所 Medical X-ray imaging apparatus and X-ray imaging method
US10278654B2 (en) 2015-02-25 2019-05-07 J. Morita Manufacturing Corporation Medical X-ray photographing apparatus and X-ray photographing method
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US10687905B2 (en) 2015-08-31 2020-06-23 KB Medical SA Robotic surgical systems and methods
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
JP7078210B2 (en) 2016-05-09 2022-05-31 サラウンド メディカル システムズ インコーポレイテッド Fixed Oral Tomosynthesis Imaging Systems, Methods, and Computer-Readable Medium for 3D Dental Imaging
GB2567115B (en) * 2016-07-14 2022-08-10 Rapiscan Systems Inc Systems and methods for improving penetration of radiographic scanners
US11039893B2 (en) 2016-10-21 2021-06-22 Globus Medical, Inc. Robotic surgical systems
US10134155B2 (en) * 2016-11-21 2018-11-20 Elekta Limited Systems and methods for real-time imaging
EP3351202B1 (en) 2017-01-18 2021-09-08 KB Medical SA Universal instrument guide for robotic surgical systems
JP2018114280A (en) 2017-01-18 2018-07-26 ケービー メディカル エスアー Universal instrument guide for robotic surgical system, surgical instrument system, and method of using them
JP7233841B2 (en) 2017-01-18 2023-03-07 ケービー メディカル エスアー Robotic Navigation for Robotic Surgical Systems
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
WO2019019048A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. X-ray imaging system and method of x-ray image tracking
CA3080986C (en) 2017-11-06 2023-11-14 The Research Foundation for State University of New York System and method for dual-use computed tomography for imaging and radiation therapy
US10898252B2 (en) 2017-11-09 2021-01-26 Globus Medical, Inc. Surgical robotic systems for bending surgical rods, and related methods and devices
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
EP3527138B1 (en) * 2018-01-30 2022-06-29 Globus Medical, Inc. Portable medical imaging system with beam scanning
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
EP3886708B1 (en) * 2018-11-30 2024-02-21 Accuray, Inc. Method and apparatus for scatter estimation in cone-beam computed tomography
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11918313B2 (en) 2019-03-15 2024-03-05 Globus Medical Inc. Active end effectors for surgical robots
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
JP7022268B2 (en) * 2019-08-01 2022-02-18 恵一 中川 X-ray cone beam CT image reconstruction method
US11096642B2 (en) * 2019-08-16 2021-08-24 GE Precision Healthcare LLC Methods and systems for X-ray tube conditioning
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
CN113040797A (en) * 2019-12-28 2021-06-29 上海联影医疗科技股份有限公司 Digital tomography system and photographing method thereof
US11464581B2 (en) 2020-01-28 2022-10-11 Globus Medical, Inc. Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
EP3933881A1 (en) 2020-06-30 2022-01-05 VEC Imaging GmbH & Co. KG X-ray source with multiple grids
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
CN112964738B (en) * 2021-01-29 2022-11-22 山东大学 Industrial CT rapid scanning system and method
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same
US20230210484A1 (en) * 2022-01-05 2023-07-06 X-Sight Incorporated Sub-system x-ray source module

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US620024A (en) * 1899-02-21 Berry-crate
BE716771A (en) 1967-06-24 1968-12-02
GB1283915A (en) * 1968-08-23 1972-08-02 Emi Ltd A method of and apparatus for examination of a body by radiation such as x or gamma radiation
US3780291A (en) 1971-07-07 1973-12-18 American Science & Eng Inc Radiant energy imaging with scanning pencil beam
JPS50153889A (en) * 1974-05-30 1975-12-11
JPS5252594A (en) 1975-10-25 1977-04-27 Shimadzu Corp Tomographing device
JPS5293384A (en) * 1976-01-31 1977-08-05 Shimadzu Corp Radiation collimeter for segmental scanning
JPS52107793A (en) * 1976-03-05 1977-09-09 Jeol Ltd Unit for obtaining x-ray objective axis shift image
US4132895A (en) * 1976-08-28 1979-01-02 Emi Limited Radiography
US4547892A (en) 1977-04-01 1985-10-15 Technicare Corporation Cardiac imaging with CT scanner
NL7706038A (en) * 1977-06-02 1978-12-05 Philips Nv SCANNING ROENTGEN RESEARCH INSTALLATION.
US4145613A (en) 1977-10-25 1979-03-20 Cgr Medical Corporation Motorized X-ray tube assembly
US4304999A (en) * 1979-01-02 1981-12-08 Technicare Corporation Eccentric source collimator assembly for rotating source CT scanner
JPS5686400A (en) 1979-12-14 1981-07-14 Shimadzu Corp Collimater for radial tomogram device
JPS56101579A (en) 1980-01-18 1981-08-14 Shimadzu Corp Radiation type tomography device
US4315157A (en) 1980-05-01 1982-02-09 The University Of Alabama In Birmingham Multiple beam computed tomography (CT) scanner
US4312157A (en) * 1980-05-19 1982-01-26 Ibg International, Inc. Greenhouse with hinged roof sections
JPS56168578A (en) 1980-05-30 1981-12-24 Shimadzu Corp Radiation type tomography apparatus
DE3023401A1 (en) * 1980-06-23 1982-01-07 Siemens AG, 1000 Berlin und 8000 München X-RAY DIAGNOSTIC SYSTEM WITH A RECORDING UNIT WITH A X-RAY TUBE THAT EMISSES A FIELD-SHAPED RADIATION BUNCH
US4414682A (en) 1980-11-17 1983-11-08 American Science And Engineering, Inc. Penetrating radiant energy imaging system with multiple resolution
JPS58163341A (en) * 1982-03-24 1983-09-28 株式会社東芝 X-ray diagnostic apparatus
US4405745A (en) * 1982-09-24 1983-09-20 Phillips Petroleum Company Polymer stabilization
US4534051A (en) * 1982-12-27 1985-08-06 John K. Grady Masked scanning X-ray apparatus
DE3532822A1 (en) 1985-09-13 1987-03-26 Siemens Ag STEREO ORGAN TUBES
DE3844716C2 (en) * 1987-08-24 2001-02-22 Mitsubishi Electric Corp Ionised particle beam therapy device
GB2211709B (en) 1987-10-28 1991-03-20 Philips Electronic Associated Multileaf collimator and related apparatus
NL8800738A (en) 1988-03-24 1989-10-16 Philips Nv ROENTGEN EXAMINATION DEVICE WITH AN ADJUSTABLE CRITCH-DIAPHRAGM.
SE463187B (en) 1989-02-20 1990-10-22 Ao Medical Products Ab FITTED AND TAPE TARGET DEVICE FOR X-ray or similar examination
EP0466956A1 (en) * 1990-07-18 1992-01-22 Siemens Aktiengesellschaft Tomography apparatus
US5257183A (en) * 1990-12-21 1993-10-26 General Electric Company Method and apparatus for converting cone beam X-ray projection data to planar integral and reconstructing a three-dimensional computerized tomography (CT) image of an object
JPH04242736A (en) * 1991-01-08 1992-08-31 Fuji Photo Film Co Ltd Radial ray image photographing device
JPH04307035A (en) * 1991-04-05 1992-10-29 Toshiba Corp Radiographic apparatus
US5214686A (en) * 1991-12-13 1993-05-25 Wake Forest University Three-dimensional panoramic dental radiography method and apparatus which avoids the subject's spine
JPH05172764A (en) 1991-12-20 1993-07-09 Toshiba Corp Scattered beam imaging device
DE4202302C2 (en) * 1992-01-28 1999-06-10 Dietrich H W Prof Groenemeyer Computer tomograph
US5351280A (en) * 1992-03-19 1994-09-27 Wisconsin Alumni Research Foundation Multi-leaf radiation attenuator for radiation therapy
US5661773A (en) 1992-03-19 1997-08-26 Wisconsin Alumni Research Foundation Interface for radiation therapy machine
US5335255A (en) 1992-03-24 1994-08-02 Seppi Edward J X-ray scanner with a source emitting plurality of fan beams
JP2620467B2 (en) * 1992-07-16 1997-06-11 株式会社島津製作所 X-ray CT system
US5966422A (en) 1992-07-20 1999-10-12 Picker Medical Systems, Ltd. Multiple source CT scanner
JPH06277205A (en) * 1993-03-26 1994-10-04 Hamamatsu Photonics Kk X-ray diagnostic device
EP0810006B1 (en) * 1993-06-09 2000-08-30 Wisconsin Alumni Research Foundation Radiation therapy system
US5411026A (en) * 1993-10-08 1995-05-02 Nomos Corporation Method and apparatus for lesion position verification
US5379333A (en) * 1993-11-19 1995-01-03 General Electric Company Variable dose application by modulation of x-ray tube current during CT scanning
US5748696A (en) 1993-11-26 1998-05-05 Kabushiki Kaisha Toshiba Radiation computed tomography apparatus
US5521957A (en) * 1994-03-15 1996-05-28 Hansen; Steven J. X-ray imaging system
JP3168824B2 (en) * 1994-04-30 2001-05-21 株式会社島津製作所 X-ray CT system
US5537452A (en) * 1994-05-10 1996-07-16 Shepherd; Joseph S. Radiation therapy and radiation surgery treatment system and methods of use of same
DE4421316A1 (en) 1994-06-17 1995-12-21 Laser Applikationan Gmbh Device for positioning and marking a patient on diagnostic devices, e.g. before and after fluoroscopy in a computer tomograph
US5485494A (en) * 1994-08-03 1996-01-16 General Electric Company Modulation of X-ray tube current during CT scanning
US6345114B1 (en) * 1995-06-14 2002-02-05 Wisconsin Alumni Research Foundation Method and apparatus for calibration of radiation therapy equipment and verification of radiation treatment
US5754622A (en) * 1995-07-20 1998-05-19 Siemens Medical Systems, Inc. System and method for verifying the amount of radiation delivered to an object
JP2001509252A (en) * 1995-07-31 2001-07-10 リットン システムズ カナダ リミテッド Flat panel detector for radiation imaging with low electronic noise
GB9520564D0 (en) 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient
US5719914A (en) * 1995-11-13 1998-02-17 Imatron, Inc. Method for correcting spherical aberration of the electron beam in a scanning electron beam computed tomography system
US5657364A (en) * 1995-12-14 1997-08-12 General Electric Company Methods and apparatus for detecting beam motion in computed tomography imaging systems
US5602892A (en) * 1996-03-21 1997-02-11 Llacer; Jorge Method for optimization of radiation therapy planning
JPH09262233A (en) * 1996-03-28 1997-10-07 Canon Inc Radiograph camera
JP3732568B2 (en) 1996-04-03 2006-01-05 株式会社東芝 X-ray computed tomography system
US5663995A (en) * 1996-06-06 1997-09-02 General Electric Company Systems and methods for reconstructing an image in a CT system performing a cone beam helical scan
US5699805A (en) 1996-06-20 1997-12-23 Mayo Foundation For Medical Education And Research Longitudinal multiplane ultrasound transducer underfluid catheter system
DE19627657C2 (en) 1996-07-09 2003-01-30 Siemens Ag X-ray apparatus
US5949811A (en) 1996-10-08 1999-09-07 Hitachi Medical Corporation X-ray apparatus
US5877501A (en) * 1996-11-26 1999-03-02 Picker International, Inc. Digital panel for x-ray image acquisition
JPH10295683A (en) * 1997-04-28 1998-11-10 Toshiba Corp Electron beam x-rya ct (computed tomography) device
AU7586698A (en) 1997-05-23 1998-12-11 William Beaumont Hospital Method and apparatus for delivering radiation therapy during suspended ventilation
JP3664462B2 (en) 1997-06-04 2005-06-29 株式会社東芝 X-ray diagnostic equipment
US5999587A (en) 1997-07-03 1999-12-07 University Of Rochester Method of and system for cone-beam tomography reconstruction
WO1999003397A1 (en) 1997-07-17 1999-01-28 Medlennium Technologies, Inc. Method and apparatus for radiation and hyperthermia therapy of tumors
US6152598A (en) 1997-09-02 2000-11-28 Kabushiki Kaisha Toshiba R/F and chest radiography compatible X-ray imaging table
US6031888A (en) * 1997-11-26 2000-02-29 Picker International, Inc. Fluoro-assist feature for a diagnostic imaging device
US5912943A (en) * 1997-11-26 1999-06-15 Picker International, Inc. Cooling system for a sealed housing positioned in a sterile environment
JP3839941B2 (en) * 1997-11-28 2006-11-01 キヤノン株式会社 Radiation detection apparatus and radiation detection method
WO1999030485A2 (en) * 1997-12-10 1999-06-17 Koninklijke Philips Electronics N.V. X-ray examination apparatus
JP2001512359A (en) 1997-12-16 2001-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Computer tomography equipment
JP3053389B1 (en) 1998-12-03 2000-06-19 三菱電機株式会社 Moving object tracking irradiation device
US6041097A (en) * 1998-04-06 2000-03-21 Picker International, Inc. Method and apparatus for acquiring volumetric image data using flat panel matrix image receptor
US6393096B1 (en) * 1998-05-27 2002-05-21 Nomos Corporation Planning method and apparatus for radiation dosimetry
US6560311B1 (en) * 1998-08-06 2003-05-06 Wisconsin Alumni Research Foundation Method for preparing a radiation therapy plan
ATE324930T1 (en) * 1998-08-06 2006-06-15 Wisconsin Alumni Res Found SYSTEM FOR ADJUSTING RADIATION DELIVERY FOR RADIATION THERAPY
JP4354550B2 (en) * 1998-08-31 2009-10-28 株式会社島津製作所 Radiation therapy planning device
JP2000116631A (en) 1998-10-16 2000-04-25 Toshiba Corp X-ray diagnostic instrument
US6148058A (en) 1998-10-23 2000-11-14 Analogic Corporation System and method for real time measurement of detector offset in rotating-patient CT scanner
JP2000126164A (en) 1998-10-28 2000-05-09 Hitachi Medical Corp X-ray apparatus
US6229870B1 (en) * 1998-11-25 2001-05-08 Picker International, Inc. Multiple fan beam computed tomography system
US6200024B1 (en) 1998-11-27 2001-03-13 Picker International, Inc. Virtual C-arm robotic positioning system for use in radiographic imaging equipment
JP3402581B2 (en) * 1998-11-30 2003-05-06 日本ビクター株式会社 Data restoration device
DE19855213C2 (en) * 1998-11-30 2001-03-15 Siemens Ag X-ray device
WO2000049840A1 (en) 1999-02-19 2000-08-24 The Research Foundation Of State University Of New York Radiographic imaging apparatus and method for vascular interventions
US6256370B1 (en) * 2000-01-24 2001-07-03 General Electric Company Method and apparatus for performing tomosynthesis
JP2000308634A (en) * 1999-04-28 2000-11-07 Toshiba Iyo System Engineering Kk X-ray ct device
US6546073B1 (en) * 1999-11-05 2003-04-08 Georgia Tech Research Corporation Systems and methods for global optimization of treatment planning for external beam radiation therapy
AU2001237051A1 (en) 2000-02-18 2001-08-27 William Beaumont Hospital Cone-beam computerized tomography with a flat-panel imager
US6389104B1 (en) * 2000-06-30 2002-05-14 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data
US6628745B1 (en) 2000-07-01 2003-09-30 Martin Annis Imaging with digital tomography and a rapidly moving x-ray source
US6463122B1 (en) 2000-08-21 2002-10-08 Bio-Imaging Resource, Inc. Mammography of computer tomography for imaging and therapy
JP2002102217A (en) 2000-09-28 2002-04-09 Ge Medical Systems Global Technology Co Llc X-ray ct system, gantory apparatus, console terminal and controlling method therefor, and storage medium
US7082182B2 (en) 2000-10-06 2006-07-25 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
US6980627B2 (en) 2000-10-06 2005-12-27 Xintek, Inc. Devices and methods for producing multiple x-ray beams from multiple locations
CN1299634A (en) * 2001-01-17 2001-06-20 上海交通大学 Three-dimensional X-ray imaging scan method based on an inverted structure
JP2002210029A (en) * 2001-01-19 2002-07-30 Mitsubishi Electric Corp Radiotherapy equipment
FR2820202B1 (en) * 2001-01-31 2004-06-04 Snecma Moteurs PRESSURE SENSOR AND ROCKET MOTOR INCORPORATING THE SAME
JPWO2002067779A1 (en) * 2001-02-28 2004-06-24 三菱重工業株式会社 Multi-source X-ray CT system
EP1238684B1 (en) 2001-03-05 2004-03-17 BrainLAB AG Method for creating or updating a radiation treatment plan
US6661870B2 (en) 2001-03-09 2003-12-09 Tomotherapy Incorporated Fluence adjustment for improving delivery to voxels without reoptimization
US7046831B2 (en) * 2001-03-09 2006-05-16 Tomotherapy Incorporated System and method for fusion-aligned reprojection of incomplete data
JP3847101B2 (en) 2001-05-22 2006-11-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray CT apparatus and method
US7072436B2 (en) * 2001-08-24 2006-07-04 The Board Of Trustees Of The Leland Stanford Junior University Volumetric computed tomography (VCT)
DE60238842D1 (en) 2001-08-24 2011-02-17 Mitsubishi Heavy Ind Ltd RADIOLOGICAL TREATMENT DEVICE
US7145981B2 (en) 2001-08-24 2006-12-05 The Board Of Trustees Of The Leland Stanford Junior University Volumetric computed tomography (VCT)
US7127035B2 (en) 2001-08-29 2006-10-24 Kabushiki Kaisha Toshiba Rotary anode type X-ray tube
JP4088058B2 (en) * 2001-10-18 2008-05-21 株式会社東芝 X-ray computed tomography system
JP4282302B2 (en) * 2001-10-25 2009-06-17 株式会社東芝 X-ray CT system
US6888919B2 (en) * 2001-11-02 2005-05-03 Varian Medical Systems, Inc. Radiotherapy apparatus equipped with an articulable gantry for positioning an imaging unit
US7034309B2 (en) * 2001-11-13 2006-04-25 Canon Kabushiki Kaisha Radiation detecting apparatus and method of driving the same
US6582121B2 (en) * 2001-11-15 2003-06-24 Ge Medical Systems Global Technology X-ray positioner with side-mounted, independently articulated arms
US6614877B2 (en) * 2001-11-21 2003-09-02 Ge Medical Systems Global Technology Company Llc Method and apparatus for enhancing the contrast of a medical diagnostic image acquired using collimation
DE10202732A1 (en) * 2002-01-24 2003-08-07 Fraunhofer Ges Forschung Device and method for creating a correction characteristic for reducing artifacts in a tomography
US6618466B1 (en) 2002-02-21 2003-09-09 University Of Rochester Apparatus and method for x-ray scatter reduction and correction for fan beam CT and cone beam volume CT
WO2003076016A1 (en) * 2002-03-12 2003-09-18 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Device for performing and verifying a therapeutic treatment and corresponding computer program and control method
US7066930B2 (en) 2002-04-08 2006-06-27 Cynosure, Inc. Arrangement for the treatment of barrett's esophagus
US6792077B2 (en) 2002-06-19 2004-09-14 Ge Medical Systems Global Technology Company, Llc Collimation system for dual slice EBT scanner
US20040002641A1 (en) * 2002-06-24 2004-01-01 Bo Sjogren Patient representation in medical machines
US6865254B2 (en) * 2002-07-02 2005-03-08 Pencilbeam Technologies Ab Radiation system with inner and outer gantry parts
US7314446B2 (en) * 2002-07-22 2008-01-01 Ep Medsystems, Inc. Method and apparatus for time gating of medical images
US6760402B2 (en) * 2002-08-01 2004-07-06 Siemens Medical Solutions Usa, Inc. Verification of mlc leaf position and of radiation and light field congruence
JP4307035B2 (en) 2002-09-10 2009-08-05 ホシザキ電機株式会社 Transporter
DE10242920B4 (en) 2002-09-16 2013-08-22 Siemens Aktiengesellschaft Method for operating a computed tomography device and a device for carrying out the method
US7227925B1 (en) * 2002-10-02 2007-06-05 Varian Medical Systems Technologies, Inc. Gantry mounted stereoscopic imaging system
US7289599B2 (en) * 2002-10-04 2007-10-30 Varian Medical Systems Technologies, Inc. Radiation process and apparatus
US7657304B2 (en) * 2002-10-05 2010-02-02 Varian Medical Systems, Inc. Imaging device for radiation treatment applications
WO2004031803A1 (en) 2002-10-07 2004-04-15 Sunnybrook And Women's College Health Sciences Centre High quantum efficiency x-ray detector for portal imaging
US7042975B2 (en) * 2002-10-25 2006-05-09 Koninklijke Philips Electronics N.V. Four-dimensional helical tomographic scanner
US7945021B2 (en) * 2002-12-18 2011-05-17 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US20040122787A1 (en) 2002-12-18 2004-06-24 Avinash Gopal B. Enhanced computer-assisted medical data processing system and method
JP2004236752A (en) * 2003-02-04 2004-08-26 Toshiba Medical System Co Ltd X-ray computerized tomographic system and radiographic system
EP1603461A2 (en) 2003-03-10 2005-12-14 Philips Intellectual Property & Standards GmbH Device and method for adapting the recording parameters of a radiograph
US20060259282A1 (en) 2003-03-14 2006-11-16 Failla Gregory A Deterministic computation of radiation transport for radiotherapy dose calculations and scatter correction for image reconstruction
US20040254448A1 (en) 2003-03-24 2004-12-16 Amies Christopher Jude Active therapy redefinition
WO2005008716A2 (en) * 2003-07-18 2005-01-27 Koninklijke Philips Electronics N.V. Cylindrical x-ray tube for computed tomography imaging
JP4535697B2 (en) * 2003-07-23 2010-09-01 オリンパス株式会社 Endoscope device for light scattering observation of biological tissue
CN1930651B (en) 2003-07-30 2010-06-23 皇家飞利浦电子股份有限公司 Shaped anode x-ray tube
US20050027196A1 (en) * 2003-07-30 2005-02-03 Fitzgerald Loretta A. System for processing patient radiation treatment data
US6999555B2 (en) * 2003-09-15 2006-02-14 Varian Medical Systems Imaging Laboratory Gmbh Systems and methods for processing data
AU2004279424A1 (en) * 2003-10-07 2005-04-21 Nomos Corporation Planning system, method and apparatus for conformal radiation therapy
WO2005036147A1 (en) 2003-10-14 2005-04-21 Philips Intellectual Property & Standards Gmbh Fan-beam coherent-scatter computed tomography
US7154991B2 (en) * 2003-10-17 2006-12-26 Accuray, Inc. Patient positioning assembly for therapeutic radiation system
US7280631B2 (en) * 2003-11-26 2007-10-09 General Electric Company Stationary computed tomography system and method
US6980624B2 (en) * 2003-11-26 2005-12-27 Ge Medical Systems Global Technology Company, Llc Non-uniform view weighting tomosynthesis method and apparatus
US7394923B2 (en) 2004-02-10 2008-07-01 The University Of Chicago Imaging system for generating a substantially exact reconstruction of a region of interest
CA2749057A1 (en) 2004-02-20 2005-09-09 University Of Florida Research Foundation, Inc. System for delivering conformal radiation therapy while simultaneously imaging soft tissue
US8160205B2 (en) 2004-04-06 2012-04-17 Accuray Incorporated Robotic arm for patient positioning assembly
US20050251029A1 (en) 2004-04-21 2005-11-10 Ali Khamene Radiation therapy treatment plan
US7399977B2 (en) * 2004-07-23 2008-07-15 University Health Network Apparatus and method for determining radiation dose
CN101005874B (en) 2004-08-13 2015-05-20 皇家飞利浦电子股份有限公司 Radiotherapeutic treatment plan adaptation
US7062006B1 (en) * 2005-01-19 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Computed tomography with increased field of view
US7193227B2 (en) * 2005-01-24 2007-03-20 Hitachi, Ltd. Ion beam therapy system and its couch positioning method
US7227923B2 (en) * 2005-04-18 2007-06-05 General Electric Company Method and system for CT imaging using a distributed X-ray source and interpolation based reconstruction
US8232535B2 (en) 2005-05-10 2012-07-31 Tomotherapy Incorporated System and method of treating a patient with radiation therapy
US20060269049A1 (en) 2005-05-26 2006-11-30 Fang-Fang Yin Dual-detector, simulation CT, and real time function imaging
US8077936B2 (en) 2005-06-02 2011-12-13 Accuray Incorporated Treatment planning software and corresponding user interface
US20070016014A1 (en) * 2005-06-15 2007-01-18 Kenji Hara Radio therapy apparatus and operating method of the same
US7613501B2 (en) 2005-06-16 2009-11-03 Best Medical International, Inc. System, tracker, and program product to facilitate and verify proper target alignment for radiation delivery, and related methods
WO2006138513A1 (en) 2005-06-16 2006-12-28 Nomos Corporation Variance reduction simulation system, program product, and related methods
US7831073B2 (en) * 2005-06-29 2010-11-09 Accuray Incorporated Precision registration of X-ray images to cone-beam CT scan for image-guided radiation treatment
EP2532386A3 (en) * 2005-07-22 2013-02-20 TomoTherapy, Inc. System for delivering radiation therapy to a moving region of interest
JP4386288B2 (en) * 2005-08-31 2009-12-16 株式会社日立製作所 Radiotherapy apparatus positioning system and positioning method
US7496181B2 (en) * 2005-11-28 2009-02-24 The Board Of Trustees Of The Leland Stanford Junior University X-ray collimator for imaging with multiple sources and detectors
CA2649320C (en) 2006-04-14 2011-09-20 William Beaumont Hospital Tetrahedron beam computed tomography
US8073104B2 (en) * 2006-05-25 2011-12-06 William Beaumont Hospital Portal and real time imaging for treatment verification
US7428292B2 (en) 2006-11-24 2008-09-23 General Electric Company Method and system for CT imaging using multi-spot emission sources
US7388940B1 (en) * 2006-11-24 2008-06-17 General Electric Company Architectures for cardiac CT based on area x-ray sources
US8537965B2 (en) * 2007-04-10 2013-09-17 Arineta Ltd. Cone-beam CT
JP5677301B2 (en) 2008-09-10 2015-02-25 アナロジック コーポレーション Computed tomography scanning system and method using multiple pixel x-ray sources
US8139709B2 (en) * 2008-09-15 2012-03-20 University Of Utah Research Foundation Staggered circular scans for CT imaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11558950B2 (en) 2017-09-02 2023-01-17 Cetteen Gmbh Control device for an x-ray tube and method for operating an x-ray tube

Also Published As

Publication number Publication date
CN101466313A (en) 2009-06-24
CN102988074A (en) 2013-03-27
CN102961159A (en) 2013-03-13
CA2649320C (en) 2011-09-20
EP2010058A4 (en) 2011-05-18
EP2010058B1 (en) 2017-05-17
US7760849B2 (en) 2010-07-20
JP2009533151A (en) 2009-09-17
WO2007120744A3 (en) 2008-06-26
JP2014133183A (en) 2014-07-24
CN101466313B (en) 2012-11-14
JP6057188B2 (en) 2017-01-11
EP2010058A2 (en) 2009-01-07
WO2007120744A2 (en) 2007-10-25
JP5538880B2 (en) 2014-07-02
US20070280408A1 (en) 2007-12-06
US8611490B2 (en) 2013-12-17
CN102988073A (en) 2013-03-27
US20110002439A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
CA2649320A1 (en) Tetrahedron beam computed tomography
US10743826B2 (en) Stationary real time CT imaging system and method thereof
US7792241B2 (en) System and method of fast KVP switching for dual energy CT
US7852979B2 (en) Dual-focus X-ray tube for resolution enhancement and energy sensitive CT
US7817777B2 (en) Focus detector arrangement and method for generating contrast x-ray images
CN101313214B (en) Methods, and systems for multiplexing computed tomography
US8396185B2 (en) Method of fast current modulation in an X-ray tube and apparatus for implementing same
JP2009533151A5 (en)
US7366279B2 (en) Scatter control system and method for computed tomography
US7192031B2 (en) Emitter array configurations for a stationary CT system
US7082182B2 (en) Computed tomography system for imaging of human and small animal
JP5677301B2 (en) Computed tomography scanning system and method using multiple pixel x-ray sources
KR20160096024A (en) Panoramic imaging using multi-spectral x-ray source
US20050226363A1 (en) Stationary computed tomography system and method
EP1211917A1 (en) Imaging apparatus and method
US20100074392A1 (en) X-ray tube with multiple electron sources and common electron deflection unit
US20040213378A1 (en) Computed tomography system for imaging of human and small animal
US9237872B2 (en) X-ray source with moving anode or cathode
US20120128117A2 (en) Multi-cathode x-ray tubes with staggered focal spots, and systems and methods using same
EP2010943A2 (en) X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams
US20110002442A1 (en) Circular tomosynthesis x-ray tube
EP2309928B1 (en) Voltage modulated x-ray tube
EP3103394B1 (en) X-ray imaging device
EP2783384B1 (en) Periodic modulation of the x-ray intensity
KR20070005036A (en) X-ray cone beam ct scanner comprising 2-dimensinal reference detector and chollimator for reference detector

Legal Events

Date Code Title Description
EEER Examination request