CA2513541A1 - Method for preparing single-stranded dna libraries - Google Patents

Method for preparing single-stranded dna libraries Download PDF

Info

Publication number
CA2513541A1
CA2513541A1 CA002513541A CA2513541A CA2513541A1 CA 2513541 A1 CA2513541 A1 CA 2513541A1 CA 002513541 A CA002513541 A CA 002513541A CA 2513541 A CA2513541 A CA 2513541A CA 2513541 A1 CA2513541 A1 CA 2513541A1
Authority
CA
Canada
Prior art keywords
dna
adaptor
universal
single stranded
dna molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002513541A
Other languages
French (fr)
Inventor
Gina L. Costa
Michael P. Weiner
John Leamon
Jonathan Rothberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
454 Life Science Corp
Original Assignee
454 Corporation
Gina L. Costa
Michael P. Weiner
John Leamon
Jonathan Rothberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32854649&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2513541(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 454 Corporation, Gina L. Costa, Michael P. Weiner, John Leamon, Jonathan Rothberg filed Critical 454 Corporation
Publication of CA2513541A1 publication Critical patent/CA2513541A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1075Isolating an individual clone by screening libraries by coupling phenotype to genotype, not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6865Promoter-based amplification, e.g. nucleic acid sequence amplification [NASBA], self-sustained sequence replication [3SR] or transcription-based amplification system [TAS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6867Replicase-based amplification, e.g. using Q-beta replicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1269Measuring magnetic properties of articles or specimens of solids or fluids of molecules labeled with magnetic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Abstract

This invention relates to methods of generating single stranded DNA libraries for use in amplification and sequencing reactions. In various aspects, the disclosed methods include: fragmenting DNA; polishing the fragments' ends;
lighting the fragments to universal adapters; performing strand displacement and extension of the nicked fragments; purifying the double-stranded libation products; capturing the double-stranded libation products onto a solid support; and isolating single stranded DNA library fragments, and binding these fragments to another solid support.

Description

METHOD FOR PREPARING SINGLE-STRANDED DNA LIBRARIES
RELATED APPLICATIONS
This application claims the benefit of priority to the following applications:
USSN
60/443,471 filed January 29, 2003, USSN 601465,071 filed April 23, 2003; USSN
60/476,504 filed June 6, 2003, USSN 60/476,313 filed June 6, 2003, USSN
601476,592 filed June 6, 2003, USSN 601476,602 filed June 6, 2003, USSN 60/476,592 filed June 6, 2003, and USSN 60/497,95 filed August 25, 2003. All patent and patent applications in this paragraph are hereby incorporated herein by reference in their entirety.
This application also incorporates by reference the following copending U.S.
patent applications: "Bead Emulsion Nucleic Acid Amplification" filed January 29, 2004, "Bead Emulsion Nucleic Acid Amplification with Continuous Flow" filed January 29, 2004, "Double Ended Sequencing" filed January 29, 2004, and "Methods Of Amplifying And Sequencing Nucleic Acids" filed January 29, 2004.
FIELD OF THE INVENTION
The invention relates to protein chemistry, molecular biology, and methods of preparing single-stranded libraries for sequence analysis. More specifically, this invention includes methods of processing DNA for use in amplification and sequencing reactions.
BACKGROUND OF THE INVENTION
In amplification by polymerase chain reaction (PCR), two primers are designed to hybridize to the template DNA at positions complementary to respective primers that are separated on the DNA template molecule by some number of nucleotides: The base sequence of the template DNA between and including the primers is amplified by repetitive complementary strand extension reactions whereby the number of copies of the target DNA
fragments is increased by several orders of magnitude. Amplification is exponential as 2", where n equals the number of amplification cycles. Following PCR, the amplified DNA may be sequenced through conventional sequencing methods (see, U.S. Patent No.
6,274,320).
Samples comprising large template DNA or whole DNA genomes comprising long nucleotide sequences are not conducive to efficient amplification by PCR.
These long molecules do not naturally possess sequences useful for primer hybridization.
In addition, if primer hybridization sequences are added to double stranded DNA molecules, it is difficult to ascertain the directionality of the amplified DNA molecules and this frustrates sequencing efforts.
Various methods have been designed to overcome some of these deficiencies. For example, United States Patent No. 5,508,169 describes that subsets of nucleic acid fragments may be indexed (i.e., selected or targeted) based upon the information contained in non-identical 5'-protruding or 3'-protruding cohesive ends. This includes fragments having 3, 4 or 5 base cohesive ends, such as those revealed by cleavage of DNA by Type II
restriction endonucleases and interrupted palindrome recognizing type II restriction endonucleases. The patent describes nucleic acid molecules similar to adaptors (called indexing linkers) which contain protruding single strands complementary to the cohesive ends of cleavage sites of restriction endonucleases (rather than the recognition sequences). Various functional groups or specific nucleic acid sequences designed for particular applications may be selectively attached to the aforementioned subsets of fragments. Selective attachment of indexing linkers having known base sequences in their cohesive ends to a subset of fragments bearing the complementary cohesive ends can be used for the detection, identification, isolation, amplification, and manipulation of the subset of fragments.
United States Patent No. 6,468,748 describes a method of sorting genes andlor gene fragments comprising several steps. First, ds cDNA molecules are prepared from mRNA
molecules by reverse transcription, using a poly-T primer optionally having a general primer-template sequence upstream from the poly-T sequence, yielding ds cDNA
molecules having the poly-T sequence, optionally having the general primer-template sequence.
Second, the ds cDNA molecules are digested with a restriction enzyme that produces digested cDNA
molecules with cohesive ends having overhanging ssDNA sequences of a constant number of arbitrary nucleotides. Third, the digested cDNA molecules are ligated to a set of dsDNA
oligonucleotide adaptors, each of which adaptors has at one of its ends a cohesive-end ssDNA adaptor sequence complementary to one of the possible overhanging ssDNA
sequences of the digested cDNA, at the opposite end a specific primer-template sequence specific for the ssDNA adaptor complementary sequence, and in between the ends a constant sequence that is the same for all of the different adaptors of the set.
Fourth, the ligated cDNA
molecules are amplified by separate polymerase chain reactions, utilizing for each separate polymerase chain reaction a primer that anneals to the cDNA poly-T sequence optionally having the cDNA general primer-template, and a primer from a set of different specific primers that anneal to the cDNA specific primer-template sequences. Fifth, the amplified cDNA molecules are sorted into nonoverlapping groups by collecting the amplification products after each separate polymerase chain reaction, each group of amplified cDNA
molecules determined by the specific primer that annealed to the specific primer-template sequence and primed the polymerase chain reaction.
United States Patent No. 5,63,722 describes a , method and materials for sorting polynucleotides with oligonucleotide tags. The oligonucleotide tags are capable of hybridizing to complementary oligomeric compounds consisting of subunits having enhanced binding strength and specificity as compared to natural oligonucleotides. Such complementary oligomeric compounds are referred to as "tag complements."
Subunits of tag complements may consist of monomers of non-natural nucleotide analogs, referred to as "antisense monomers" or they may comprise oligomers having lengths in the range of 3 to 6 nucleotides or analogs thereof, including antisense monomers, the oligomers being selected from a minimally cross-hybridizing set. In such a set, a duplex made up of an oligomer of the set and the complement of any other oligomer of the set contains at least two mismatches. In other words, an oligomer of a minimally cross-hybridizing set at best forms a duplex having at least two mismatches with the complement of any other oligomer of the same set. Tag complements attached to a solid phase support are used to sort polynucleotides from a mixture of polynucleotides each containing a tag. The surface of each support is derivatized by only one type of tag complement which has a particular sequence. Similarly, the .
polynucleotides to be sorted each comprise an oligonucleotide tag in the repertoire, such that identical polynucleotides have the same tag and different polynucleotides have different tags.
Thus, when the populations of supports and polynucleotides are mixed under conditions which permit specific hybridization of the oligonucleotide tags with their respective complements, subpopulations of identical polynucleotides are sorted onto particular beads or regions. The subpopulations of polynucleotides can then be manipulated on the solid phase support by micro-biochemical techniques.
United States Patent No. 5,72,524 describes a process for the categorization of nucleic acid sequences in which these sequences are linked to a population of adaptor molecules, each exhibiting specificity for linking to a sequence including a predetermined nucleotide base. The resulting linked sequences are then categorized based upon selection for the particular base.
However, the art does not describe methods for generating libraries of unknown fragment sequences additionally comprising two known sequences, each different than the other, one being adjoined at each end. Thus, a need exists for a method which overcomes shortcomings of the prior art. Accordingly, the present invention is directed to describing such methods, materials, and kits as required to facilitate manipulation of multiple DNA
sequences in a sample.
BRIEF SUMMARY OF THE INVENTION
This invention describes a novel method for preparing a library of multiple nucleic acid sequences from a sample where the library is suited to further quantitative and comparative analysis, particularly where the multiple nucleic acid sequences are unknown and derived from large template DNA or whole (or partial) genome DNA. In certain embodiments of the invention, sequences of single stranded DNA (ssDNA) are prepared from a sample of large template DNA or whole or partial DNA genomes through fragmentation, polishing, adaptor ligation, nick repair, and isolation of ssDNA.
Therefore, in one aspect, the present invention provides a method for clonally isolating a library comprising a plurality. of ssDNAs, wherein each ssDNA
comprises a first single stranded universal adaptor and a second single stranded universal adaptor, the method comprising:
(a) fragmenting large template DNA molecules to generate a plurality of fragmented DNA molecules;
(b) attaching a first or second universal double stranded adaptor to a first end of each fragmented DNA molecule and a first or second universal adaptor to a second end of each fragmented DNA molecule to form a mixture of adaptor ligated DNA
molecules;
(c) isolating a plurality of single stranded DNA molecules each comprising a first single stranded universal adaptor and a second single stranded universal adaptor; and (d) delivering the single stranded DNA molecules into reactors such that a plurality of the reactors include one DNA molecule, thereby clonally isolating the library.
In certain aspects, the single stranded DNA molecules are delivered into droplets in a water-in-oil emulsion (i.e., microreactors), or onto multiwell surfaces (e.g., PicoTiter plates).
The single stranded DNA molecules may be delivered via attachment to a solid support (e.g., beads).
In other aspects, the adaptor ligated DNA molecules comprising a first double stranded universal adaptor and second double stranded universal adaptor is attached to a solid support via one strand of the double stranded universal adaptor (via the first or second universal adaptor). The adaptor ligated DNA molecules which have not attached to a solid support are washed away, and one strand of the adaptor ligated DNA molecules is released.
This generates a mixture comprising a plurality of ssDNAs comprising a population of single stranded molecules with a first and second universal adaptor pair, thereby generating a S library.
The sequence of the fragmented DNA may be known or unknown. In a preferred embodiment, the sequence of the fragmented DNA, particularly the sequence of the ends of the fragmented DNA, is unknown.
In another aspect, the present invention includes a method for generating a ssDNA
library linked to solid supports comprising: (a) generating a library of ssDNA
templates; (b) attaching the ssDNA templates to solid supports; and (c) isolating the solid supports on which one ssDNA template is attached. In still another aspect, the present invention includes a library of mobile solid supports made by the method disclosed herein.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 is a schematic representation of the entire process of library preparation including the steps of template DNA fragmentation (Figure lA), end polishing (Figure 1B), adaptor ligation (Figure 1C), nick repair, strand extension and gel isolation (Figure 1D).
Figure 1 also depicts a representative agarose gel containing a sample preparation of a 1 SO-350 base pair adenovirus DNA library according to the methods of this invention.
Figure 2A is a schematic representation of the universal adaptor design according one embodiment of the present invention. Each universal adaptor is generated from two complementary ssDNA oligonucleotides that are designed to contain a 20 by nucleotide sequence for PCR priming, a 20 by nucleotide sequence for sequence priming and a unique 4 by discriminating sequence comprised of a non-repeating nucleotide'sequence (i.e., ACGT, CAGT, etc.).
Figure 2B depicts a representative universal adaptor sequence pair for use with the invention. Adaptor A sense strand: SEQ ID NO:l; Adaptor A antisense strand:
SEQ ID
N0:2; Adaptor B sense strand: SEQ ID N0:3; Adaptor B antisense strand: SEQ ID
N0:4.
Figure 2C is a schematic representation of universal adaptor design for use with the invention.
Figure 3 represents the strand displacement and extension of nicked double-stranded DNA fragments according to the present invention. Following the ligation of universal adaptors generated from synthetic oligonucleotides, double-stranded DNA
fragments will be generated that contain two nicked regions following T4 DNA ligase treatment (Figure 3A).
The addition of a strand displacing enzyme (i.e., Bst DNA polymerase I) will bind nicks (Figure 3B), strand displace the nicked strand and complete nucleotide extension of the strand (Figure 3C) to produce non-nicked double-stranded DNA fragments (Figure 3D).
Figure 4 represents the isolation of directionally-ligated single-stranded DNA
according to the present invention using streptavidin-coated magnetic beads.
Following ligation with universal adaptors A and B (the two different adaptors are sometimes referred to as a "first" and "second" universal adaptor), double-stranded DNA will contain adaptors in four possible combinations: AA, BB, AB, and BA. When universal adaptor B
contains a 5'-biotin, magnetic streptavidin-coated solid supports are used to capture and isolate the AB, BA, and BB populations (population AA is washed away). The BB population is retained on the beads as each end of the double-stranded DNA is attached to a bead and is not released.
However, upon washing in the presence of a low salt buffer, only populations AB and BA
will release a single-stranded DNA fragment that is complementary to the bound strand.
Single-stranded DNA fragments are isolated from the supernatant and used as template for subsequent applications. This method is described below in more detail.
Figure 5 represents an insert flanked by PCR primers and sequencing primers.
Figure 6 represents truncated. product produced by PCR primer mismatch at cross-;hybridization region (CHR).
Figures 7A-7D depict the assembly for the nebulizer used for the methods of the invention. A tube cap was placed over the top of the nebulizer (Figure 7A) and the cap was secured with a nebulizer clamp assembly (Figure 7B). The bottom of the nebulizer was attached to the nitrogen supply (Figure 7C) and the entire device was wrapped in parafilm (Figure 7D).
Figure ~ depicts representative BioAnalyzer output from analysis of a single stranded DNA library.
Figure 9A depicts representative results for LabChip analysis of a single stranded DNA library following nebulization and polishing.
Figure 9B depicts representative size distribution results for an adaptor-ligated single stranded DNA library following nebulization, polishing, and gel purification.
Figure 10 depicts the calculation for primer candidates based on melting temperature.
DETAILED DESCRIPTION OF THE INVENTION
This invention relates to the preparation of sample DNA for amplification and sequencing reactions. The invention includes a method for preparing the sample DNA
comprised of the following steps: (a) fragmenting large template DNA or whole genomic DNA samples to generate a plurality of digested DNA fragments; (b) creating compatible ends on the plurality of digested DNA samples; (c) ligating a set of universal adaptor sequences onto the ends of fragmented DNA molecules to make a plurality of adaptor-ligated DNA molecules, wherein each universal adaptor sequence comprises a PCR primer sequence, a sequencing primer sequence and a discriminating key sequence and wherein one adaptor is attached to biotin; (d) separating and isolating the plurality of ligated DNA
fragments; (e) removing any portion of the plurality of ligated DNA fragments;
(f) nick repair and strand extension of the plurality of ligated DNA fragments; (g) attaching each of the ligated DNA fragments to a solid support; and (h) isolating populations comprising single-stranded adaptor-ligated DNA fragments for which there is a unique adaptor at each end (i.e., providing directionality).
TJnless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials similar or equivalent to those described herein can be used f in the practice of the present invention, and exemplified suitable methods and materials are described below. For example, methods may be described which comprise more than two steps. In such methods, not all steps may be required to achieve a defined goal and the invention envisions the use of isolated steps to achieve these discrete goals.
The disclosures of all publications, patent applications, patents, and other references are incorporated in toto herein by reference. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
As used herein, the term "universal adaptor" refers to two complementary and annealed oligonucleotides that are designed to contain a nucleotide sequence for PCR
priming and a nucleotide sequence for sequence priming. Optionally, the universal adaptor may further include a unique discriminating key sequence comprised of a non-repeating nucleotide sequence (i.e., ACGT, CAGT, etc.). A set of universal adaptors comprises two unique and distinct double-stranded sequences that can'be ligated to the ends of double-stranded DNA: Therefore, the same universal adaptor or different universal adaptors can be ligated to either end of the DNA molecule. When comprised in a larger DNA
molecule that is single stranded or when present as an oligonucleotide, the universal adaptor may be referred to as a single stranded uxuversal adaptor.
As used herein, the term "discriminating key sequence" refers to a sequence including a combination of the four deoxyribonucleotides (i.e., A, C, G, T). The same discriminating sequence can be used for an entire library of DNA fragments. Alternatively, different discriminating key sequences can be used to track libraries of DNA fragments derived from different organisms. Longer discriminating key sequences can be used for a mixture of more than one library.
As used herein, the term "plurality of molecules" refers to DNA isolated from the same source, whereby different organisms may be prepared separately by the same method.
In one embodiment, the plurality of DNA samples is derived from large segments of DNA, e.g., genomic DNA, cDNA, viral DNA, plasmid DNA, cosmid DNA, artificial chromosome DNA (e.g., BACs, YACs, MACs, PACs), synthetic DNA, phagemid DNA, phasemid DNA, or from reverse transcripts of viral RNA. This DNA may be derived from any source, including any mammal (i.e., human, nonhuman primate, rodent, or canine), plant, bird, reptile, fish, fungus, bacteria, or virus.
As used herein, the term "library" refers to a subset of smaller sized DNA
species generated from a larger DNA template, e.g., a segmented or whole genome.
As used herein, the term "unique", as in "unique PCR priming regions" refers to a sequence that does not exist or exists at an extremely low copy level within the DNA
molecules to be amplified or sequenced.
As used herein, the term "compatible" refers to an end of double stranded DNA
to which an adaptor molecule may be attached (i.e., blunt end or cohesive end).
As used herein, the term "fragmenting" refers to a process by which a larger molecule of DNA is converted into smaller pieces of DNA.
As used herein, "large template DNA" would be DNA of more than 5 kb, 10 kb, or kb, preferably more than 500 kb, more preferably more than 1 MB, and most preferably 5 MB or larger.
As used herein, the term "stringent hybridization conditions" refers to those conditions under which only fully complimentary sequences will hybridize to each other.
The following discussion summarizes the basic steps involved in the methods of the invention. The steps are recited in a specific order, however, as would be known by one of skill in the art, the order of the steps may be manipulated to achieve the same result. Such manipulations are contemplated by the inventors. Further, some steps may be minimized as would also be known by one of skill in the art.
Fragmentation In the practice of the methods of the present invention, the fragmentation of the DNA
sample can be done by any means known to those of ordinary skill in the art.
Preferably, the fragmenting is performed by enzymatic, chemical, or mechanical means. The mechanical means may include sonication, French press, HPLC, HydroShear (GeneMachines, San Carlos, CA), and. nebulization. The enzymatic means may be performed by digestion with Deoxyribonuclease I (DNase I), nonspecific nucleases, or single or multiple restriction endonucleases. In a preferred embodiment, the fragmentation results in ends for which the sequence adjacent to the end is not known. The sequence adjacent to the end may be at least 5 bases, 10 bases, 20 bases, 30 bases, or 50 bases.
Enzymatic Fragmentation In a preferred embodiment, the enzymatic means is DNase I. DNase I is a versatile enzyme that nonspecifically cleaves double-stranded DNA (dsDNA) to release 5'-phosphorylated oligonucleotide products. DNase I has optimal activity in buffers containing Mn2+, Mg2~ and Ca2~. The purpose of the DNase I digestion step is to fragment a lax'~ge DNA
genome into smaller species comprising a library. The cleavage characteristics of DNase I
will result in random digestion of template DNA (i.e., minimal sequence bias) and in the predominance of blunt-ended dsDNA fragments when used in the presence of manganese-based buffers (Melgar, E. and D.A. Goldthwait. 1968. Deoxyribonucleic acid nucleases. II.
The effects of metal on the mechanism of action of Deoxyribonuclease I. J.
Biol. Chem. 243:
4409). The range of digestion products generated following DNase I treatment of genomic templates is dependent on three factors: i) amount of enzyme used (units); ii) temperature of digestion (°C); and iii) incubation time (minutes). The DNase I
digestion conditions outlined below have been optimized to yield genomic libraries with a size range from 50-700 base pairs (bp).
In a preferred embodiment, DNase I is used to digest large template DNA or whole genome DNA for 1-2 minutes to generate a population of oligonucleotides that range from 50 to 500 bp, or 50 to 700 bp. In another preferred embodiment, the DNase I
digestion is performed at a temperature of 10°C-37°C. In yet another preferred embodiment, the digested DNA fragments are 50 by to 700 by in length.
Mechanical Fragmentation Another preferred method for nucleic acid fragmentation is mechanical fragmentation. Mechanical fragmentation methods include sonication and nebulization, and use of HydroShear, HPLC, and French Press devices. Sonication may be performed by a tube containing DNA in a suitable buffer (i.e., 10 mM Tris, 0.1 mM EDTA) and sonicating for a varying number of 10 second bursts using maximum output and continuous power Sonicators are commercially available from, e.g., Misonix Inc. (Farmingdale, NY), and can be used essentially as described by Bankier and Barrell (Bankier, A.T., Weston, K.M., and Barrell, B.G., "Random cloning and sequencing by the Ml3ldideoxynucleotide chain termination method", Meth. Enzyrnol. 155, 51-93 (1987). For sonication, it is preferred to maintain the nucleic acid at a uniform temperature by keeping the sample on ice. Constant temperature conditions, at 0° C for example, are preferred to maintain an even fragment distribution. The optimal conditions for sonication may be determined empirically for a given DNA sample before preparative sonication is performed. For example, aliquots of DNA can be treated for different times under sonication and the size and quality of DNA can be analyzed by PAGE. Once optimal sonication conditions are determined, the remaining DNA can be sonicated according to those pre-determined conditions.
Another preferred method for nucleic acid fragmentation is treatment by nebulizers (e.g., protocols, and hardware available from GeneMachines, San Carlos, California. Also see U.S. Patents 5,506,100 and 5,610,010). In nebulization, hydrodynamic shearing forces are used to fragment DNA strands. For example, DNA in a aqueous solution can be passed through a tube with an abrupt contraction. As the solution approaches the contraction, the fluid accelerates to maintain the volumetric flow rate through the smaller area of the i contraction. During this acceleration, drag forces stretch the DNA until it snaps. Optionally, the DNA solution can be passed several times (e.g., 15 to 20 cycles) through the contraction until the fragments are too short for further shearing. By adjusting the contraction and the flow rate of the fluid, the size of the final DNA fragment may be determined.
Software for controlling and monitoring reaction conditions is available to allow automation of the nebulizing process. As another advantage, there axe no special buffer requirements for nebulization . For example, DNA may be suspended in various solutions including, but not limited to, water, Tris buffer, Tris-EDTA buffer, and Tris-EDTA with up to 0.5 M NaCl.

Polishing Polishing digestion of genomic DNA (gDNA) templates with DNase I in the presence of Mn2+ produces fragments of DNA that are either blunt-ended or have protruding termini with one or two nucleotides in length. Similarly, fragmentation of DNA by mechanical means provides a combination of fragments with blunt-ends or overhanging ends.
These DNA fragments, whether generated enzymatically or mechanically, may be "polished" using the procedure described below.
Polishing (also called end repair) refers to the conversion of non-blunt ended DNA
into blunt ended DNA. In one method, polishing may be performed by treatment withr a single strand-specific exonuclease, such as BAL32 nuclease or Mung Bean nuclease.
Generally, the nuclease should be calibrated prior to use.
In one embodiment, blunt ends are created with Pfu DNA polymerase. In other embodiments, blunt ends are created with other DNA polymerases such as T4 DNA
polymerase or Klenow DNA polymerase. Pfu "polishing" or blunt ending can be used to increase the amount of blunt-ended species generated following genomic template digestion with DNase I. Pfu DNA polymerase fills in 5' overhangs. Additionally, Pfu DNA
polymerase exhibits 3'--~ 5' exonuclease activity. Thus, the enzyme can be used to remove single and double nucleotide extensions to further increase the amount of blunt-ended DNA
fragments available for adaptor ligation (see, e.g., Costa, G.L. and M.P.
Weiner. 1994a.
Protocols for cloning and analysis of blunt-ended PCR-generated DNA fragments.
PCR
Methods Appl 3(5):595; Costa, G.L., A. Grafsky and M.P. Weiner. 1994b. Cloning and analysis of PCR-generated DNA fragments. PCR Methods Appl 3(6):338; Costa, G.L. and M.P. Weiner. 1994c. Polishing with T4 or Pfu polymerase increases the efficiency of cloning of PCR products. Nucleie Acids Res. 22(12):2423).
Adaptor Ligation Following fragmentation and blunt ending of the DNA library, universal adaptor sequences can be added to each DNA fragment. In various embodiments of the invention, the universal adaptors are designed to include: 1) a set of unique PCR priming regions that are typically 10-20 by in length (any suitable size may be used) located adjacent to; 2) a set of unique sequencing priming regions that are typically 10-20 by in length (any suitable size may be used) optionally followed by; 3) a unique discriminating key sequence (e.g., 1-12 by in length) including a combination of at least one of each of the four deoxyribonucleotides (i.e., A, C, G, T). In a preferred embodiment, the discriminating key sequence is 4 bases in length. In another embodiment, the discriminating key sequence may be combinations of 1-4 bases. In another embodiment, the key sequence includes one of each of the four nucleotides. In certain embodiments, the key sequence includes one or more ribonucleotides, e.g., U.
In one embodiment of the invention, each unique universal adaptor is forty-four by (44 bp) in length, although any suitable size may be used. In a preferred embodiment the universal adaptors are ligated, using T4 DNA ligase, onto each end of the DNA
fragment to generate a total nucleotide addition of 88 by to each DNA fragment, although any suitable size may be used. Different universal adaptors can be specifically designed for each DNA
library preparation and therefore provide a unique identifier for each organism. For example, different library preparations can employ different key sequences. It is understood that the size and sequence of the universal adaptors may be modified as would be apparent to one of skill in the art. Thus, the adaptors for use with the invention are not limited to the size and sequence described herein.
For example, to prepare two distinct universal adaptors (i.e., "first" and "second"), single-stranded oligonucleotides may be ordered from a commercial vendor (e.g., Integrated DNA Technologies, IA or Operon Technologies, CA). In certain embodiments of the invention, all of the first adaptors for a library share one nucleotide sequence, including a PCR priming sequence, sequencing primer sequence, and discriminating key sequence, while all of the second adaptors share another nucleotide sequence. In another embodiment, the universal adaptor oligonucleotide sequences are modified during synthesis with one or more phosphorothioate linkages in place of phosphodiester linkages. Fox example, adaptor oligonucleotides can include two or three phosphorothioate linkages at both the 5' and 3' ends, or at one end. Unmodified oligonucleotides are typically subject to rapid degradation by contaminating nucleases that catalyze the hydrolytic cleavage of the phosphodiester linkage between nucleotide bases. One simple and widely used nuclease-resistant chemistry available for use in oligonucleotide applications is the phosphorothioate modification. In phosphorothioates, a sulfur atom replaces a non-bridging oxygen in the oligonucleotide backbone making it resistant to all forms of nuclease digestion (i.e.
resistant to both endonuclease and exonuclease digestion). Each oligonucleotide is HPLC-purified to ensure there are no contaminating or spurious oligonucleotide sequences in the synthetic oligonucleotide preparation.
The universal adaptors are designed to allow directional ligation to the fragmented DNA. Each set of double-stranded universal adaptors is designed with a PCR
priming region that includes non-complementary 5' four-base overhangs which are unable to ligate.to each other or to the blunt-ended DNA fragment . Thus, binding occurs between the 3' end of the adaptor and the 5' end of the DNA fragment or between the 3' end of the DNA
fragment and the 5' end of the adaptor. Double-stranded universal adaptor sequences are generated using single-stranded oligonucleotides that are designed with sequences that allow primarily complimentary oligonucleotides to anneal, and to prevent cross-hybridization between two non-complimentary oligonucleotides.
In one embodiment, 95% of the universal adaptors are formed from the annealing of complimentary oligonucleotides. In a preferred embodiment, 97% of the universal adaptors are formed from the annealing of complimentary oligonucleotides. In a more preferred embodiment, 99% of the universal adaptors are formed from the annealing of complimentary oligonucleotides. In a most preferred embodiment, 100% of the universal adaptors are formed from the annealing of complimentary oligonucleotides. Exemplary methods of primer design to minimize cross-hybridization between the primers and spurious target sequences are provided in Example 2.
In certain aspects of the invention, an overhanging nucleotide (e.g., T) is added to the blunt 3' ends of the first and second adaptors. In parallel, a polymerase is used to add an overhanging nucleotide (e.g., A) to the blunt 5' ends of the template DNA. The overhanging nucleotides of the adaptors and template are complementary to allow more efficient adaptor ligation.
In other aspects, a plasmid capture system is used in accordance with the disclosed methods. For example, the double stranded universal adaptors can be inserted into a plasmid.
J
The adaptor region can include the following sequences, in order: Restriction Site(s), PCR
Primer Sequence 1, Sequencing Primer Sequence 1, Key Sequence l, Restriction Site(s), Key Sequence 2, Sequencing Primer Sequence 2, PCR Priming Sequence 2, and Restriction Site(s). In one approach, the plasmid is digested with one or more restriction enzymes that cut between Key Sequence 1 and Key Sequence 2. The fragmented template DNA is ligated between Key Sequence 1 and Key Sequence 2. The ligated construct is then digested to cut after PCR Priming Sequence 2. The digested end next to PCR Priming Sequence 2 is ftlled in with biotinylated nucleotides. The biotinylated construct is digested to cut prior to PCR

Primer Sequence 1. The Adaptor-DNA fragment-Adaptor-biotin segment is excised and isolated, e.g., by binding to a streptavidin magnetic bead. Other embodiments of the plasmid capture system are also possible through application of known cloning techniques. These embodiments are also encompassed by the invention.
One of the two adaptors can be linked to a support binding moiety. In a preferred . embodiment, a .5' biotin is added to the first universal adaptor to allow subsequent isolation of ssDNA template and noncovalent coupling of the universal adaptor to the surface of a solid support that is saturated with a biotin-binding. protein (e.g., streptavidin, NeutrAvidinTM or avidin). Suitable supports include but are not limited to magnetic beads, affinity columns, membranes (e.g., PDVF membrane, nitrocellulose, etc.), which can be coated with streptavidin or another member of a binding pair. Other linkages are well known in the art and may be used in place of biotin-streptavidin. For example, antibody/antigen-epitope, receptor/ligand and oligonucleotide pairing or complimentarity linkages can be used.
In one embodiment, the solid support is a bead, preferably a polystyrene bead.
In one 1 S preferred embodiment, the bead has a diameter of about 2.8 pm, although any suitable size may be used. In another preferred embodiment, the bead is a paramagnetic bead (e.g., Dynal Biotech, Inc., Lake Success, N~. As used herein, this bead is referred to as a "sample prep bead".
Each universal adaptor may be prepared by combining and annealing two ssDNA
oligonucleotides, one containing the sense sequence and the second containing the antisense (complementary) sequence. Schematic representation of the universal adaptor design is depicted in Figure 2.
Isolation of Ligation Products The universal adaptor ligation results in the formation of fragmented DNAs with adaptors on each end, unbound single adaptors, and adaptor dimers. In a preferred embodiment, agarose gel electrophoresis is used as a method to separate and isolate the adapted DNA library population from the unligated single adaptors and adaptor dimer populations. In other embodiments, the fragments may be separated by size exclusion chromatography, filtration, sucrose sedimentation, or other nucleic acid separation techniques known to those skilled in the art. The procedure of DNase I digestion of DNA
typically yields a library population that ranges from 50-700 bp. In a preferred embodiment, upon conducting agarose gel electrophoresis in the presence of a DNA marker, the addition of the 88 by universal adaptor set will shift the DNA library population to a larger size and will result in a migration profile in the size range of approximately 130-800 bp;
adaptor dimers will migrate at 88 bp; and adaptors not ligated will migrate at 44 bp.
Therefore, numerous double-stranded DNA libraries in sizes ranging from 200-800 by can be physically isolated from the agarose gel and purified using standard gel extraction techniques. In one embodiment, gel isolation of the adapted ligated DNA library will result in the recovery of a library population ranging in size from 200-500 bp. Other methods of distinguishing adaptor-ligated fragments are known to one of skill in the art.
Nick Repair Because the DNA oligonucleotides used for the universal adaptors are not 5' phosphorylated, gaps will be present at the 3' junctions of the fragmented DNAs following ligase treatment (see Figure 3A). These "gaps" or "nicks" can be filled in by using a DNA
polymerase enzyme that can bind to, strand displace, and extend the nicked DNA
fragments.
DNA polymerases that lack 3'-~ 5' exonuclease activity but exhibit 5' ~ 3' exonuclease activity have the ability to recognize nicks, displace the nicked strands, and extend the strand in a manner that results in the repair of the nicks and in the formation of non-nicked double-stranded DNA (see Figure 3B and 3C) (Hamilton, S.C., J.W. Farchaus and M.C.
Davis. 2001.
DNA polymerases as engines for biotechnology. BioTechraiques 31:370).
Several modifying enzymes are utilized for the nick repair step, including but not limited to polymerases, ligases, and kinases. DNA polymerases that can be used in the methods of the invention include, for example, E. coli DNA polymerase I, Tlaermoanaerobacter thernaohydrosulfuricus polymerase I, and bacteriophage phi 29. In a preferred embodiment, the strand displacing enzyme Bacillus stearothermopTzilus polymerase I (Bst DNA polymerase I) is used to repair the nicked dsDNA and results in non-nicked dsDNA (see Figure 3D). In another preferred embodiment, the ligase is T4 DNA
ligase and the kinase is T4 polynucleotide kinase.
Isolation of Single-Stranded DNA
Following the generation of non-nicked dsDNA, ssDNAs comprising both the first and second adaptor molecules may be isolated. Double-stranded DNA libraries will have adaptors bound in the following configurations:
Universal Adaptor A - DNA fragment - Universal Adaptor A

Universal Adaptor B - DNA fragment - Universal Adaptor A*
Universal Adaptor A - DNA fragment - Universal Adaptor B
Universal Adaptor B - DNA fragment - Universal Adaptor B
"A" and "B" correspond to the first and second adaptors. The desired populations are designated with asterisks.
Preferably, the universal adaptors are designed such that only one universal adaptor has a 5' biotin moiety. For example, if universal adaptor B has a 5'biotin moiety, streptavidin-coated sample prep beads can be used to bind all double-stranded DNA library species with universal adaptor B. Genomic library populations that contain two universal adaptor A species will not contain a 5' biotin moiety and will not bind to streptavidin-containing sample prep beads and thus can be washed away. The only species that will remain attached to beads are those with universal adaptors A and B and those with two universal adaptor B sequences.
DNA species with two universal adaptor B sequences (i.e., biotin moieties at each 5'end) will be bound to streptavidin-coated sample prep beads at each end, as each strand comprised in the double strand will be bound. Double-stranded DNA species with a universal adaptor A and a universal adaptor B will contain a single 5'biotin moiety and thus will be bound to streptavidin-coated beads at only one end. Where the sample prep beads are . .
magnetic, the beads will remain coupled to a solid support when magnetized.
Accordingly, in the presence of a low-salt ("melt" or denaturing) solution, only those DNA
fragments that contain a single universal adaptor A and a single universal adaptor B sequence will release the complementary unbound strand. This single-stranded DNA population attached to beads may be collected and quantitated by, for example, pyrophosphate sequencing, real-time quantitative PCR, agarose gel electrophoresis, fluorescent dye binding assay (PicoGreen~;
Molecular Probes, Inc., Eugene, OR), or capillary gel electrophoresis.
In one embodiment, ssDNA libraries that are created according to the methods of the invention are quantitated to calculate the number of molecules per unit volume. For example, the molecules can be annealed to a solid support that includes oligonucleotide capture primers that are complementary to the PCR priming regions of the universal adaptor ends of the ssDNA species.
In certain embodiments, beads comprising capture primers annealed to ssDNA
library molecules can be transferred to a thermocycler to allow PCR amplification.
Clonal populations of single species of single stranded DNA captured on DNA beads may then sequenced. In one embodiment, the solid support is a bead, preferably a sepharose bead. As used herein, this bead is referred to as a "DNA capture bead".
The beads used herein may be of any convenient size and fabricated from any number of known materials. Example of such materials include: inorganics, natural polymers, and synthetic polymers. Specific examples of these materials include: cellulose, cellulose derivatives, acrylic resins,.glass; silica gels, polystyrene, gelatin, polyvinyl pyrrolidone, co-polymers of vinyl and acrylamide, polystyrene cross-linked with divinylbenzene or the like (see, Merrifield Biochemistry 1964; 3, 1385-1390), polyacrylamides, latex gels, polystyrene, dextran, rubber, silicon, plastics, nitrocellulose, celluloses, natural sponges, silica gels, glass, metals plastic, cellulose, cross-linked dextrans (e.g., SephadexTM) and agarose gel (SepharoseTM) and solid phase supports known to those of skill in the art. In one embodiment, the diameter of the DNA capture bead is 20-70 pm. In a preferred embodiment, the diameter of the DNA capture bead is 20-50 ~,m. In a more preferred embodiment, the diameter of the DNA capture bead is about 30 pm.
In one aspect, the invention includes a method for generating a library of solid supports comprising: (a) preparing ~ a population of ssDNA templates according to the methods disclosed herein; (b) attaching each DNA template to a solid support such that there is one molecule of DNA per solid support; (c) amplifying the population of single-stranded . templates such that the amplification generates a clonal population of each DNA fragment on each solid support; (d) sequencing clonal populations of the ssDNA templates.
In one embodiment, the solid support is a DNA capture bead. In another embodiment, the DNA is genomic DNA, cDNA, or reverse transcripts of RNA (e.g., viral RNA). The DNA may be attached to the solid support, for example, via a biotin-streptavidin linkage, a covalent linkage, or by complementary oligonucleotide hybridization. In one embodiment, each DNA template is ligated to a set of universal adaptors. In another embodiment, the universal adaptor pair comprises a PCR primer sequence, a sequencing primer sequence, and a discriminating key sequence. Single-stranded DNAs with unique ends are isolated and then attached to a solid support and exposed to amplification techniques for clonal amplification. The DNA may be amplified by PCR. In one aspect, the invention provides a library attached to solid supports made by the methods described herein.
The DNA prepared by this method may be used for many molecular biological procedures, such as linear extension, rolling circle amplification, PCR, and sequencing. The linkage reaction can be driven, for example, by using a high molar ratio of bead to DNA.

The capture of single-stranded DNA molecules follows a Poisson distribution and results in subsets of beads having no DNA attached, one molecule of DNA attached, or more than one molecule of DNA attached. In a preferred embodiment, there is one molecule of DNA
attached to each bead. In addition, it is possible to include additional modifications with the adaptors that may be useful for further manipulations of the isolated library.
Binding Nucleic Acid Template to Capture Beads In certain embodiments of the invention, a single stranded nucleic acid template to be amplified is attached to a capture bead. The nucleic acid template may be attached to the solid support capture bead in any manner known in the art. Numerous methods exist in the art for attaching DNA to a solid support such as the preferred microscopic bead. According to the present invention, covalent chemical attachment of the DNA to the bead can be accomplished by using standard coupling agents, such as water-soluble carbodiimide, to link the 5'-phosphate on the DNA to amine-coated capture beads through a phosphoamidate bond.
Another alternative is to first couple specific oligonucleotide linkers to the bead using similar chemistry, and to then use DNA ligase to link the DNA to the linker on the bead. Other linkage chemistries to join the oligonucleotide to the beads include the use of N-k~ydroxysuccinamide (NHS) and its derivatives. In such a method, one end of the oligonucleotide may contain a reactive group (such as an amide group) which forms a covalent bond with the solid support, while the other end of the ,linker contains a second reactive group that can bond with the oligonucleotide to be immobilized. In a preferred embodiment, the oligonucleotide is bound to the DNA capture bead by covalent linkage.
However, non-covalent linkages,. such as chelation or antigen-antibody complexes, may also be used to join the oligonucleotide to the bead.
Oligonucleotide linkers can be employed which specifically hybridize to unique sequences at the end of the DNA fragment, such as the overlapping end from a restriction enzyme site or the "sticky ends" of bacteriophage lambda based cloning vectors, but blunt-end legations can also be used beneficially. These methods are described in detail in US
5,674,743. It is preferred that any method used to immobilize the beads will continue to bind the immobilized oligonucleotide throughout the steps in the methods of the invention.
In one embodiment, each capture bead is designed to have a plurality of nucleic acid primers that recognize (i.e., are complementary to) a portion of the nucleic template, and the nucleic acid template is thus hybridized to the capture bead. In the methods described herein, clonal amplification of the template species is desired, so it is preferred that only one unique nucleic acid template is attached to any one capture bead.
The beads used herein maybe of any convenient size and fabricated from any number of known materials. Example of such materials include: inorganics, natural polymers, and synthetic polymers. Specific examples of these materials include: cellulose, cellulose derivatives, acrylic resins, glass, silica gels, polystyrene, gelatin, polyvinyl pyrrolidone, co-polymers of vinyl and acrylamide, polystyrene cross-linked with divinylbenzene or the like (as described, e.g., in Mernfield, Biochemistry 1964, 3, 1385-1390), polyacrylamides, latex gels, polystyrene, dextran, rubber, silicon, plastics, nitrocellulose, natural sponges, silica gels, control pore glass, metals, cross-linked dextrans (e.g., Sephadex~) agarose gel (SepharoseTM), and solid phase supports known to those of skill in the art. In a preferred embodiment, the capture beads are Sepharose beads approximately 25 to 40 pm in diameter.
Emulsification For use with the present invention, capture beads with or without attached nucleic acid template may be suspended in a heat stable water-in-oil emulsion. It is contemplated that a plurality of the microreactors include only one template and one bead.
There may be many droplets that do not contain a template or which do not contain a bead.
Likewise there may be droplets that contain more than one copy of a template. The emulsion may be formed according to any suitable method known in the art. One method of creating emulsion is described below but any method for making an emulsion may be used. These methods are known in the art and include adjuvant methods, counter-flow methods, cross-current methods, rotating drum methods, and membrane methods. Furthermore, the size of the microcapsules may be adjusted by varying the flow rate and speed of the components. For example, in dropwise addition, the size of the drops and the total time of delivery may be varied. Preferably, the emulsion contains a density of about 3,000 beads encapsulated per microliter.
Various emulsions that are suitable for biologic reactions are referred to in Griffiths and Tawfik, EMBO, 22, pp. 24-35 (2003); Ghadessy et al., Proc. Natl. Acad.
Sci. USA 98, pp. 4552-4557 (2001); United States Patent No. 6,489,103 and WO 02/22869, each fully incorporated herein by reference. It is noted that Griffiths et al., (U.S.
Pat. No. 6,489,103 and WO 99/02671) refers to a method for ifa vitro sorting of one or more genetic elements encoding a gene products having a desired activity. This method involves compartmentalizing a gene, expressing the gene, and sorting the compartmentalized gene based on the expressed product. In contrast to the present invention, the microencapsulated sorting method of Griffith is not suitable for parallel analysis of multiple microcapsules because their nucleic acid product is not anchored and cannot be anchored.
Since the nucleic acids of Griffiths are not anchored, they would be mixed together during demulsification.
The emulsion is preferably generated by adding beads to an amplification solution.
As used herein, the term "amplification solution" means the sufficient mixture of reagents that is necessary to perform amplification of template DNA. One example of an amplification solution, a PCR amplification solution, is provided in the Examples below . It will be appreciated that various modifications may be made to the amplification solution based on the type of amplification being performed and whether the template DNA is attached to the beads or provided in solution. In one embodiment, the mixture of beads and amplification solution is added dropwise into a spinning mixture of biocompatible oil (e.g.,.
light mineral oil, Sigma) and allowed to emulsify. In another embodiment, the beads and amplification solution are added dropwise into a cross-flow of biocompatible oil. The oil used may be supplemented with one or more biocompatible emulsion stabilizers.
These emulsion stabilizers may include Atlox 4912, Span S0, and other recognized and commercially available suitable stabilizers. In preferred aspects, the emulsion is heat stable to allow thermal cycling, e.g., to at least 94°C, at least 95°C, or at least 96°C. Preferably, the droplets formed range in size from about 5 microns to about 500 microns, more preferably from about 10 microns to about 350 microns, even more preferably from about 50 to 250 microns, and most preferably from about 100 microns to about 200 microns.
Advantageously, cross-flow fluid mixing allows for control of the droplet formation, and uniformity of droplet size. We note that smaller water droplets not containing beads may be present in the emulsion.
The microreactors should be sufficiently large to encompass sufficient amplification reagents for the .degree of amplification required. However, the microreactors should be sufficiently small so that a population of microreactors, each containing a member of a DNA
library, can be amplified by conventional laboratory equipment, e.g., PCR
thermocycling equipment, test tubes, incubators and the like. Notably, the use of microreactors allows amplification of complex mixtures of templates (e.g., genomic DNA samples or whole cell RNA) without intermixing of sequences, or domination by one or more templates (e.g., PCR
selection bias; see, Wagner et al., 1994, Suzuki and Giovannoni, 1996;
Chandler et al., 1997, Polz and Cavanaugh, 1998).
With the limitations described above, the optimal size of a microreactor may be on average 100 to 200 microns in diameter. Microreactors of this size would allow amplification of a DNA library comprising about 600,000 members in a suspension of microreactors of less than 10 ml in volume. For example, if PCR is the chosen amplification method, 10 ml of microreactors would fit into 96 tubes of a regular thermocycler with 96 tube capacity. In a preferred embodiment, the suspension of 600,000 microreactors would have a volume of less than 1 ml. A suspension of less than 1 ml may be amplified in about 10 tubes of a conventional PCR thermocycler. In a most preferred embodiment, the suspension of 600,000 microreactors would have a volume of less than O.S ml.
Another embodiment of the invention is directed to a method of performing nucleic acid amplification with a template and a bead, but without attachment of the template to the bead. In one aspect, the bead may comprise a linker molecule that can bind the amplified nucleic acid ai~er amplification. For example, the linker may be a linker that can be activated. Such linkers are well known and include temperature sensitive or salt sensitive binding pairs such as streptavidin/biotin and antibodies/antigen. The template nucleic acid may be encapsulated with a bead and amplified. Following amplification, the amplified nucleic acid may be linked to the beads, e.g., by adjustments in temperature or salt concentration.
Amplification The template nucleic acid may be amplified, while attached or unattached to beads, by any suitable method of amplification including transcription-based amplification systems (Kwoh D. et al., Proc. Natl. Acad Sci. (U.S.A.) 86:1173 (1989); Gingeras T. R.
et al., WO
88/10315; Davey, C. et al., EP Publication No. 329,822; Miller, H. I. et al., WO 89/06700), "RACE" (Frohman, M. A., In: PCR Protocols: A Guide to Methods and Applications, Academic Press, NY (1990)) and one-sided PCR (Ohara, O. et al., Proc. Natl.
Acad. Sci.
(L1.S.A.) 86.5673-5677 (1989)). Still other methods such as di-oligonucleotide amplification, isothermal amplification (Walker, G. T. et al., Proc. Natl. Acad. Sci.
(U.S.A.) 89:392-396 (1992)), Nucleic Acid Sequence Based Amplification (NASBA; see, e.g., Deiman B
et al., 2002, Mol Biotechnol. 20(2):163-79), whole-genome amplification (see, e.g., Hawkins TL et al., 2002, Curr Opin Biotechnol. 13(1):65-7), strand-displacement amplification (see, e.g., Andras SC, 2001, Mol Biotechnol. 19(1):29-44), rolling circle amplification (reviewed in U.S. Pat. No. 5,714,320), and other well known techniques may be used in accordance with the present invention. In certain aspects, a nucleic acid template is amplified after encapsulation with a bead in a rnicroreactor. Alternatively, a nucleic acid template is amplified after distribution onto a multiwell surface, e.g., a PicoTiter plate.
In a preferred embodiment, DNA amplification is performed by PCR. PCR
according to the present invention may be performed by encapsulating the target nucleic acid with a PCR solution comprising all the necessary reagents for PCR. Then, PCR may be accomplished by exposing the emulsion to any suitable thermocycling regimen known in the art. In a preferred embodiment, 30 to 50 cycles, preferably about 40 cycles, of amplification are performed. It is desirable, but not necessary, that following the amplification procedure there be one or more hybridization and extension cycles following the cycles of amplification. In a preferred embodiment, 10 to 30 cycles, preferably about 25 cycles, of hybridization and extension are performed (e.g., as described in the examples). Routinely, the template DNA is amplified until typically at least 10,000 to 50,000,000 copies are immobilized on each bead. It is recognized that for nucleic acid detection applications, fewer copies of template are required. For nucleic acid sequencing applications we prefer that at least two million to fifty million copies, preferably about ten million to thirty million copies of the template DNA are immobilized on each bead. The skilled artisan will recognize that the size of bead (and capture site thereon) determines how many captive primers can be bound (and thus how many amplified templates may be captured onto each bead).
In one aspect, the invention encompasses a method for clonally isolating a library comprising a plurality of single stranded DNA molecules comprising: a) fragmenting large template DNA molecules to generate a plurality of fragmented DNA molecules; b) attaching a first or second universal double stranded adaptor to a first end of each fragmented DNA
molecule and a first or second universal adaptor to a second end of each fragmented DNA
molecule to form a mixture of adaptor ligated DNA molecules; c) isolating a plurality of single stranded DNA molecules each comprising a first single stranded universal adaptor and a second single stranded universal adaptor to obtain a library; and d) delivering the single stranded DNA molecules into reactors such that a plurality of the reactors include one DNA
molecule, thereby clonally isolating the library.
In another aspect, the invention encompasses a method for generating a library comprising a plurality of single stranded DNA molecules, comprising: a) fragmenting large or whole genomic template DNA molecules to generate a plurality of fragmented DNA
molecules; b) ligating a first universal double stranded adaptor or a second universal adaptor to a first end of each fragmented DNA molecule and a first universal adaptor or second universal adaptor to a second end of each fragmented DNA molecule to produce a mixture of adaptor ligated DNA molecules, wherein the first universal adaptor contains a moiety that binds to a solid support; c) attaching to a solid support those DNA molecules comprising a first double stranded universal adaptor; d) washing away adaptor ligated DNA
molecules which have not attached to the solid support; e) strand separating those adaptor ligated DNA
molecules that are attached to the solid support to release a plurality of single stranded DNA
molecules comprising a first single stranded universal adaptor at one end and a second single stranded adaptor at the other end; and f) isolating the single stranded DNA
molecules, thereby generating a library. In specific aspects, (f) can be accomplished by:
i) delivering the single stranded DNA molecules onto a location on a reactor array; or ii) delivering the single stranded DNA molecules into droplets in a water-in-oil emulsion.
According to these methods, the first universal double stranded adaptor or the second universal adaptor can be attached to the fragmented DNA molecules by ligation.
For example, DNA ligase may be used. These methods can further include a step of repairing single stranded nicks in the mixture of adaptor ligated DNA molecules using DNA repair and modifying enzymes, such as a polymerase, ligase, kinase, or combinations thereof. As particular examples, the enzymes can include Bacillus stearothermophilus polymerase I, T4 ligase, and T4 polynucleotide kinase. The template DNA for these methods can comprise genomic DNA, cDNA, plasmid DNA, cosmid DNA, artificial chromosome DNA, synthetic DNA, phasemid DNA, phagemid DNA, or reverse transcripts. Fragmenting may be performed by enzymatic, chemical, or mechanical means. For example, DNase I
enzyme can be used in a digestion performed at a temperature of 10-37°C for 1-2 minutes. Alternatively, a restriction enzyme may be used. The mechanical means can be a nebulizer, French Press, sonicator, or a HydroShear.
For use with these methods, the fragmented DNA molecules can be 50 by to 700 by in length. The compatible ends can be blunt ends, or the compatible ends can include an A or T
overhang. Blunt ends can be created with an enzyme such as Pfu polymerase, T4 DNA
polymerase, and Klenow fragments. The first or second double stranded universal adaptor may comprise one or more phosphorothioate linkages, and may be attached to a biotin moiety. In addition, the first double stranded universal adaptors or the second double stranded universal adaptors or both double stranded universal adaptors may comprise a discriminating key sequence. For example, the discriminating key sequence is 3-nucleotides in length and comprise at least one nucleotide selected from the group consisting of A, G, C, U, and T. The first and second double stranded universal adaptor may comprise a PCR priming sequence and a sequencing primer sequence. In various aspects, the PCR
priming sequence is 10-20 base pairs in length, and the sequencing primer sequence is 10-20 base pairs in length. In addition, the PCR priming sequence and the sequencing primer sequence may overlap.
Tn accordance with these methods, the mixture of adaptor ligated DNA molecules is separated by a method selected from the group consisting of gel electrophoresis, filtration, size exclusion chromatography, and sucrose sedimentation. °The plurality of single stranded DNA molecules may be obtained by a treatment selected from the group consisting of low salt treatment, high pH treatment, and chemical denaturation treatment. In further aspects, the plurality of single stranded DNA molecules may be attached to a DNA
capture bead. In addition, the DNA capture bead may comprise a component of a binding pair, such as avidin/biotin, ligand/receptor, antigenlantibody or complementary nucleotides.
Preferably, the DNA capture bead is a paramagnetic bead.
The invention also encompasses a method for generating a single stranded DNA
library attached to solid supports comprising: a) generating a plurality of single stranded DNA
templates; b) attaching each of the plurality of ssDNA templates to a solid support; and c) isolating the solid supports on which the single stranded DNA templates are attached.
The invention further encompasses a method for generating a single stranded DNA
library attached to solid supports comprising: a) fragmenting large template DNA molecules to generate a plurality of fragmented DNA molecules; b) attaching a first or second universal double stranded adaptor to a first end of each fragmented DNA molecule arid a first or second universal adaptor to a second end of each fragmented DNA molecule to make a mixture o'f adaptor ligated DNA molecules; c) isolating those single stranded DNA
molecules which comprise a first single stranded universal adaptor and a second single stranded universal adaptor; and d) attaching the isolated single stranded molecules from (c) to a solid support.
For use with this method, the solid support may be a DNA capture bead, and the DNA
may be genornic DNA, cDNA, plasmid DNA, cosmid DNA, artificial chromosome DNA, synthetic DNA, phasemid DNA, or phagemid DNA. In certain aspects the DNA is attached to the solid support via a binding pair such as avidin/biotin, ligand/receptor, antigen/antibody and complementary nucleotides. Also encompassed is a library of mobile solid supports made by this method.
Additionally, the invention comprises a nucleic acid molecule comprising a first adaptor, a fragment of template DNA, and a second adaptor, wherein the first adaptor and second adaptor each comprise a sequencing primer, a PCR primer, and a discriminating key sequence, and wherein the first adaptor and second adaptor, when dissociated, do not cross-hybridize to each other under stringent hybridization conditions. In this method, the PCR
primer may be 10-20 base pairs in length, the sequencing primer may be 10-20 base pairs in length, and the discriminating key sequence may be 3 to 12 base pairs in length. As examples, the template DNA can be genomic DNA, cDNA plasmid DNA, cosmid DNA, artificial chromosome DNA, synthetic DNA, phasemid DNA, or phagemid DNA.
Preferably, the nucleic acid molecule, when dissociated, has minimal cross-hybridization to dissociated template DNA.
Also encompassed by the invention is a method for preparing single stranded DNA
molecules, comprising: a) fragmenting large or whole genomic template DNA
molecules to generate a plurality of fragmented DNA molecules; b) ligating a first universal double stranded adaptor or a second universal adaptor to a first end of each fragmented DNA
molecule and a first universal adaptor or second universal adaptor to a second end of each fragmented DNA molecule to produce a mixture of adaptor ligated DNA molecules;
c) attaching adaptor ligated DNA molecules comprising a first double stranded universal adaptor and a second double stranded adaptor to a solid support via one strand of the first double stranded universal adaptor; d) washing away adaptor ligated DNA
molecules which have not attached to the solid support; e) strand separating those adaptor ligated DNA
molecules that are attached to the solid support to release a plurality of single stranded DNA
molecules comprising a first single stranded universal adaptor at one end and a second single stranded adaptor at the other end; and; and f) isolating the single stranded DNA molecules.
Further encompassed by the invention is a method for delivering nucleic acid templates to a plurality of reaction centers comprising the steps of a) providing a population of nucleic acid templates; b) isolating each nucleic acid template from the population to a sequestering agent to form a population of sequestered nucleic acid templates;
and c) delivering the population of sequestered nucleic acid templates to the plurality of reaction centers wherein each reaction center receives one sequestered nucleic acid.
For this method, the isolating step may comprise attaching the nucleic acid templates to a bead, or encapsulating the nucleic acid template in an emulsion of a water-in-oil emulsion. The nucleic acid template may be encapsulated with a bead that can bind the nucleic acid. In this method, the delivering step rnay comprise delivering the sequestered nucleic acid to a plurality of reaction centers, wherein each reaction center is a well on a picotiter plate. The method can further comprising the step of attaching the isolated single stranded molecules each individually to a solid support.
Other features of the invention will become apparent in the course of the following description of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof. Throughout this specification, various patents, published patent applications and scientific references are cited to describe the state and content of the art. Those disclosures, in their entireties, are hereby incorporated into the present specification by reference.
EXAMPLES
Example 1: Sample Preparation DNA Sample:
The DNA should be of high quality and free from contaminants such as proteins, nucleases, lipids, and other chemicals (such as residual EDTA from preparation) and salts. It is preferred that genomic DNA should have ~ a 260/280 ratio of 1.8 or higher.
If it is desired to sequence the genome of only one organism, then the DNA should be quality checked to ensure that there is no contaminating DNA. For example: a preparation of human DNA rnay be checked by PCR to ensure that it is not contaminated by bacterial DNA
molecules.
Another method of checking for contamination is by restriction digestion patterns and especially restriction digestion followed by Southern Blot using suitable probes known to be specific for an organism (e.g., human or mouse) and a second probe known to be specific for a possible contaminating organism (e.g., E. coli). If it is desired, the DNA
should originate from a single clone of the organism (e.g., a colony if from bacteria).
Step 1: DNase I Digestion The purpose of the DNase I digestion step is to fragment a large stretch of DNA such as a whole genome or a large portion of a genome into smaller species. This population of smaller-sized DNA species generated from a single DNA template is referred to as a "library". Deoxyribonuclease I (DNase I) is an endonuclease which cleaves double-stranded template DNA. The cleavage characteristics of DNase I allow random digestion of template DNA (i.e., minimal sequence bias) and will result in the predominance of blunt-ended, double-stranded DNA fragments when used in the presence of manganese-based buffers (Melgar and Goldthwait 1968). The digestion of genomic templates by DNase I is dependent on three factors: i) quantity of enzyme used (units); ii) temperature of digestion (°C); and iii) incubation time (minutes). The DNase I digestion conditions outlined below were optimized to yield DNA libraries in a size range from 50-700 base pairs (bp).
1. DNA was obtained and prepared to a concentration of 0.3 mg/ml in Tris-HCl (lOmM, pH 7-8). A total of 134 ~l of DNA (15 p,g) was needed for this preparation. It is recommended to not use DNA preparations diluted with buffers containing EDTA
(i.e., TE, Tris/EDTA). The presence of EDTA is inhibitory to enzyme digestion with DNase I. If the DNA preparation contains EDTA, it is important that the DNA be "salted" out of solution and reconstituted with the appropriate Tris-HCl buffer (10 mM, pH 7-8) or nanopure H2O (pH 7-8).
2. In a 0.2 ml tube, DNase I Buffer, comprising 50 pl Tris pH 7.5 (1M), 10 pl MnCl2 (1M), 1 ~1 BSA (100 mg/ml), and 39 ~1 water was prepared.
3. In a separate 0.2 ml tube, 15 pl of DNase I Buffer and 1.5 ~,l of DNase I
(lU/ml) was added. The reaction tube was placed in a thermal cycler set to 15°C.
4. The 134 ~,l of DNA (0.3 mg/ml) was added to the DNase I reaction tube placed in the thermahcycler set at 15°C. The lid was closed and the sample was incubated for exactly 1 minute. Following incubation, 50 ~,l of 50 mM EDTA was added to stop the enzyme digestion.
5. The digested DNA was purified by using the QiaQuick PCR purification kit.
The digestion reaction was then split into four aliquots, and four spin columns were used to purify each aliquot (37.5 pl per spin column). Each column was eluted with 30 pl elution buffer (EB) according to the manufacturer's protocol. The eluates were then combined to generate a final reaction volume of 120 ~1.
6. One 3 ~1 aliquot of the digestion reaction was saved for analysis using a BioAnalzyer DNA 1000 LabChip.
Step 2: Pfu Polishing Digestion of DNA templates with DNase I yields fragments of DNA that are primarily blunt-ended, however, some fragments will have ends that contain protruding termini that are one or'two nucleotides in length. Pfu polishing is used to increase the amount of blunt-ended species by fill-in (i.e., "blunting") of 5' overhangs.
Additionally, Pfu DNA
polymerise has 3'-~ 5' exonuclease activity that will result in the removal of single and double nucleotide extensions. Pfu polishing increases the amount of blunt-ended DNA
fragments available for adaptor ligation (Costa 1994a, 1994b, 1994c). The following Pfu polishing protocol was used.
1. In a 0.2 ml tube, 115 p,l purified, DNase I-digested DNA fragments, 15 ~1 lOX
Cloned Pfu buffer, 5 p,l dNTPs (10 mM), and 1 S pl cloned Pfu DNA polymerise (2.5 U/~1) were added in order.
2. The polishing reaction components were mixed well and incubated at 72° C
for 30 minutes.
3. Following incubation, the reaction tube was removed and placed on ice for 2 minutes.
4. The polishing reaction mixture was then split into four aliquots and purified using QiaQuick PCR purification columns (37.5 pL on each column). Each column was eluted with 30 ~l buffer EB according to the manufacturer's protocol. The eluates were then combined to generate a final reaction volume of 120 pL.
5. One 3 pl aliquot of the final polishing reaction was saved for analysis using a BioAnalzyer DNA 1000 LabChip.
Step 3: Ligation of Universal Adaptors to Fragmented DNA Library Following fragmentation and polishing of the genomic DNA library, primer sequences are added to the ends of each DNA fragment. These primer sequences are termed "Universal Adaptors" and are comprised of double-stranded oligonucleotides that contain specific priming regions that afford both PCR amplification and nucleotide sequencing. The Universal Adaptors are designed to include a set of unique PCR priming regions that are 20 base pairs in length located adjacent to a set of unique sequencing priming regions that are 20 base pairs in length, followed by a unique 4-base "key" consisting of one of each deoxyribonucleotide (i.e., .A, C, G, T). Each unique Universal Adaptor (termed "Universal Adaptor A" and "Universal Adaptor B") is forty-four base pairs (44 bp) in length. Universal Adaptors are ligated, using T4 DNA ligase, onto each end of the DNA fragment to generate a total nucleotide addition of 88 by to each DNA fragment. Different Universal Adaptors are designed specifically for each genornic DNA library preparation and will therefore provide a unique identifier for each organism.
To prepare a pair of Universal Adaptors, single-stranded oligonucleotides are designed in-house and are manufactured through a commercial vendor. Universal Adaptor DNA oligonucleotides are designed with two phosphorothioate linkages at each S oligonucleotide end that serve to protect against nuclease activity (Samini, T.D., B. Jolles, and A. Laigle. 2001. Best minimally modified antisense oligonucleotides according to cell nuclease activity. Antisense Nucleic Acid Drug Dev. 11(3):129., the disclosure of which is incorporated in toto herein by reference.). Each oligonucleotide is HPLC-purified to ensure there are no contaminating or spurious DNA oligonucleotide sequences in the final prep.
The Universal Adaptors are designed to allow directional ligation to the blunt-ended, fragmented genomic DNA. For each Universal Adaptor pair, the PCR priming region contains a 5' four-base overhang and a blunt-ended 3' Key region.
Directionality is achieved as the blunt-end side of the Universal Adaptor ligates to the blunt-ended DNA
fragment while the 5' overhang of the adaptor cannot ligate to the blunt-ended DNA
fragment.
Additionally, a 5' biotin is added to the Universal Adaptor B to allow subsequent isolation of ssDNA template (Step 8). Each Universal Adaptor is prepared by annealing, in a single tube, the two single-stranded complementary DNA oligonucleotides (i.e., one oligo containing the sense sequence and the second oligo containing the antisense sequence). The following ligation protocol was used.
1. In a 0.2 ml tube, 39 ~l nIi20 (molecular biology grade water), 25 p,l digested, polished DNA Library, 100 pl 2~ Quick Ligase Reaction Buffer, 20 pl MMPl (10 pm/pl) adaptor set, 100:1 ratio, and 16 p.1 Quick Ligase were added in order. The ligation reaction was mixed well and incubated at RT for 20 minutes.
2. The ligation reaction was then removed arid a 10-~l aliquot of the ligation reaction was purified for use on the BioAnalyzer. A single spin column from the Qiagen Min-Elute kit was used. The column was eluted with 10 pl EB according to the procedure per manufacturers' protocol. A 1-pl aliquot of the purified ligation reaction was loaded using a BioAnalyzer DNA 1000 LabChip. This purification step is recommended as the unpurified ligation. reaction contains high amounts of salt and PEG that will inhibit the sample from running properly on the BioAnalyzer.
3. The remainder of the ligation reaction (190 p,L) was used for gel isolation in Step 4.

Step 3a: Microcon Filtration and Adaptor Construction. Total preparation time was approximately 25 min.
The Universal Adaptor ligation reaction requires a 100-fold excess of adaptors. To aid in the removal of these excess adaptors, the double-stranded gDNA library is filtered through a Microcon YM-100 filter device. Microcon YM-100 membranes can be used to remove double stranded DNA smaller than 125 bp. Therefore, unbound adaptors (44 bp), as well as adaptor dimers (88 bp) can be removed from the ligated gDNA library population.
The following filtration protocol was used:
1. The 190 p.L of the ligation reaction from Step 4 was applied into an assembled Microcon YM-100 device.
2. The device was placed in a centrifuge and spun at 5000 x g for approximately 6 minutes, or until membrane was almost dry.
3. To wash, 200 pl of 1X TE was added.
4. Sample was spun at 5000 x g for an additional 9 minutes, or until membrane was almost dry.
5. To recover, the reservoir was inserted into a new vial and spun at 3000 x g for 3 minutes. The reservoir was discarded. The recovered volume was approximately 10 pl.
Next, 80 pl TE was added.
The Adaptors (A and B) were HPLC-purified and modified with phosphorothioate linkages prior to use. For Adaptor "A" (10 ~, 10 p,l of 100 1cM Adaptor A (44 bp, sense) was mixed with 10 p.l of 100 pM Adaptor A (40 bp, antisense), and 30 p.l of 1X
Annealing Buffer (Vf= 50 p.l) were mixed. The primers were annealed using the ANNEAL
program on the Sample Prep Labthernnal cycler (see below). For Adaptor "B" (10 ~, 10 N.l of 100 wM
Adaptor B (40 bp, sense) was mixed with 10 p.l of 100 ~,M Adaptor B (44 bp, antisense), and pl of 1X Annealing Buffer (Vf= 50 ~,l). The primers were annealed using the ANNEAL
program on the Sample Prep Lab thermal cycler. Adaptor sets could be stored at -20°C until use.
ANNEAL-A program for primer annealing:
30 1.. Incubate at 95°C, 1 min;
2.. Decrease temperature to 15°C, at 0.1°C/sec; and 3.. Hold at 15°C.

There was no orientation required for the genomic DNA insert fragment and the adaptors. Fragments could be ligated at either end. Four single-stranded DNA
oligonucleotides were included in the Universal Adaptor set. Each single-stranded oligonucleotide was synthesized at 1 micromole scale and HPLC-purified. Each single-s stranded oligonucleotide included four phosphorothioate linkages at each end.
Step 4: Gel Electrophoresis and Extraction of Adapted DNA Library The Universal Adaptor ligation protocol produces the following: 1) fragmented DNAs with adaptors on either end; 2) unbound single adaptors; or 3) the formation of adaptor dimers. Agarose gel electrophoresis is used as a method to separate and isolate the adapted DNA library population from the unligated, single adaptors and adaptor dimer populations. The procedure of DNase I digestion of genomic DNA yields a library population that ranges from 50-700 by (Step 1). The addition of the 88-by Universal Adaptor set will shift the population to a larger size and will result in a migration profile in the size range of approximately 130-800 bp. Adaptor dimers will migrate at 88 by and adaptors unligated will migrate at 44 bp. Therefore, genomic DNA libraries in size ranges > 200 by can be physically isolated from the agarose gel and purified using standard gel extraction techniques. Gel isolation of the adapted DNA library will result in the recovery of a library population in a size range that is >200 by (size range of library can be varied depending on application). The following electrophoresis and extraction protocol was used.
1. A 2% agarose gel was prepared.
2. 10 p,l of l OX Ready-Load Dye was added to the remaining 90 ~1 of the DNA
ligation mixture.
3. The dye/ligation reaction mixture was loaded into the gel using four adjacent lanes (25 ~,1 per lane).
4. 10 ~,l of the100 by ladder (0.1 p,g/pl) was loaded two lanes away from ligation reaction lanes.
5. The gel was run at 100V for 3 hours.
6. When the gel run was complete, the gel was removed from the gel box and transferred to a flat surface covered with plastic wrap. DNA bands were visualized using a hand-held long-wave UV Iight. Using a sterile, single-use scalpel, the fragment sizes of 200 - 400 by were cut out from the agarose gel. Using this approach, libraries with any size range can be isolated. It is also possible to isolate more than one size range. Where the library size range is 200-900 bp, it is possible to isolate several size ranges from a single well (i.e., 200-400 by and 500-700 bp).
7. The DNA embedded in the agarose gel was isolated using a Qiagen MinElute Gel Extraction kit following the manufacturer's instructions. Briefly, Buffer QG was added to cover the agarose in the tube. The agarose was allowed to completely dissolve. The color of the Buffer QG was maintained by adjusting the pH according to the Qiagen instructions to minimize sample loss. Two MinElute spin columns (Qiagen) were used for purification. The large volume of dissolved agarose required each column to be loaded several times. The columns were eluded with 10 ~,1 of Buffer EB which was pre-warmed at 55°C. The eluates were pooled to produce 20 pl of gDNA library.
8. One 1 ~,L aliquot of each isolated DNA library was analyzed using a BioAnalyzer DNA 1000 LabChip to assess the exact distribution of the DNA
library population.
Step 5: Strand Displacement and Extension of Nicked Double Stranded DNA
Library Because the DNA oligonucleotides used for the Universal Adaptors are not phosphorylated, gaps are present at the 3' junctions of the fragmented gDNAs.
These two "gaps" or "nicks" can be filled in by using a strand displacing DNA
polymerise. The polymerise recognizes nicks, displaces the nicked strands, and extends the strand in a manner that results in repair of nicks and in the formation of non-nicked double-stranded DNA. The strand displacing enzyme used is the large fragment of Bst DNA
polymerise.
1. In a 0.2 ml tube, 19 ~.l gel-extracted DNA library, 40 ~.l nH20, 8 ~,1 lOX
ThermoPol Reaction Buffer, 8 ~,1 BSA (1 mg/ml), 2 ~,l dNTPs (10 mM), and 3 p,l Bst I
Polymerise (8 U/~,1) were added in order.
2. The samples were mixed well and placed in a thermal cycler and incubated using the Strand Displacement incubation program: "BST". BST program for stand displacement and extension of nicked double-stranded DNA:
1. Incubate at 65° C, 30 minutes;
2. Incubate at 80° C, 10 minutes;
3. Incubate at 58° C, 10 minutes; and 4. Hold it 14° C.
3. One 1 ~.L aliquot of the Bst-treated DNA library was run using a BioAnalyzer DNA 1000 LabChip.

Step 6: Preparation of Streptavidin Beads Following the generation of unpicked double-stranded genomic DNA, it is necessary to isolate single-stranded genomic DNAs containing flanking Universal Adaptor sequences.
This step outlines the binding of biotin-tagged double-stranded DNA to streptavidin beads.
For preparing streptavidin beads, the following protocol was used.
1. 100 pl Dynal M-270 Streptavidin beads were washed two times with 200 ~.l of 1X Binding Buffer (1 M NaCI, 0.5 mM EDTA, 5 mM Tris, pH 7.5) by applying the magnetic beads to the MPC.
2. The beads were resuspended in 100 pl 2X Binding buffer, then the remaining 79 p,l of the Bst-treated DNA sample (from Step 5) and 20 pl water was added.
3. The bead solution was mixed well and placed on a tube rotator at RT for 20 minutes. The bead mixtures were washed, using the MPC, two times with 100 ~,1 of 1X
Binding Buffer, then washed two times with nH~O. Binding & Washing (B&W) Buffer (2X
and 1X): 2X B&W buffer was prepared by mixing 10 mM Tris~HCl (pH 7.5), 1 mM
EDTA, and 2 M NaCI. The reagents were combined as listed above and mixed thoroughly.
The solution can be stored at RT for 6 months; 1X B&W buffer was prepared by mixing 2X
B&W buffer with nH~O, l:l. The final concentrations were half the above, i.e., 5 mM
Tris~HCl (pH 7.5), 0.5 mM EDTA, and 1 M NaCI.
Step 7: Isolation of single-stranded DNA Library using Streptavidin Beads Following binding of the double-stranded gDNA library to streptavidin beads, it is preferred to isolate from the ligated pool only the single-stranded gDNAs containing Universal Adaptor A and Universal Adaptor B (desired populations are designated below with asterisks). Double-stranded genomic DNA fragment pools will have adaptors bound in the following possible configurations:
Universal Adaptor A- gDNA Fragment -Universal Adaptor A
Universal Adaptor B- gDNA Fragment -Universal Adaptor A*
Universal Adaptor A- gDNA Fragment -Universal Adaptor B*
Universal Adaptor B- gDNA Fragment -Universal Adaptor B
Because only the Universal Adaptor B has a 5' biotin moiety, magnetic streptavidin-containing beads can be used to bind all gDNA library species that possess the Universal Adaptor B. Genomic library populations that contain two Universal Adaptor A
species (or nonligated species) do not bind to streptavidin-containing beads and are removed during the wash procedure. The species that remain bound to bead after washing include those with Universal Adaptors A and B or those with two Universal Adaptor B ends.
Genomic DNA species with two Universal Adaptor B sequences with two biotin molecules can bind to the streptavidin-containing beads at both ends. Species with A and B
adaptors having only a single biotin molecule can bind to the beads only at the "B" end. To isolate the single-stranded population, the bead-bound double-stranded DNA is treated with a sodium hydroxide solution that serves to disrupt the hydrogen bonding between the complementary DNA strands. If the DNA fragment has biotin on each end (Universal Adaptor B ends), both resulting single strands remain bound to the beads. If the fragment has only a single biotin (Universal Adaptors A and B), then the complementary strand separates from the DNA-bead complex.
The resulting single-stranded genomic DNA library is collected from the solution phase and is quantitated, e.g., using pyrophosphate sequencing (PyroSequence) or by using a RNA Pico 6000 LabChip (Agilent, Palo Alto, CA). Single-stranded genomic DNA
libraries are quantitated by calculating the number of molecules per unit volume. Single-stranded gDNA molecules are then annealed (at a half copy per bead to obtain one effective copy per bead) to 25-30 ~.m sepharose beads containing DNA capture primers (PCR primer B). The templates are then amplified using emulsion . polymerase chain reaction protocols.
Subsequent sequencing may be conducted using known techniques. For isolation of the single stranded library, the following protocol was used.
1. 250 pl Melt Solution (0.125 M NaOH, 0.1 M NaCI)was added to washed beads from Step 6 above.
2. The bead solution was mixed well and the bead mixture was incubated at room temperature for 10 minutes on a tube rotator.
3. A Dynal MPC (magnetic particle concentrator) was used, the pellet beads were carefully removed, and the supernatant was set aside. The 250-p,l supernatant included the single-stranded DNA library.
4. In a separate tube, 1250 ~.1 PB (from QiaQuick Purification kit) was added and the solution was neutralized by adding 9 ~,1 of 20% acetic acid.
5. Using a Dynal MPC, beads from the 250-~.1 supernatant including the single-stranded gDNA library were pelleted and the supernatant was carefully removed and transferred to the freshly prepared PB/acetic acid solution.

6. The 1500 ~.1 solution was purified using a single QiaQuick purification spin column (load sample through same column two times at 750 ~l per load). The single-stranded DNA library was eluted with 50 ~.l EB.
Step 8a: Single-stranded gDNA Quantitation using Pyrophosphate Sequencing.
Total preparation time was approximately 1 hr.
1. In a 0.2 ml tube, the following reagents were added in order:
25 ~1 single-stranded gDNA
1 ~l MMP2B sequencing primer 14 ~,1 Library Annealing Buffer 40 ~1 total 2. The DNA was allowed to anneal using the ANNEAL-S Program (see Appendix, below).
3. The samples were run on PSQ (pyrophosphate sequencing jig) to determine the number of picomoles of template in each sample (see below). Methods of sequencing can be found in LT.S. Patent 6,274,320; U.S. Patent 4,863,849; U.S. Patent 6,210,891; and U.S.
Patent 6,258,568, the disclosures of which are incorporated ifZ toto herein by reference.
Calculations were performed to determine the number of single-stranded gDNA
template molecules per microliter. The remaining 25 ~.L of prepared single-stranded gDNA, library was used for amplification and subsequent sequencing (approximately 1 x 106 reactions).
Step 8b: Single-stranded gDNA Quantitation using RNA Pico 6000 LabChip. Total preparation time was approximately 30 minutes.
1. The rnRNA Pico assay option was selected on the BioAnalyzer (Software version 2.12).
2. An RNA Pico 6000 LabChip was prepared on the BioAnalyzer according to the manufacturers' guidelines.
3. An RNA LabChip ladder (RNA 6000 ladder) was prepared according to manufacturer's (Ambion) directions. Briefly, the RNA LabChip ladder, in solution, was heated to 70°C for 2 minutes. The solution was chilled on ice for 5 minutes to snap cool the ladder. The solution was briefly centrifuged to clear any condensate from tube walls. The RNA LabChip Ladder was stored on ice and used within one day.
4. The ssDNA library to be analyzed was run in triplicate, in adjacent lanes, using three 1 ~,1 aliquots.
5. The BioAnalyzer software was used to calculate the concentration of each ssDNA library lane (see the Table below and Figure 8. The average of all three lanes was used to calculate the DNA concentration of the library using the procedure outlined below.
a. The peak integration lower limit line (large dash in Figure 8) was moved immediately in front of the library peak (see below).
b. The peak integration upper limit line (large dash in the Figure 8) was moved immediately after the library peak. In this way, the peak integration line connecting the lower and upper integration lines followed the slope of the background.
c. The mouse arrow was used to determine the average size of the peak in bases (usually near the peaks highest point) or a defined peak was used as chosen by the software.
d. The integrated value was used for the amount of material in the peak.
The value obtained for picograms recovered was converted into molecules recovered (see Table, below). The library concentration was then determined (molecules per microliter).
Table 1 3 4 AverageMean Mean Mean Average pg/~,L pg/pL pg/~L pg/~.LSize Size Size Size (1) (2) (3) (bp) (bp) (bp) (bp) sample1633 1639 1645 1639 435 435 432 434 10 11 12 ' Ave MW (g/mole)Ave MW Library 13 14 15 Ribonucleotide (g/mole g/~,L moles/ moles/p.Lmolecules/~L
~

328.2 1.42E+OS1.64E-097.02E-061.15E-146.93E+09 . As shown in the Table above, the concentration of Library 1 was calculated as 1639 pg/~1 (Column 5) and the average fragment size was 434 nucleotides (Column 9).
These values were obtained from the Agilent 2100 software as described in Steps (a)-(d), above.
The average molecular weight (MVO of a ribonucleotide is 328.2 g/mole (Column 10). The MW of the average library fragment (1.42 x 105 g/mole, Column 11) was calculated by multiplying the average fragment length (434) by the average ribonucleotide (328.2). The quantitated library (1639 pgl~,l) was converted to grams per microliter (1.64 x 10-9 g/~.1, Column 12). The number of moles per microliter (1.15 x 10-14 molesl~.l, Column 14) was calculated by dividing the grams per microliter (1.64 x 10-9 g/~,1, Column 12) by the average molecular weight of the library fragments (1.42 x 105, Column 11).
Finally, the number of molecules per microliter (6.93 x 109 molecules/pl, Column 15) was derived by multiplying the number of moles per microliter (1.15 x 10-14 moles/~1, Column 14) by Avogadro's number (6.02 x 1023 molecules/mole).
The final library concentration was expected to be greater than 1 x 10$
molecules/~,1.
A more important factor for library quality was adaptor dimer concentration.
In Figure 8, the height of the library peak was determined approximately 10 fold greater than the adaptor dimer peak (the first peak after the marker). A library of good quality is expected to have a peak height at least 2 fold greater than the dimer peak. It should be noted that the RNA Pico 6000 LabChip provided estimates within 500% accuracy of the single-stranded gDNA
concentration. Thus, it was important to perform an initial sequencing run using a titration of template to determine the number of copies per bead (cpb) of input gDNA. The recommended input DNA is 2.5 cpb, 1 cpb, 0.5 cpb, and 0.1 cpb. This titration was easily checked using the 4slot bead loading chamber on a 14 x 43 PTP.
Step 9: Dilution and Storage of Single-Stranded gDNA library The single-stranded gDNA library was eluted and quantitated in Buffer EB. To prevent degradation, the single-stranded gDNA library was stored frozen at -20°C in the presence of EDTA. After quantitation, an equal volume of 10 mM TE was added to the library stock. All subsequent dilutions was in TE. The yield was as follows:
Remaining final volume of ssDNA library following PSQ analysis = 25 ~,1.
Remaining final volume of ssDNA library following LabChip analysis = 47 ~1.
For the initial stock dilution, single-stranded gDNA library was diluted to 100 million molecules/~1 in 1X Library-Grade Elution Buffer. Aliquots of single-stranded gDNA library were prepared for common use. For this, 200,000 rnolecules/~1 were diluted in 1X Library-Grade Elution Buffer and 20 ~1 aliquots were measured. Single-use library aliquots were stored at -20°C.
Step 10: Emulsion Polymerase Chain Reaction.
Where increased numbers of cpb were preferred, bead emulsion PCR was performed as described in U.S. Patent Application Serial No. 06/476,504 filed June 6, 2003, incorporated herein by reference in its entirety.
Reagent preparation The Stop Solution (50 mM EDTA) included 100 wl of 0.5 M EDTA mixed with 900 p.l of nH20 to obtain 1.0 ml of 50 mM EDTA solution. For 10 mM dNTPs, (10 pl dCTP (100 mM), 10 ~;1 dATP (100 mM), 10 ~.1 dGTP (100 mM), and 10 pl dTTP (100 mM) were mixed with 60 ~,1 molecular biology grade water. All four 100 mM nucleotide stocks were thawed on ice. Then, 10 ~l of each nucleotide was combined with 60 p,l of nH20 to a final volume of 100 ~,1, and mixed thoroughly. Next, 1 ml aliquots were dispensed into 1.5 rnl microcentrifuge tubes. The stock solutions could be stored at -20°C for one year.
The 10 X Annealing buffer included 200 mM Tris (pH 7.5) and 50 mM magnesium acetate. For this solution, 24.23 g Tris was added to 800 ml nH20 and the mixture was adjusted to pH 7.5. To this solution, 10.72 g of magnesium acetate was added and dissolved completely. The solution was brought up to a final volume of 1000 ml and could be stored at 4°C for 1 month. The 10 X TE included 100 mM Tris~HCl (pH 7.5) and 50 mM EDTA.
These reagents were added together and mixed thoroughly. The solution could be stored at room temperature for 6 months.
Example 2: Primer Design As discussed above, the universal adaptors are designed to include: 1) a set of unique PCR priming regions that are typically 20 by in length (located adjacent to (2)); 2) a set of unique sequencing priming regions that are typically 20 by in length; and 3) optionally followed by a unique discriminating key sequence consisting of at least one of each of the four deoxyribonucleotides (i.e., A, C, G, T). The probability of cross-hybridization between primers and unintended regions of the genome of interest is increased as the genome size increases and length of a perfect match with the primer decreases. However, this potential interaction with a cross-hybridizing region (CHR) is not expected to produce problems for the reasons set forth below.
In a preferred embodiment of the present invention, the single-stranded DNA
library is utilized for PCR amplification and subsequent sequencing. Sequencing methodology requires random digestion of a given genome into 150 to 500 base pair fragments, after which two unique bipartite primers (composed of both a PCR and sequencing region) are ligated onto the 5' and 3' ends of the fragments (Figure 5). Unlike typical PCR
amplifications where an existing section of the genome is chosen as a priming site based on melting temperature (Tm), uniqueness of the priming sequence within the genome and proximity to the particular region or gene of interest, the disclosed process utilizes synthetic priming sites that necessitates careful de raovo primer design.
Tetramer Selection:
Strategies for de faovo primer design are found in the published literature regarding woxk conducted on molecular tags for hybridization experiments (see, Hensel, M. and D.W.
Holden, Molecular genetic approaches for the study of virulence in both pathogenic bacteria and fungi. Microbiology, 1996. 142(Pt 5): p. 1049-58; Shoemaker, D.D., et al., Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet, 1996. 14(4): p. 450-6) and PCR/LDR (polymerise chain reaction/ligation detection reaction) hybridization primers (see, Gerry, N.P., et al., Universal DNA microarray method for multiplex detection of low abundance point mutations. Journal of Molecular Biology, 1999. 292: p. 251-262; Witowski, N.E., et al., Microarray-based detection of select cardiovascular disease markers. BioTechniques, 2000.
29(5): p. 936-944.).
The PCR/LDR work was particularly relevant and focused on designing oligonucleotide "zipcodes", 24 base primers comprised of six specifically designed tetramers with a similar final Tm. (see, Gerry, N.P., et al., Universal DNA microarray method for multiplex detection of low abundance point mutations. Journal of Molecular Biology, 1999.
292: p.. 251-262; U.S. Pat. No. 6,506,594). Tetrameric components were chosen based on the following criteria: each tetramer differed from the others by at least two bases, tetramers that induced self pairing or hairpin formations were excluded, and palindromic (AGCT) or repetitive tetramers (TATA) were omitted as well. Thirty-six of the 256 (44) possible permutations met the necessary requirements and were then subjected to further restrictions required for acceptable PCR primer design (Table 1).
Table 1 Table 1 shows a matrix demonstrating tetrarneric primer component selection based on criteria outlined by Gerry et al. 1999. .T. Mol. Bio. 292: 251-262. Each tetramer was required to differ from all others by at least two bases. The tetramers could not be palindrornic or complimentary with any other tetramer. Thirty-six tetramers were selected (bold, underlined); italicized sequences signal palindromic tetramers that were excluded from consideration.
Primer Design:
The PCR primers were designed to meet specifications common to general primer design (see, Rubin, E. and A.A. Levy, A mathematical model and a computerized simulation of PCR using complex templates. Nucleic Acids Res, 1996. 24(18): p. 3538-45;
Buck, G.A., et al., Design strategies and performance of custom DNA sequencing primers.
Biotechniques, 1999. 27(3): p. 528-36), and the actual selection was conducted by a computer program, MMP. Primers were limited to a length of 20 bases (5 tetramers) for efficient synthesis of the total bipartite PCR/sequencing primer. Each primer contained a two base GC
clamp on the 5' end, and a single GC clamp on the 3' end (Table 2), and all primers shared similar Tm (+/-2°C) (Figure 10). No hairpinning within the primer (internal hairpin stem 0G > -1.9 kcal/mol) was permitted. Dimerization was also controlled; a 3 base maximum acceptable dimer was allowed, but it could occur in final six 3' bases, and the maximum allowable ~G
for a 3' dimer was -2.0 kcal/mol. Additionally, a penalty was applied to primers in which the 3' ends were too similar to others in the group, thus preventing cross-hybridization between one primer and the reverse complement of another.
Table 2 1-pos2-pos3-pos4-pos5-pos SGCAA GACC GACC GACC TGTC
19~~ TCGT TCGT TCGT
~

Table 2 shows possible permutations of the 36 selected tetrads providing two 5' and a single 3' G/C clamp. The internal positions are composed of remaining tetrads.
This results in 8 x 19 x 19 x 19 x 9 permutations, or 493,848 possible combinations. Figure 10 shows first pass, Tm based selection of acceptable primers, reducing field of 493,848 primers to 56,246 candidates with Tm of 64 to 66°C.
Table 3 . The prnbability of perfect srr~tdies for primers ina eases v~ith ding match length rec~irerr~rrts and ir~a~ing size of the genome of interest.

for match in % d~arroe for % for rr~atctr Notch prnbsbilityPdeno rr~tch in NC81 in Harren Length (1/(4Nength)) bacterial database~488M
~ 3B bases 20 9.1013 0.00% 0.04% 0.27%

19 7.3012 0.00% 0.65% 4.32%

18 4.4011 0.00% 5.76% 34.37%

17 2.3010 0.00% 36.69% 99.17%

16 1.2009 0.02% 97.52% > 100%

15 5.6009 0.12% > 100% > 100%

14 26008 0.64% > 100% > 100%

13 1.2E-0'7 3.29% > 100% > 100%

12 5.4007 15.68% > 100% > 100%

11 24006 58.16% > 100% > 100%

1.0005 99.35% > 100% > 100%

9 4.6005 99.77% > 100% > 100%

8 20E 04 > 100% > 100% > 100%

7 8.5E 04 > 100% > 100% > 100%

6 3.7003 > 100% > 100% > 100%

5 1.6E-02 > 100% > 100% > 100%

4 6.4002 > 100% > 100% > 100%

3 ~~1 > 100% > 100% > 100%

2 7.1001 > 100!0 > 100% > 100%

1 ~ 1.OC+00 > 100% > 100% > 100%

5 The possibility of complimentary regions occurnng within the genome of interest was not a major concern in the primer design process despite the reported tolerance of PCR to mismatches in complex sample populations (see, e.g., Rubin, E. and A.A. Levy, A
mathematical model and a computerized simulation of PCR using complex templates.
Nucleic Acids Res, 1996. 24(18): p. 3538-45). Although the probability of Ending a perfect 10 match to a 20 base primer is extremely low (42°) (Table 3), the probability of Ending less non-consecutive matches increases significantly with the size of the genome of interest. As a result, the probability of finding a perfect match of at least 10 of 20 bases is 99.35% for an Adenovirus genome. The probability of Ending a 16 base perfect match is 97%
for the sequences in the NCBI database (approximately 100 times larger than the Adenovirus genome). The probability of finding a 17 base perfect match to a 20 base primer is 99% for the sequences in the human genome (3 billion bases).
The high probability of primer cross-hybridization to regions of the genome is less problematic than one might expect due to the random DNA digestion used to produce the template fragments. Thus, the effects of a cross-hybridizing region (CHR) are fairly benign.

It is unlikely that a CHR would be able to successfully compete with the perfect match between the PCR primers in solution and the template. In addition, any primers that include mismatches at their 3' end would be at a significant competitive disadvantage.
Even if a CHR should out compete the intended PCR primer, it would produce a truncated PCR
product, without a downstream site for the sequencing primer. If the truncated product could be driven to the capture bead and immobilized, one of two situations would result. If the CHR out-competed the solution-phase primer, then the immobilized product would lack a sequencing primer binding site, and would result in an empty PicoTiter plate (PTP) well. If the CHR out-competed the bead-bound primer, the sequencing primer would still be present, and the only effect would be a shorter insert. Neither result would unduly compromise the sequencing quality. Given the large amount of genomic material used in the sample preparation process (currently 25 p.g, containing 5.29 x 1016 copies of the 35 Kb Adenovirus genome), oversampling can be used to provide fragments that lack the complete CHR, and allow standard PCR amplification of the region in question.
Example 3: Sample Preparation by Nebulization Preparation of DNA by Nebulization The purpose of the Nebulization step is to fragment a large stretch of DNA
such as a whole genome or a large portion of a genome into smaller molecular species that are amenable to DNA sequencing. This population of smaller-sized DNA species generated from a single DNA template is referred to as a library. Nebulization shears double-stranded template DNA into fragments ranging from 50 to 900 base pairs. The sheared library contains single-stranded ends that are end-repaired by a combination of T4 DNA
polymerase, E. coli DNA polymerase I (Klenow fragment), and T4 polynucleotide kinase. Both T4 and Klenow DNA polymerases are used to "fill-in" 3' recessed ends (5' overhangs) of DNA via their 5'-3' polymerase activity. The single-stranded 3'-5' exonuclease activity of T4 and Klenow polymerases will remove 3' overhang ends and the kinase activity of T4 polynucleotide kinase will add phosphates to 5' hydroxyl termini.
The sample was prepared as follows:
1. 15 p,g of gDNA (genomic DNA) was obtained and adjusted to a anal volume of 100 ~.1 in 10 mM TE (10 mM Tris, 0.1 mM EDTA, pH 7.6; see reagent list at the end of section). The DNA was analyzed for contamination by measuring the O.D. asoizso ratio, which was 1.8 or higher. The final gDNA concentration was expected to be approximately 300 wg/ml.
2. 1600 ~,I of ice-cold Nebulization Buffer (see end of section) was added to the gDNA.
3. The xeaction mixture was placed in an ice-cold nebulizer (CIS-US, Bedford, MA).
4. The cap from a 15 ml snap cap falcon tube was placed over the top of the nebulizer (Figure 7A).
5. The cap was secured with a clean Nebulizer Clamp assembly, consisting of the fitted cover (for the falcon tube lid) and two rubber O-rings (Figure 7B).
6. The bottom of the nebulizer was attached to a nitrogen supply and the entire device was wrapped in parafilm (Figures 7C and 7D).
7. While maintaining nebulizer upright (as shown in Figure 7D), 50 psi (pounds per square inch) of nitrogen was applied for 5 minutes. The bottom of the nebulizer was tapped on a hard surface every few seconds to force condensed liquid to the bottom.
8. Nitrogen was turned off after 5 minutes. After the pressure had normalized (30 seconds), the nitrogen source was remove from the nebulizer.
9. The parafilm was removed and the nebulizer top was unscrewed. The sample was removed and transferred to a 1.5 ml microcentrifuge tube.
10. The nebulizer top was reinstalled and the nebulizer was centrifuged at 500 rpm for 5 minutes.
11. The remainder of the sample in the nebulizer was collected. Total recovery was about 700 p.l.
12. The recovered sample was purified using a QIAquick column (Qiagen Inc., Valencia, CA) according to manufacturer's directions. The large volume required the column to be loaded several times. The sample was eluted with 30 p,l of Buffer EB (10 mM
Tris HCI, pH 8.S;supplied in Qiagen kit) which was pre-warmed at 55°C.
13. The sample was quantitated by UV spectroscopy (2 p.l in 198 ~1 water for 1:100 dilution).
Enzymatic Polishing Nebulization of DNA templates yields many fragments of DNA with frayed ends.
These ends are made blunt and ready for ligation to adaptor fragments by using three enzymes, T4 DNA polymerase, E. coli DNA polymerase (Klenow fragment) and T4 polynucleotide kinase.
The sample was prepared as follows:
1. In a 0.2 ml tube the following reagents were added in order:
28 ~.l purified, nebulized gDNA fragments 5 ~.1 water 5 wl 10 X T4 DNA polymerise buffer 5 ~,l BSA (lmg/ml) 2 ~,l dNTPs (10 mM) 5 ~~1 T4 DNA polymerise (3 units/p.l) 50 ~.1 final volume 2. The solution of step 1 was mixed well and incubated at 25°C for 10 minutes in a MJ thermocycler (any accurate incubator may be used).
3. 1.25 ~1 E. coli DNA polymerise (Klenow fragment) (5 units/ml) was added.
4. The reaction was mixed well and incubated in the MJ thermocycler for 10 minutes at 25°C and for an additional 2 hrs at 16°C.
5. The treated DNA was purified using a QiaQuick column and eluted with 30 ~1 of Buffer EB (10 mM Tris HCl, pH 8.5) which was pre-warmed at 55°C.
6. The following reagents were combined in a 0.2 ml tube:
30 ~.l Qiagen purified, polished, nebulized gDNA fragments 5 wl water 5 wl 10 X T4 PNK buffer 5 ~.1 ATP (10 mM) 5 ~,1 T4 PNK (10 units/mll 50 pl final volume 7. The solution was mixed and placed in a MJ thermal cycler using the T4 PNK
program for incubation at 37°C for 30 minutes, 65°C for 20 minutes, followed by storage at 14°C.
8. The sample was purified using a QiaQuick column and eluted in 30 wl of Buffer EB which was pre-warmed at 55°C.
10. A 2 ~,l aliquot of the final polishing reaction was held for analysis using a BioAnalyzer DNA 1000 LabChip (see below).
Ligation of Adaptors The procedure for ligating the adaptors was performed as follows:
1. In a 0.2 ml tube the following reagents were added in order:
20.6 wl molecular biology grade water 28 p.l digested, polished gDNA Library 60 p.l 2 X Quick Ligase Reaction Buffer 1.8 pl M1VB' (200 pmo11w1) Universal Adaptor set 9.6 ~.l Quick Ligase 120 pl total The above reaction was designed for 5 pg and was scaled depending on the amount of gDNA used.
2. The reagents were mixed well and incubated at 25°C for 20 minutes.
The tube was on ice until the gel was prepared for agarose gel electrophoresis.
Gel Electrophoresis and Extraction of Adapted gDNA Library Nebulization of genomic DNA yields a library population that ranges from 50-900 bp.
The addition of the 88-by Universal Adaptor set will shift the population to a larger size and will result in a migration profile with a larger size range (approximately 130-980 bp).
Adaptor dimers will migrate at 88 by and adaptors not ligated will migrate at 44 bp.
Therefore, genomic DNA libraries isolated in size ranges >250 by can be physically isolated from the agarose gel and purified using standard gel extraction techniques.
Gel isolation of the adapted gDNA library will result in the recovery of a library population in a size range that is >250 by (size range of library can be varied depending on application). The library size range after ligation of adapters is 130 to 980 bp. It should be noted that the procedure may be adapted for isolation of any band size range, such as, for example, 130 to 200 bp, 200 to 400 bp, 250 to 500 bp, 300 to 600 bp, 500 to 700 by and the like by cutting different regions of the gel. The procedure described below was used to isolated fragments of 250 by to 500 bp.
A 150 ml agarose gel was prepared to include 2% agarose, 1X TBE, and 4.5 p,l ethidium bromide (10 mg/ml stock). The ligated DNA was mixed with lOX Ready Load Dye and loaded onto the gel. In addition, 10 p,l of a100-by ladder (0.1 wg/wl) was loaded on two lanes away from the ligation reaction flanking the sample. The gel was electrophoresed at 100 V for 3 hours. When the gel run was complete, the gel was removed from the gel box, transferred to a GelDoc, and covered with plastic wrap. The DNA bands were visualized using the Prep LTV light. A sterile, single-use scalpel, was used to cut out a library population from the agarose gel with fragment sizes of 250 - 500 bp. This process was done as quickly as possible to prevent nicking of DNA. The gel slices were placed in a 15 ml falcon tube.
The agarose-embedded gDNA library was isolated using a Qiagen MinElute Gel Extraction kit. Aliquots of each isolated gDNA library were analyzed using a BioAnalyzer LabChip to assess the exact distribution of the gDNA library population.
Strand Displacement and Extension of the gDNA Library and Isolation of the Single Stranded gDNA Library TJsing Streptavidin Beads Strand displacement and extension of nicked double-stranded gDNA library was performed as described in Example l, with the exception that the Bst-treated samples were incubated in the thermal cycler at 65° C for 30 minutes and placed on ice until needed.
Streptavidin beads were prepared as described in Example l, except that the final wash was performed using two washes with 200 p,l 1X Binding buffer and two washes with 200 pl nH20. Single-stranded gDNA library was isolated using streptavidin beads as follows.
Water from the washed beads was removed and 250 p.l of Melt Solution (see below) was added. The bead suspension was mixed well and incubated at room temperature for 10 minutes on a tube rotator. In a separate tube, 1250 pl of PB (from the QiaQuick Purification kit) and 9 wl of 20% acetic acid were mixed. The beads in 250 p,l Melt Solution were pelleted using a Dynal MPC and the supernatant was carefully removed and transferred to the freshly prepared PB/acetic acid solution. DNA from the 1500 p.l solution was purified using a single MinElute purification spin column. This was performed by loading the sample through the same column twice at 750 p,l per load. The single stranded gDNA
library was eluted with 15 p.l of Buffer EB which was pre-warmed at 55°C.
Single Strand gDNA Quantitation and Storage Single-stranded gDNA was quantitated using RNA Pico 6000 LabChip as described in Example 1. In some cases, the single stranded library was quantitated by a second assay to ensure the initial Agilent 2100 quantitation was performed accurately. For this purpose, RiboGreen quantitation was performed as described (ssDNA Quantitation by Fluorornetry) to confirm the Agilent 2100 quantitation. If the two estimates differed by more than 3 fold, each analysis was repeated. If the quantitation showed greater than a 3 fold difference between the two procedures, a broader range of template to bead was used.

Dilution and storage of the single stranded gDNA library was performed as described in Example 1. The yield was as follows:
Remaining final volume of ssDNA library following LabChip analysis = 12 wl.
Remaining final volume of ssDNA library following RiboGreen analysis = 9 ~1.
Final volume of ssDNA library after the addition of TE =18 ~.1.
An equal volume of TE was added to single-stranded gDNA library stock. Single-stranded gDNA library to 1 x 10$ molecules/~.1 in Buffer TE. Stock was diluted (1/500) to 200,000 molecules/~.1 in TE and 20 wl aliquots were prepared.
Library Fragment Size Distribution After Nebulization Typical results from Agilent 2100 DNA 1000 LabChip analysis of 1 ~.l of the material following Nebulization and polishing are shown in Figure 9A. The size range distribution of the majority of the product was expected to fall around 50 to 900 base pairs.
The mean size (top of peak) was expected to be approximately 450 bp. Typical results from gel purification of adaptor ligated library fragments are shown in Figure 9B.
Reagents .
Unless otherwise specified, the reagents listed in the Examples represent standard reagents that are commercially available. For example, I~lenow, T4 DNA
polymerase, T4 DNA polymerase buffer, T4 PNI~, T4 PNK buffer, Quick T4 DNA Ligase, Quick Ligation Buffer, Bst DNA polymerase (Large Fragment) and ThermoPol reaction buffer are available from New England Biolabs (Beverly, MA). dNTP mix is available from Pierce (Rockford, IL). Agarose, UltraPure TBE, BlueJuice gel loading buffer and Ready-Load 100bp DNA
ladder may be purchased from Invitrogen (Carlsbad, CA). Ethidium Bromide and 2-Propanol may be purchased from Fisher (Hampton, NH). RNA Ladder may be purchased from Ambion (Austin, TX). Other reagents are either commonly known and/or are listed below:
Melt Solution:
In redient Quanti Re uiredVendor Stock Number NaCI (5 M) 200 ~,l Invitrogen24740-0_11 ~

NaOH (10 N) 125 ~.1 Fisher SS255-1 molecular biology 9.675 ml Eppendorf0032-006-205 grade water The Melt Solution included 100 mM NaCI, and 125 mM NaOH. The listed reagents were combined and mixed thoroughly. The solution could be stored at RT for six months.

Binding & Washing (B&W) Buffer (2X and 1X):
In redient QuantitRe uiredVendor Stock Number UltraPure Tris-HCl (pH 250 Invitrogen15567-027 7.5, 1 M) ~,1 EDTA (0.5 M) 50 Invitrogen15575-020 pl NaCl (5 M) 10 Invitrogen24740-Ol 1 ml molecular biology grade14.7 E pendorf0032-006-205 water ml The 2X B&W buffer included final concentrations of 10 mM Tris-HCl (pH 7.5), 1 mM EDTA, and 2 M NaCl. The listed reagents were combined by combined and mixed thoroughly. The solution could be stored at RT for 6 months. The 1X B&W buffer was prepared by mixing 2X B&W buffer with picopure H20, 1:1. The final concentrations was half of that listed the above, i.e., 5 mM Tris-HCl (pH 7.5), 0.5 mM EDTA, and 1 M NaCI.
Other buffers included the following. 1X T4 DNA Polymerase Buffer: 50 mM NaCl, 10 mM Tris-HGI, 10 mM MgCl2, 1 mM dithiothreitol (pH 7.9 @ 25°C). TE:
10 mM Tris, 1 mM EDTA.
In redient Quantit Re uiredVendor Stock Number TE (1M) 1 ml Fisher BP1338-1 molecular biology grade99 ml Eppendorf0032-006-205 water Special Reagent preparation:
TE (10 mM):
Reagents were mixed and the solution could be stored RT for six months.
Nebulization Buffer:
In redient Quanti Re uiredVendor Stock Number Glycerol 53.1 ml Sigma 65516 molecular biology grade42.1 ml Eppendorf0032-006-205 water UltraPure Tris-HCl (pH 3.7 ml Invitrogen15567-027 7.5, 1M) EDTA (0.5M) 1.1 ml Sigma M-10228 All reagents were added (glycerol was added last) to a Stericup and mixed well. The solution was labeled and could be stored at RT for six months.
ATP (10 mM):
In redient Quantity RequiredVendor Stock Number ATP (100 mM) 10 p,l Roche 1140965 molecular biology grade90 p,l Ep endorf0032-006-205 water The reagents were mixed and the solution couid be stored at -20°C for six months.
BSA (1 mg/ml):
In redient Quantity Re Vendor Stock Number uired BSA (10 mg/ml) 10 pl NEB M0203 kit Molecular Biology Grade90 p,l Eppendorf0032-006-205 water The reagents were mixed and the solution could be stored at 4°C for six months.
Library Annealing buffer, 10X:
In redient Quantit Re Vendor Stock No.
.

UltraPure Tris-HCl (pH 7.5,200 ml Invitrogen15567-027 1 M) _ 10.72 g Fisher BP-215-500 Magnesium acetate, enzyme grade (1 M) Molecular Biology Grade ~ 1 L Eppendorf0032-006-205 water The 10 X Annealing Buffer included 200 mM Tris (pH 7.5) and 50 mM magnesium acetate. For this buffer, 200 ml of Tris was added to 500 ml picopure H20.
Next, 10.72 g of magnesium acetate was added to the solution and dissolved completely. The solution was adjusted to a final volume of 1000 ml. The solution could be stored at 4°C for six months. To avoid the potential for contamination of libraries, the buffer was aliquotted for single or short-term usage.
Adaptors:
Adaptor "A" (400 ~M):
In redient Quanti Re Vendor Stock No.
.

Adaptor A (sense; HPLC-purified,10.0 p,l IDT custom hos horothioate linka es, 44 b , 1000 mol/ 1 Adaptor A (antisense; HPLC-purified,10.0 pl IDT custom Phos horothioate links es, 40 b , 1000 mol/ 1 Annealing buffer (10X) 2.5 p.l 454 Corp.table us molecular biology grade water 2.5 ~,1 Eppendorf0032-006-205 .

For this solution, 10 p.l of 1000 pmoll~,l Adaptor A (44 bp, sense) was mixed with 10 p,l of 1000 pmol/pl Adaptor A (40 bp, antisense), 2.5 ~,l of lOX Library Annealing Buffer, and 2.5 pl of water (Vf= 25 p,l). The adaptors were annealed using the ANNEAL-A program (see Appendix, below) on the Sample Prep Lab thermal cycler. More details on adaptor design are provided in the Appendix.

Adaptor "B" (400 ~1VI):
In redient Quantity Vendor Stock No.
Re .

Adaptor B (sense; HPLC-purified,10 p,l IDT Custom hos horothioate linkages, 40 b ,1000 mol/~.1)) Adaptor B (anti; HPLC-purified,10 ~,l IDT Custom phosphorothioate linkages, 5'Biotinylated, 44 bp,1000 pmol/~,1) Annealing buffer (10X) 2.5 ~.1 454 Corp. revious table molecular biology grade water 2.5 ~.1 Eppendorf0032-006-205 ~

For this solution, 10 p,l of 1000 pmol/p,l Adaptor B (40 bp, sense) was mixed with 10 pl of 1000 pmol/wl Adaptor B (44 bp, anti), 2.5 p.l of 10 X Library Annealing Buffer, and 2.5 p.l of water (V f = 25 wl). The adaptors were annealed using the ANNEAL-A
program (see Appendix) on the Sample Prep Lab thermal cycler. After annealing, adaptor "A"
and adaptor "B" (V f= 50 wl) were combined. Adaptor sets could be stored at -20°C
until use.
20% Acetic Acid:
In redient Quanti Re uiredVendor Stock Number acetic acid, glacial 2 m1 Fisher A35-500 molecular biology grade8 ml ~ Eppendorf0032-006-205 water For this solution, glacial acetic acid was added to the water.. The solution could be stored at RT for six months.
Appendix Adaptor Annealing Program:
ANNEAL-A program for primer annealing:
1. Incubate at 95°C, 1 min;
2. Reduce temperature to 15°C at 0.1°C/sec; and 3. Hold at 14°C.
T4 Polymerase/Klenow POLISH program for end repair:
1. Incubate at 25°C, 10 minutes;
2. Incubate at 16°C, 2 hours; and 3. Hold at 4°C.
T4 PNK Program for end repair:
1. Incubate at 37°C, 30 minutes;

2. Incubate at 65°C, 20 minutes; and 3. Hold at 14°C.
BST program for stand displacement and extension of nicked double-stranded gDNA:
1. Incubate at 65° C, 30 minutes; and 2. Hold at 14° C.
References Hamilton, S.C., J.W. Farchaus and M.C. Davis. 2001. DNA polymerases as engines for biotechnology. BioTechraiques 31:370.
QiaQuick Spin Handbook (QIAGEN, 2001): hypertext transfer protocol://world wide web.qiagen.com/literature/handbooks/qqspin/1016893HBQQSpin PCR mc-prot.pdf.
Quick Ligation Kit (NEB): hypertext transfer protocol://world wide web.neb.com/neb/products/rnod enzyrnes/M2200.html.
MinElute kit (QIAGEN): hypertext transfer protocol://world wide web.qiagen.com/literature/handbooks/minelute/1016839 HBMinElute Prot Gel.pdf.
Biomagnetic Techniques in Molecular Biology, Technical Handbook, 3rd edition (Dynal, 1998): hypertext transfer protocol://world wide web. dynal.no/kunder/dynal/DynalPub3 6.nsf/cb927fbab 127a0ad4125683b004b011 c/4908f5b 1a665858a41256adfb05779f2/$FILE/Dynabeads M-280 Streptavidin.pdf.
Bio Analyzer User Manual (Agilent): hypertext transfer protocol://world wide web.chem.agilent.com/temp/rad31B29/00033620.pdf BioAnalyzer DNA and RNA LabChip Usage (Agilent): hypertext transfer protocol://world wide web.agilent.com/chem/labonachip BioAnalyzer RNA 6000 Ladder (Ambion): hypertext transfer protocol://world wide web.ambion.com/techlib/spec/sp 7152.pdf Throughout this specification, various patents, published patent applications and scientific references are cited to describe the state and content of the art.
Those disclosures, in their entireties, are hereby incorporated into the present specification by reference.
OTHER EMBODIMENTS
Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims.

SEQUENCE LISTING
<110> Costa, Gina L.
Weiner, Michael Leamon, John Rothberg, 7onathan <120> Method For Preparing Single stranded DNA Libraries <130> 21465-507 uTIL
<150> us 60/443,471 <151> 2003-01-29 <150> US 60/465,071 <151> 2003-04-23 <150> us 60/476,592 <151> 2003-06-06 <150> us 60/476,504 <151> 2003-06-06 %<150> us 60/476,592 <151> 2003-06-06 <150> us 60/476,602 <151> 2003-06-06 <150> u5 60/497,985 <151> 2003-OS-25 <160> 4 <170> Patentln version 3.2 <210> 1 <211> 44 <212> DNA
<213> Artificial <220>
<223> oligonucleotide <400> 1 cgtttcccct gtgtgccttg ccatctgttc cctccctgtc atgc 44 <210> 2 <211> 40 <212> DNA
<213> Artificial <220>
<223> oligonucleotide <400> 2 gcatgacagg gagggaacag atggcaaggc acacagggga 40 <210> 3 <211> 40 <212> DNA
<213> Artificial <220>
<223> oligonucleotide <400> 3 gcatgacacg caacagggga tagggacacg cacgcaacag 40 <210> 4 <211> 44 <212> DNA
<213> Artificial <220>
<223> oligonucleotide <400> 4 ccatctgttg cgtgcgtgtc cctatcccct gttgcgtgtc atgc 44

Claims (55)

1. A method for clonally isolating a library comprising a plurality of single stranded DNA molecules comprising:
(a) fragmenting large template DNA molecules to generate a plurality of fragmented DNA molecules;
(b) attaching a first or second universal double stranded adaptor to a first end of each fragmented DNA molecule and a first or second universal adaptor to a second end of each fragmented DNA molecule to form a mixture of adaptor ligated DNA molecules;
(c) isolating a plurality of single stranded DNA molecules each comprising a first single stranded universal adaptor and a second single stranded universal adaptor to obtain a library; and (d) delivering the single stranded DNA molecules into reactors such that a plurality of the reactors include one DNA molecule, thereby clonally isolating the library.
2. A method for generating a library comprising a plurality of single stranded DNA molecules, comprising:
(a) fragmenting large or whole genomic template DNA molecules to generate a plurality of fragmented DNA molecules;
(b) ligating a first universal double stranded adaptor or a second universal adaptor to a first end of each fragmented DNA molecule and a first universal adaptor or second universal adaptor to a second end of each fragmented DNA
molecule to produce a mixture of adaptor ligated DNA molecules, wherein the first universal adaptor contains a moiety that binds to a solid support;
(c) attaching to a solid support those DNA molecules comprising a first double stranded universal adaptor;
(d) removing adaptor ligated DNA molecules which have not attached to a solid support;
(e) strand separating those adaptor ligated DNA molecules that are attached to a solid support at only one end to release a plurality of single stranded DNA molecules having a first single stranded universal adaptor at one end and a second single stranded adaptor at the other end; and (f) isolating a library of the released single stranded DNA molecules of step (e) away from those DNA molecules that remain attached to the solid support.
3. The method according to claim 1 or 2, wherein the first universal double stranded adaptor or the second universal adaptor is attached by ligation.
4. The method according, to claim 1, wherein (f) is accomplished by: i) delivering the single stranded DNA molecules onto a location on a reactor array; or ii) delivering the single stranded DNA molecules into droplets in a water-in-oil emulsion.
5. The method according to claim 1 or 2, further comprising the step of repairing single stranded nicks in the mixture of adaptor ligated DNA molecules using DNA
repair and modifying enzymes.
6. The method according to claim 5, wherein the DNA repair and modifying enzymes are selected from the group consisting of polymerase, ligase, kinase, and combinations thereof.
7. The method according to claim 6, wherein the polymerase is Bacillus stearothermophilus polymerase I, the ligase is T4 ligase, and the kinase is T4 polynucleotide kinase.
8. The method according to claim 1 or 2, wherein the template DNA is selected from the group consisting of genomic DNA, cDNA, plasmid DNA, cosmid DNA, artificial chromosome DNA, synthetic DNA, phasemid DNA, and phagemid DNA.
9. The method according to claim 1 or 2, wherein the template DNA comprises reverse transcripts.
10. The method according to claim 1 or 2, wherein the fragmenting is performed by a means selected from the group consisting of enzymatic, chemical, and mechanical means.
11. The method according to claim 10, wherein the enzymatic means is DNase I.
12. The method according to claim 10, wherein the mechanical means is nebulization.
13. The method according to claim 11, wherein the DNase I digestion is performed at a temperature of 10-37°C for 1-2 minutes.
14. The method according to claim 10, wherein the enzymatic means is a restriction endonuclease.
15. The method according to claim 10, wherein the mechanical means is selected from the group consisting of a French Press, a sonicator, a HydroShear, and a nebulizer.
16. The method according to claim 1 or 2, wherein the fragmented DNA
molecules are 50 by to 700 bp in length.
17. The method according to claim 1 or 2, wherein the compatible ends are blunt ends.
18. The method according to claim 17 wherein the blunt ends are created with an enzyme selected from the group consisting of P.function.u polymerase, T4 DNA
polymerase and Klenow fragments.
19. The method according to claim 1 or 2, wherein the compatible ends include an A or T overhang.
20. The method according to claim 1 or 2, wherein the first or second double stranded universal adaptor comprises phosphorothioate linkages.
21. The method according to claim 1 or 2, wherein a biotin moiety is attached to the first or second double stranded universal adaptor.
22. The method according to claim 1 or 2, wherein the first or second double stranded universal adaptor is ligated with T4 DNA ligase.
23. The method according to claim 1 or 2, wherein either the first double stranded universal adaptors or the second double stranded universal adaptors or both double stranded universal adaptors comprise a discriminating key sequence.
24. The method according to claim 23, wherein the discriminating key sequence is 3-12 nucleotides in length.
25. The method according to claim 23, wherein the discriminating key sequence comprises at least one nucleotide selected from the group consisting of A, G, C, U, and T.
26. The method according to claim 1 or 2, wherein first and second double stranded universal adaptor comprise a PCR priming sequence and a sequencing primer sequence.
27. The method according to claim 26, wherein the PCR priming sequence is 10-20 base pairs in length.
28. The method according to claim 26 wherein the sequencing primer sequence is 10-20 base pairs in length.
29. The method according to claim 26, wherein the PCR priming sequence and the sequencing primer sequence overlap.
30. The method according to claim 1 or 2, wherein the mixture of adaptor ligated DNA molecules is separated by a method selected from the group consisting of gel electrophoresis, filtration, size exclusion chromatography, and sucrose sedimentation.
31. The method according to claim 1 or 2, wherein the plurality of single stranded DNA molecules is attached to a DNA capture bead.
32. The method according to claim 31, wherein the DNA capture bead comprises a component of a binding pair.
33. The method according to claim 31 wherein the binding pair is selected from the group consisting of avidin/biotin, ligand/receptor, antigen/antibody and complementary nucleotides.
34. The method according to claim 31, wherein the DNA capture bead is a paramagnetic bead.
35. The method according to claim 1 or 2, wherein the plurality of single stranded DNA molecules is obtained by a treatment selected from the group consisting of low salt treatment, high pH treatment, and chemical denaturation treatment.
36. A method for generating a single stranded DNA library attached to solid supports comprising:
(a) generating a plurality of single stranded DNA templates;
(b) attaching each of the plurality of ssDNA templates to a solid support;
and (c) isolating the solid supports on which the single stranded DNA
templates are attached.
37. A method for generating a single stranded DNA library attached to solid supports comprising:
(a) fragmenting large template DNA molecules to generate a plurality of fragmented DNA molecules;
(b) attaching a first or second universal double stranded adaptor to a first end of each fragmented DNA molecule and a first or second universal adaptor to a second end of each fragmented DNA molecule to make a mixture of adaptor ligated DNA molecules;

(c) isolating those single stranded DNA molecules which comprise a first single stranded universal adaptor and a second single stranded universal adaptor;
and (d) attaching the isolated single stranded molecules from (c) to a solid support.
38. The method according to claim 37, wherein the solid support is a DNA
capture bead.
39. The method according to claim 37, wherein the DNA is selected from the group consisting of genomic DNA, cDNA, plasmid DNA, cosmid DNA, artificial chromosome DNA, synthetic DNA, phasemid DNA, and phagemid DNA.
40. The method according to claim 37, wherein the DNA is attached to the solid support via a binding pair.
41. The method according to claim 40, wherein the binding pair is selected from the group consisting of avidin/biotin, ligand/receptor, antigen/antibody and complementary nucleotides.
42. A library of mobile solid supports made by the method of claim 37.
43. A nucleic acid molecule comprising a first adaptor, a fragment of template DNA, and a second adaptor, wherein the first adaptor and second adaptor each comprise a sequencing primer, a PCR primer, and a discriminating key sequence, and wherein the first adaptor and second adaptor, when dissociated, do not cross-hybridize to each other under stringent hybridization conditions.
44. The nucleic acid molecule of claim 43, wherein the PCR primer is 10-20 base pairs in length.
45. The nucleic acid molecule of claim 43, wherein the sequencing primer is 10-20 base pairs in length.
46. The nucleic acid molecule of claim 43, wherein the discriminating key sequence is 3 to 12 base pairs in length.
47. The nucleic acid molecule of claim 43, wherein the template DNA is selected from the group consisting of genomic DNA, cDNA plasmid DNA, cosmid DNA, artificial chromosome DNA, synthetic DNA, phasemid DNA, and phagemid DNA.
48. The nucleic acid molecule of claim 43, wherein the nucleic acid molecule, when dissociated, has minimal cross-hybridization to dissociated template DNA.
49. A method for preparing single stranded DNA molecules, comprising:
(a) fragmenting large or whole genomic template DNA molecules to generate a plurality of fragmented DNA molecules;
(b) ligating a first universal double stranded adaptor or a second universal adaptor to a first end of each fragmented DNA molecule and a first universal adaptor or second universal adaptor to a second end of each fragmented DNA
molecule to produce a mixture of adaptor ligated DNA molecules;
(c) attaching adaptor ligated DNA molecules comprising a first double stranded universal adaptor and a second double stranded adaptor to a solid support via one strand of the first double stranded universal adaptor;
(d) washing away adaptor ligated DNA molecules which have not attached to a solid support;
(e) strand separating those adaptor ligated DNA molecules that are attached to a solid support at only one end to release a plurality of single stranded DNA molecules comprising a first single stranded universal adaptor at one end and a second single stranded adaptor at the other end; and; and (f) isolating the single stranded DNA molecules.
50. A method for delivering nucleic acid templates to a plurality of reaction centers comprising the steps of:
(a) providing a population of nucleic acid templates;
(b) isolating each nucleic acid template from said population to a sequestering agent to form a population of sequestered nucleic acid templates;

(c) delivering said population of sequestered nucleic acid templates to said plurality of reaction centers wherein each reaction center receives one sequestered nucleic acid.
51. The method of claim 50, wherein said isolating step comprises attaching said nucleic acid templates to a bead.
52. The method of claim 50, wherein said isolating step comprises encapsulating said nucleic acid template in an emulsion of a water-in-oil emulsion.
53. The method of claim 52, wherein said nucleic acid template is encapsulated with a bead and wherein the bead can bind said nucleic acid.
54. The method of claim 50, wherein said delivering step comprises delivering said sequestered nucleic acid to a plurality of reaction centers, wherein each reaction center is a well on a picotiter plate.
55. The method of claim 1, 2 or 49 further comprising the step of attaching the isolated single stranded molecules each individually to a solid support.
CA002513541A 2003-01-29 2004-01-28 Method for preparing single-stranded dna libraries Abandoned CA2513541A1 (en)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US44347103P 2003-01-29 2003-01-29
US60/443,471 2003-01-29
US46507103P 2003-04-23 2003-04-23
US60/465,071 2003-04-23
US47631303P 2003-06-06 2003-06-06
US47660203P 2003-06-06 2003-06-06
US47659203P 2003-06-06 2003-06-06
US47650403P 2003-06-06 2003-06-06
US60/476,592 2003-06-06
US60/476,504 2003-06-06
US60/476,313 2003-06-06
US60/476,602 2003-06-06
US49798503P 2003-08-25 2003-08-25
US60/497,985 2003-08-25
PCT/US2004/002571 WO2004070007A2 (en) 2003-01-29 2004-01-28 Method for preparing single-stranded dna libraries

Publications (1)

Publication Number Publication Date
CA2513541A1 true CA2513541A1 (en) 2004-08-19

Family

ID=32854649

Family Applications (6)

Application Number Title Priority Date Filing Date
CA2513899A Expired - Lifetime CA2513899C (en) 2003-01-29 2004-01-28 Methods of amplifying and sequencing nucleic acids
CA2728746A Expired - Lifetime CA2728746C (en) 2003-01-29 2004-01-28 Methods of amplifying and sequencing nucleic acids
CA2513535A Expired - Lifetime CA2513535C (en) 2003-01-29 2004-01-28 Bead emulsion nucleic acid amplification
CA2727850A Expired - Lifetime CA2727850C (en) 2003-01-29 2004-01-28 Methods of amplifying and sequencing nucleic acids
CA002513889A Abandoned CA2513889A1 (en) 2003-01-29 2004-01-28 Double ended sequencing
CA002513541A Abandoned CA2513541A1 (en) 2003-01-29 2004-01-28 Method for preparing single-stranded dna libraries

Family Applications Before (5)

Application Number Title Priority Date Filing Date
CA2513899A Expired - Lifetime CA2513899C (en) 2003-01-29 2004-01-28 Methods of amplifying and sequencing nucleic acids
CA2728746A Expired - Lifetime CA2728746C (en) 2003-01-29 2004-01-28 Methods of amplifying and sequencing nucleic acids
CA2513535A Expired - Lifetime CA2513535C (en) 2003-01-29 2004-01-28 Bead emulsion nucleic acid amplification
CA2727850A Expired - Lifetime CA2727850C (en) 2003-01-29 2004-01-28 Methods of amplifying and sequencing nucleic acids
CA002513889A Abandoned CA2513889A1 (en) 2003-01-29 2004-01-28 Double ended sequencing

Country Status (10)

Country Link
US (15) US7244567B2 (en)
EP (8) EP1594980B2 (en)
JP (9) JP4473878B2 (en)
CN (2) CN101128601B (en)
AT (4) ATE461291T1 (en)
AU (4) AU2004254552B2 (en)
CA (6) CA2513899C (en)
DE (4) DE602004026033D1 (en)
ES (5) ES2396245T3 (en)
WO (4) WO2004070007A2 (en)

Families Citing this family (1135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027126A1 (en) 1997-03-14 2003-02-06 Walt David R. Methods for detecting target analytes and enzymatic reactions
US7622294B2 (en) * 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
CA2792122C (en) * 1997-07-07 2015-09-08 Medical Research Council In vitro sorting method
GB9900298D0 (en) * 1999-01-07 1999-02-24 Medical Res Council Optical sorting method
CA2290731A1 (en) * 1999-11-26 2001-05-26 D. Jed Harrison Apparatus and method for trapping bead based reagents within microfluidic analysis system
US6432290B1 (en) 1999-11-26 2002-08-13 The Governors Of The University Of Alberta Apparatus and method for trapping bead based reagents within microfluidic analysis systems
US7846733B2 (en) 2000-06-26 2010-12-07 Nugen Technologies, Inc. Methods and compositions for transcription-based nucleic acid amplification
WO2002000938A2 (en) * 2000-06-26 2002-01-03 Nugen Technologies, Inc. Methods and compositions for transcription-based nucleic acid amplification
WO2002048402A2 (en) 2000-12-13 2002-06-20 Nugen Technologies, Inc. Methods and compositions for generation of multiple copies of nucleic acid sequences and methods of detection thereof
ZA200210369B (en) 2001-03-09 2004-07-08 Nugen Technologies Inc Methods and compositions for amplification or RNA sequences.
US7727713B2 (en) 2001-06-20 2010-06-01 Nuevolution A/S Templated molecules and methods for using such molecules
US20050009022A1 (en) * 2001-07-06 2005-01-13 Weiner Michael P. Method for isolation of independent, parallel chemical micro-reactions using a porous filter
DE10147074A1 (en) * 2001-09-25 2003-05-08 Beru Ag Method for operating a multi-stage electric heater consisting of several heating elements
US20030108664A1 (en) * 2001-10-05 2003-06-12 Kodas Toivo T. Methods and compositions for the formation of recessed electrical features on a substrate
WO2003035824A1 (en) * 2001-10-25 2003-05-01 Bar-Ilan University Interactive transparent individual cells biochip processor
GB0127564D0 (en) * 2001-11-16 2002-01-09 Medical Res Council Emulsion compositions
DK1487978T3 (en) 2002-03-15 2009-03-23 Nuevolution As Improved method for synthesis of template molecules
US20030217923A1 (en) * 2002-05-24 2003-11-27 Harrison D. Jed Apparatus and method for trapping bead based reagents within microfluidic analysis systems
AU2003247266A1 (en) * 2002-08-01 2004-02-23 Nuevolution A/S Multi-step synthesis of templated molecules
US7595883B1 (en) * 2002-09-16 2009-09-29 The Board Of Trustees Of The Leland Stanford Junior University Biological analysis arrangement and approach therefor
EP1545762A2 (en) * 2002-09-27 2005-06-29 Carlsberg A/S Spatially encoded polymer matrix
DK2348124T3 (en) 2002-10-30 2014-03-10 Nuevolution As Synthesis of a bifunctional complex
WO2004056994A2 (en) 2002-12-19 2004-07-08 Nuevolution A/S Quasirandom structure and function guided synthesis methods
US7445926B2 (en) * 2002-12-30 2008-11-04 The Regents Of The University Of California Fluid control structures in microfluidic devices
AU2004254552B2 (en) * 2003-01-29 2008-04-24 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
US7575865B2 (en) * 2003-01-29 2009-08-18 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
US20070026397A1 (en) 2003-02-21 2007-02-01 Nuevolution A/S Method for producing second-generation library
AU2004214891B2 (en) 2003-02-26 2010-01-07 Complete Genomics, Inc. Random array DNA analysis by hybridization
IL154677A0 (en) * 2003-02-27 2003-09-17 Univ Bar Ilan A method and apparatus for manipulating an individual cell
US7041481B2 (en) 2003-03-14 2006-05-09 The Regents Of The University Of California Chemical amplification based on fluid partitioning
GB0307428D0 (en) 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
US20060078893A1 (en) * 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
WO2004092418A2 (en) 2003-04-14 2004-10-28 Nugen Technologies, Inc. Global amplification using a randomly primed composite primer
FR2856498B1 (en) * 2003-06-19 2005-09-30 Goulven Jean Alain Vernois DISTRIBUTION UNDER CONTROLLED ATMOSPHERE
US9200245B2 (en) * 2003-06-26 2015-12-01 Seng Enterprises Ltd. Multiwell plate
US8597597B2 (en) * 2003-06-26 2013-12-03 Seng Enterprises Ltd. Picoliter well holding device and method of making the same
US7888110B2 (en) * 2003-06-26 2011-02-15 Seng Enterprises Ltd. Pico liter well holding device and method of making the same
EP2918595B1 (en) 2003-07-05 2019-12-11 The Johns-Hopkins University Method and compositions for detection and enumeration of genetic variations
WO2005026387A1 (en) * 2003-09-18 2005-03-24 Nuevolution A/S A method for obtaining structural information concerning an encoded molecule and method for selecting compounds
EP1670944A4 (en) * 2003-09-19 2012-12-05 Life Technologies Corp Microplates useful for conducting thermocycled nucleotide amplification
US20060019264A1 (en) * 2003-12-01 2006-01-26 Said Attiya Method for isolation of independent, parallel chemical micro-reactions using a porous filter
US7972994B2 (en) 2003-12-17 2011-07-05 Glaxosmithkline Llc Methods for synthesis of encoded libraries
WO2005065814A1 (en) * 2004-01-07 2005-07-21 Solexa Limited Modified molecular arrays
WO2005073410A2 (en) 2004-01-28 2005-08-11 454 Corporation Nucleic acid amplification with continuous flow emulsion
EP1723255B1 (en) * 2004-02-17 2010-12-29 Nuevolution A/S Method for enrichment involving elimination by mismatch hybridisation
EP2290106B1 (en) * 2004-03-08 2018-01-03 Rubicon Genomics, Inc. Method for generating and amplifying DNA libraries for sensitive detection and analysis of DNA methylation
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
US7622281B2 (en) 2004-05-20 2009-11-24 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for clonal amplification of nucleic acid
US7833709B2 (en) 2004-05-28 2010-11-16 Wafergen, Inc. Thermo-controllable chips for multiplex analyses
US7799553B2 (en) 2004-06-01 2010-09-21 The Regents Of The University Of California Microfabricated integrated DNA analysis system
US7264934B2 (en) * 2004-06-10 2007-09-04 Ge Healthcare Bio-Sciences Corp. Rapid parallel nucleic acid analysis
US8536661B1 (en) 2004-06-25 2013-09-17 University Of Hawaii Biosensor chip sensor protection methods
US20080063251A1 (en) * 2004-07-07 2008-03-13 Mordechai Deutsch Method and Device for Identifying an Image of a Well in an Image of a Well-Bearing
US20080009051A1 (en) * 2004-08-25 2008-01-10 Seng Enterprises Ltd. Method and Device for Isolating Cells
EP1794581A2 (en) * 2004-09-15 2007-06-13 Microchip Biotechnologies, Inc. Microfluidic devices
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
US20060110764A1 (en) * 2004-10-25 2006-05-25 Tom Tang Large-scale parallelized DNA sequencing
US7785785B2 (en) 2004-11-12 2010-08-31 The Board Of Trustees Of The Leland Stanford Junior University Charge perturbation detection system for DNA and other molecules
US7485451B2 (en) * 2004-11-18 2009-02-03 Regents Of The University Of California Storage stable compositions of biological materials
KR20070093992A (en) * 2004-12-11 2007-09-19 사이토제닉, 인크. Cell free biosynthesis of high-quality nucleic acid and uses thereof
ES2352344T3 (en) 2005-01-25 2011-02-17 Seng Enterprises Limited MICROFLUID DEVICE FOR CELL STUDY.
EP1844162B1 (en) 2005-02-01 2014-10-15 Applied Biosystems, LLC Method for identifying a sequence in a polynucleotide
JP2006211984A (en) * 2005-02-04 2006-08-17 Univ Nagoya Method for amplifying nucleic acid utilizing emulsion, and kit for nucleic acid amplification reaction
US8374887B1 (en) 2005-02-11 2013-02-12 Emily H. Alexander System and method for remotely supervising and verifying pharmacy functions
CA2597947C (en) * 2005-02-16 2014-05-13 Genetic Technologies Limited Methods of genetic analysis involving the amplification of complementary duplicons
US7932081B2 (en) * 2005-03-10 2011-04-26 Gen-Probe Incorporated Signal measuring system for conducting real-time amplification assays
US7604940B1 (en) * 2005-03-16 2009-10-20 Applied Biosystems, Llc Compositions and methods for analyzing isolated polynucleotides
WO2006099579A2 (en) * 2005-03-16 2006-09-21 Applera Corporation Compositions and methods for clonal amplification and analysis of polynucleotides
JP2008538496A (en) * 2005-04-12 2008-10-30 454 ライフ サイエンシーズ コーポレイション Method for determining sequence variants using ultra-deep sequencing
US20060228721A1 (en) * 2005-04-12 2006-10-12 Leamon John H Methods for determining sequence variants using ultra-deep sequencing
DE602006015633D1 (en) * 2005-04-29 2010-09-02 Synthetic Genomics Inc AMPLIFICATION AND CLONING OF INDIVIDUAL DNA MOLECULES BY ROLLING CIRCLE AMPLIFICATION
CA2612145A1 (en) * 2005-05-10 2006-11-16 Eric A. Johnson Methods of mapping polymorphisms and polymorphism microarrays
EP1910537A1 (en) 2005-06-06 2008-04-16 454 Life Sciences Corporation Paired end sequencing
US20090233291A1 (en) * 2005-06-06 2009-09-17 454 Life Sciences Corporation Paired end sequencing
DK1910538T3 (en) 2005-06-09 2011-08-08 Praecis Pharm Inc Methods for synthesizing encoded libraries
SG162795A1 (en) 2005-06-15 2010-07-29 Callida Genomics Inc Single molecule arrays for genetic and chemical analysis
AU2006259990B2 (en) * 2005-06-23 2011-01-27 Keygene N.V. Improved strategies for sequencing complex genomes using high throughput sequencing technologies
EP2302070B1 (en) 2005-06-23 2012-08-22 Keygene N.V. Strategies for high throughput identification and detection of polymorphisms
US20070031865A1 (en) * 2005-07-07 2007-02-08 David Willoughby Novel Process for Construction of a DNA Library
GB0514935D0 (en) * 2005-07-20 2005-08-24 Solexa Ltd Methods for sequencing a polynucleotide template
GB0514910D0 (en) 2005-07-20 2005-08-24 Solexa Ltd Method for sequencing a polynucleotide template
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10083273B2 (en) * 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
JP2009505642A (en) * 2005-08-19 2009-02-12 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Arachnocampa luciferase
WO2007024778A2 (en) 2005-08-22 2007-03-01 Applera Corporation Device, system and method for depositing processed immiscible-fluid-discrete-volumes
CA2621267A1 (en) 2005-09-07 2007-03-15 Nugen Technologies, Inc. Improved nucleic acid amplification procedure
CN101263227A (en) * 2005-09-16 2008-09-10 454生命科学公司 CDNA library preparation
ES2338459T5 (en) 2005-09-29 2014-02-24 Keygene N.V. High performance exploration of mutagenized populations
WO2008007951A1 (en) 2006-07-12 2008-01-17 Keygene N.V. High throughput physical mapping using aflp
US10316364B2 (en) 2005-09-29 2019-06-11 Keygene N.V. Method for identifying the source of an amplicon
WO2007044245A2 (en) 2005-10-07 2007-04-19 Callida Genomics, Inc. Self-assembled single molecule arrays and uses thereof
US20070141555A1 (en) * 2005-10-11 2007-06-21 Mordechai Deutsch Current damper for the study of cells
SI1948816T1 (en) 2005-10-24 2012-04-30 Johns Hopkins University Johns Hopkins Technology Transfer Improved methods for beaming
KR100828714B1 (en) 2005-10-25 2008-05-09 주식회사 엘지화학 A method for multiplexing amplification using ribonucleotides
WO2007053358A2 (en) 2005-10-28 2007-05-10 Praecis Pharmaceuticals, Inc. Methods for identifying compounds of interest using encoded libraries
GB0522310D0 (en) 2005-11-01 2005-12-07 Solexa Ltd Methods of preparing libraries of template polynucleotides
WO2007052245A1 (en) * 2005-11-03 2007-05-10 Seng Enterprises Ltd. Method and device for studying floating, living cells
WO2007056490A2 (en) * 2005-11-08 2007-05-18 Incom, Inc. Fiber optic interrogated microslide, microslide kits and uses thereof
JP5166276B2 (en) * 2005-11-14 2013-03-21 ケイヘーネ・エヌ・ブイ A method for high-throughput screening of transposon tagging populations and massively parallel sequencing of insertion sites
GB0524069D0 (en) 2005-11-25 2006-01-04 Solexa Ltd Preparation of templates for solid phase amplification
EP2341140B1 (en) 2005-12-01 2017-07-19 Nuevolution A/S Enzymatic encoding methods for efficient synthesis of large libraries
US20070128610A1 (en) * 2005-12-02 2007-06-07 Buzby Philip R Sample preparation method and apparatus for nucleic acid sequencing
EP2363504A1 (en) 2005-12-22 2011-09-07 Keygene N.V. Method for high-throughtput AFLP-based polymorphism detection
WO2007073171A2 (en) * 2005-12-22 2007-06-28 Keygene N.V. Improved strategies for transcript profiling using high throughput sequencing technologies
EP2363205A3 (en) 2006-01-11 2014-06-04 Raindance Technologies, Inc. Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
JP4931257B2 (en) * 2006-01-19 2012-05-16 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク Methods and devices for detection and identification of encoded beads and biological molecules
US20090053773A1 (en) * 2006-01-20 2009-02-26 Toppan Printing Co., Ltd. Reaction Container and Dna Amplification Reaction Method
US20070172839A1 (en) * 2006-01-24 2007-07-26 Smith Douglas R Asymmetrical adapters and methods of use thereof
US7749365B2 (en) 2006-02-01 2010-07-06 IntegenX, Inc. Optimized sample injection structures in microfluidic separations
JP5063616B2 (en) 2006-02-03 2012-10-31 インテジェニックス インコーポレイテッド Microfluidic device
DE102006005287B4 (en) * 2006-02-06 2012-12-27 Siemens Ag Method for the detection of target nucleic acids
EP1987159B2 (en) 2006-02-08 2020-08-12 Illumina Cambridge Limited Method for sequencing a polynucleotide template
US9012184B2 (en) * 2006-02-08 2015-04-21 Illumina Cambridge Limited End modification to prevent over-representation of fragments
JP5808515B2 (en) 2006-02-16 2015-11-10 454 ライフ サイエンシーズ コーポレイション System and method for correcting primer extension errors in nucleic acid sequence data
US8364417B2 (en) 2007-02-15 2013-01-29 454 Life Sciences Corporation System and method to correct out of phase errors in DNA sequencing data by use of a recursive algorithm
US8460879B2 (en) * 2006-02-21 2013-06-11 The Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
US11237171B2 (en) 2006-02-21 2022-02-01 Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
SG10201405158QA (en) * 2006-02-24 2014-10-30 Callida Genomics Inc High throughput genome sequencing on dna arrays
CN101432439B (en) * 2006-02-24 2013-07-24 考利达基因组股份有限公司 High throughput genome sequencing on DNA arrays
US7766033B2 (en) * 2006-03-22 2010-08-03 The Regents Of The University Of California Multiplexed latching valves for microfluidic devices and processors
US20070231823A1 (en) 2006-03-23 2007-10-04 Mckernan Kevin J Directed enrichment of genomic DNA for high-throughput sequencing
WO2007123744A2 (en) 2006-03-31 2007-11-01 Solexa, Inc. Systems and devices for sequence by synthesis analysis
US20090253581A1 (en) * 2006-04-04 2009-10-08 Keygene N.V. High Throughput Detection of Molecular Markers Based on AFLP and High Throughput Sequencing
US8809068B2 (en) 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US7439014B2 (en) 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
AU2007237909A1 (en) * 2006-04-19 2007-10-25 Applied Biosystems, Llc. Reagents, methods, and libraries for gel-free bead-based sequencing
US7702468B2 (en) 2006-05-03 2010-04-20 Population Diagnostics, Inc. Evaluating genetic disorders
US10522240B2 (en) 2006-05-03 2019-12-31 Population Bio, Inc. Evaluating genetic disorders
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
EP2530168B1 (en) 2006-05-11 2015-09-16 Raindance Technologies, Inc. Microfluidic Devices
WO2007136736A2 (en) * 2006-05-19 2007-11-29 Codon Devices, Inc. Methods for nucleic acid sorting and synthesis
EP2636755A1 (en) * 2006-05-26 2013-09-11 AltheaDx Incorporated Biochemical analysis of partitioned cells
US11001881B2 (en) 2006-08-24 2021-05-11 California Institute Of Technology Methods for detecting analytes
US8569416B2 (en) 2006-06-06 2013-10-29 Dow Corning Corporation Single phase silicone acrylate formulation
JP2009540052A (en) * 2006-06-06 2009-11-19 ダウ・コーニング・コーポレイション Silicone acrylate hybrid composition and method for producing the same
US8614278B2 (en) 2006-06-06 2013-12-24 Dow Corning Corporation Silicone acrylate hybrid composition and method of making same
US20080124707A1 (en) * 2006-06-09 2008-05-29 Agency For Science, Technology And Research Nucleic acid concatenation
EP2024512A4 (en) 2006-06-14 2009-12-09 Artemis Health Inc Methods for the diagnosis of fetal abnormalities
CA2655018A1 (en) * 2006-06-16 2007-12-21 Pacific Biosciences Of California, Inc. Controlled initiation of primer extension
WO2008014485A2 (en) 2006-07-28 2008-01-31 California Institute Of Technology Multiplex q-pcr arrays
US11525156B2 (en) 2006-07-28 2022-12-13 California Institute Of Technology Multiplex Q-PCR arrays
WO2008015396A2 (en) 2006-07-31 2008-02-07 Solexa Limited Method of library preparation avoiding the formation of adaptor dimers
WO2008021123A1 (en) 2006-08-07 2008-02-21 President And Fellows Of Harvard College Fluorocarbon emulsion stabilizing surfactants
US11560588B2 (en) 2006-08-24 2023-01-24 California Institute Of Technology Multiplex Q-PCR arrays
WO2008027558A2 (en) 2006-08-31 2008-03-06 Codon Devices, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
WO2008039998A2 (en) * 2006-09-28 2008-04-03 President And Fellows Of Harvard College Methods for sequencing dna
EP2071927A2 (en) 2006-09-28 2009-06-24 Illumina, Inc. Compositions and methods for nucleotide sequencing
US7754429B2 (en) 2006-10-06 2010-07-13 Illumina Cambridge Limited Method for pair-wise sequencing a plurity of target polynucleotides
WO2008045575A2 (en) * 2006-10-13 2008-04-17 J. Craig Venter Institute, Inc. Sequencing method
US8841116B2 (en) * 2006-10-25 2014-09-23 The Regents Of The University Of California Inline-injection microdevice and microfabricated integrated DNA analysis system using same
US7910354B2 (en) * 2006-10-27 2011-03-22 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
US8338109B2 (en) 2006-11-02 2012-12-25 Mayo Foundation For Medical Education And Research Predicting cancer outcome
WO2008055915A2 (en) * 2006-11-06 2008-05-15 Clondiag Gmbh Device and process for assays using binding members
US20090111705A1 (en) * 2006-11-09 2009-04-30 Complete Genomics, Inc. Selection of dna adaptor orientation by hybrid capture
DK2518162T3 (en) * 2006-11-15 2018-06-18 Biospherex Llc Multi-tag sequencing and ecogenomic analysis
US20080242560A1 (en) * 2006-11-21 2008-10-02 Gunderson Kevin L Methods for generating amplified nucleic acid arrays
US7902345B2 (en) 2006-12-05 2011-03-08 Sequenom, Inc. Detection and quantification of biomolecules using mass spectrometry
CA2672315A1 (en) 2006-12-14 2008-06-26 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale fet arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US20080145898A1 (en) * 2006-12-14 2008-06-19 Applera Corporation Sequencing methods
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US7932034B2 (en) * 2006-12-20 2011-04-26 The Board Of Trustees Of The Leland Stanford Junior University Heat and pH measurement for sequencing of DNA
WO2008093098A2 (en) 2007-02-02 2008-08-07 Illumina Cambridge Limited Methods for indexing samples and sequencing multiple nucleotide templates
CN101715483A (en) 2007-02-05 2010-05-26 微芯片生物工艺学股份有限公司 microfluidic and nanofluidic devices, systems, and applications
WO2008097559A2 (en) 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US9152150B1 (en) 2007-02-22 2015-10-06 Applied Biosystems, Llc Compositions, systems, and methods for immiscible fluid discrete volume manipulation
WO2008109176A2 (en) 2007-03-07 2008-09-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
CA2679511A1 (en) 2007-03-16 2008-09-25 454 Life Sciences Corporation System and method for detection of hiv drug resistant variants
US20100151465A1 (en) 2008-03-27 2010-06-17 Jingyue Ju Selective Capture and Release of Analytes
US20080243865A1 (en) * 2007-03-28 2008-10-02 Oracle International Corporation Maintaining global state of distributed transaction managed by an external transaction manager for clustered database systems
US20080239867A1 (en) * 2007-03-28 2008-10-02 Gilbert Donna J Adjustable stir
JP2008245612A (en) * 2007-03-30 2008-10-16 Hitachi Ltd Method and device for preparing sample
WO2008130623A1 (en) 2007-04-19 2008-10-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
JP2010528608A (en) * 2007-06-01 2010-08-26 454 ライフ サイエンシーズ コーポレイション System and method for identifying individual samples from complex mixtures
US7883265B2 (en) * 2007-06-01 2011-02-08 Applied Biosystems, Llc Devices, systems, and methods for preparing emulsions
US20090053724A1 (en) * 2007-06-28 2009-02-26 454 Life Sciences Corporation System and method for adaptive reagent control in nucleic acid sequencing
WO2009031054A2 (en) * 2007-06-29 2009-03-12 Population Genetics Technologies Ltd. Methods and compositions for isolating nucleic acid sequence variants
WO2009015296A1 (en) * 2007-07-24 2009-01-29 The Regents Of The University Of California Microfabricated dropley generator
EP2173909A1 (en) 2007-07-26 2010-04-14 Roche Diagnostics GmbH Target preparation for parallel sequencing of complex genomes
JP5020734B2 (en) * 2007-07-31 2012-09-05 株式会社日立ハイテクノロジーズ Nucleic acid analysis method and apparatus
EP2195452B1 (en) 2007-08-29 2012-03-14 Sequenom, Inc. Methods and compositions for universal size-specific polymerase chain reaction
US20090062132A1 (en) 2007-08-29 2009-03-05 Borner Scott R Alternative nucleic acid sequencing methods
WO2009032167A1 (en) * 2007-08-29 2009-03-12 Illumina Cambridge Method for sequencing a polynucleotide template
ES2556627T3 (en) * 2007-08-30 2016-01-19 Trustees Of Tufts College Methods to determine the concentration of an analyte in solution
CN101795744A (en) * 2007-09-11 2010-08-04 阿尔利克斯公司 Binding method and apparatus for sorting objects
CA2699803C (en) * 2007-09-13 2013-01-15 Applied Precision, Inc. Method of dispersing immersion liquid on a specimen substrate for high resolution imaging and lithographie
WO2009035621A1 (en) * 2007-09-13 2009-03-19 Arryx, Inc. Methods and apparatuses for sorting objects in forensic dna analysis and medical diagnostics
US9388457B2 (en) 2007-09-14 2016-07-12 Affymetrix, Inc. Locus specific amplification using array probes
US8716190B2 (en) 2007-09-14 2014-05-06 Affymetrix, Inc. Amplification and analysis of selected targets on solid supports
US20100304378A1 (en) * 2007-09-17 2010-12-02 Universite De Strasbourg Method for Detecting or Quantifying a Truncating Mutation
US20090118129A1 (en) * 2007-09-28 2009-05-07 Pacific Biosciences Of California, Inc. Virtual reads for readlength enhancement
EP2212434A1 (en) * 2007-10-01 2010-08-04 Applied Biosystems Inc. Chase ligation sequencing
US20100086914A1 (en) * 2008-10-03 2010-04-08 Roche Molecular Systems, Inc. High resolution, high throughput hla genotyping by clonal sequencing
EP2053132A1 (en) 2007-10-23 2009-04-29 Roche Diagnostics GmbH Enrichment and sequence analysis of geomic regions
US20110015084A1 (en) * 2007-10-25 2011-01-20 Monsanto Technology Llc Methods for Identifying Genetic Linkage
US9145540B1 (en) 2007-11-15 2015-09-29 Seng Enterprises Ltd. Device for the study of living cells
US8592150B2 (en) 2007-12-05 2013-11-26 Complete Genomics, Inc. Methods and compositions for long fragment read sequencing
US9797010B2 (en) 2007-12-21 2017-10-24 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
EP2237887A2 (en) * 2007-12-26 2010-10-13 Seng Enterprises Ltd. Device for the study of living cells
US8189186B2 (en) * 2007-12-27 2012-05-29 Lawrence Livermore National Security, Llc. Signal enhancement using a switchable magnetic trap
US20090181390A1 (en) * 2008-01-11 2009-07-16 Signosis, Inc. A California Corporation High throughput detection of micrornas and use for disease diagnosis
US9034580B2 (en) * 2008-01-17 2015-05-19 Sequenom, Inc. Single molecule nucleic acid sequence analysis processes and compositions
WO2009108260A2 (en) 2008-01-22 2009-09-03 Microchip Biotechnologies, Inc. Universal sample preparation system and use in an integrated analysis system
US7767400B2 (en) * 2008-02-03 2010-08-03 Helicos Biosciences Corporation Paired-end reads in sequencing by synthesis
US20090203086A1 (en) * 2008-02-06 2009-08-13 454 Life Sciences Corporation System and method for improved signal detection in nucleic acid sequencing
US8034568B2 (en) * 2008-02-12 2011-10-11 Nugen Technologies, Inc. Isothermal nucleic acid amplification methods and compositions
EP2247727A4 (en) * 2008-02-12 2011-08-03 Nugen Technologies Inc Method for archiving and clonal expansion
WO2009114543A2 (en) * 2008-03-11 2009-09-17 Sequenom, Inc. Nucleic acid-based tests for prenatal gender determination
RU2010142289A (en) 2008-03-17 2012-04-27 Экспрессив Рисерч Б.В. (Nl) DETECTION OF EXPRESSION-related GENES
US10745740B2 (en) 2008-03-19 2020-08-18 Qiagen Sciences, Llc Sample preparation
GB2470672B (en) * 2008-03-21 2012-09-12 Nugen Technologies Inc Methods of RNA amplification in the presence of DNA
WO2009120372A2 (en) * 2008-03-28 2009-10-01 Pacific Biosciences Of California, Inc. Compositions and methods for nucleic acid sequencing
US8557742B2 (en) * 2008-04-04 2013-10-15 Novozymes A/S Method of enhancing enzyme activity
JP5227062B2 (en) 2008-04-08 2013-07-03 株式会社日立製作所 DNA analyzer
TWI460602B (en) * 2008-05-16 2014-11-11 Counsyl Inc Device for universal preconception screening
WO2009143603A1 (en) 2008-05-28 2009-12-03 Genomedx Biosciences, Inc. Systems and methods for expression-based discrimination of distinct clinical disease states in prostate cancer
US10407731B2 (en) 2008-05-30 2019-09-10 Mayo Foundation For Medical Education And Research Biomarker panels for predicting prostate cancer outcomes
US8470164B2 (en) 2008-06-25 2013-06-25 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US7888034B2 (en) 2008-07-01 2011-02-15 454 Life Sciences Corporation System and method for detection of HIV tropism variants
WO2010003132A1 (en) 2008-07-02 2010-01-07 Illumina Cambridge Ltd. Using populations of beads for the fabrication of arrays on surfaces
WO2010009426A2 (en) * 2008-07-17 2010-01-21 Life Technologies Corporation Devices and methods for reagent delivery
WO2010009398A1 (en) 2008-07-18 2010-01-21 Xenomics, Inc. Methods for pcr-based detection of "ultra short" nucleic acid sequences
EP4047367A1 (en) 2008-07-18 2022-08-24 Bio-Rad Laboratories, Inc. Method for detecting target analytes with droplet libraries
US20100035252A1 (en) * 2008-08-08 2010-02-11 Ion Torrent Systems Incorporated Methods for sequencing individual nucleic acids under tension
US8808986B2 (en) 2008-08-27 2014-08-19 Gen9, Inc. Methods and devices for high fidelity polynucleotide synthesis
WO2010027497A2 (en) 2008-09-05 2010-03-11 Pacific Biosciences Of California, Inc Preparations, compositions, and methods for nucleic acid sequencing
US8476013B2 (en) 2008-09-16 2013-07-02 Sequenom, Inc. Processes and compositions for methylation-based acid enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses
US8962247B2 (en) 2008-09-16 2015-02-24 Sequenom, Inc. Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses
WO2010033200A2 (en) 2008-09-19 2010-03-25 President And Fellows Of Harvard College Creation of libraries of droplets and related species
WO2010039189A2 (en) * 2008-09-23 2010-04-08 Helicos Biosciences Corporation Methods for sequencing degraded or modified nucleic acids
US11130128B2 (en) 2008-09-23 2021-09-28 Bio-Rad Laboratories, Inc. Detection method for a target nucleic acid
US20100075439A1 (en) * 2008-09-23 2010-03-25 Quanterix Corporation Ultra-sensitive detection of molecules by capture-and-release using reducing agents followed by quantification
US9492797B2 (en) 2008-09-23 2016-11-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
US8663920B2 (en) 2011-07-29 2014-03-04 Bio-Rad Laboratories, Inc. Library characterization by digital assay
US8951939B2 (en) 2011-07-12 2015-02-10 Bio-Rad Laboratories, Inc. Digital assays with multiplexed detection of two or more targets in the same optical channel
US9598725B2 (en) * 2010-03-02 2017-03-21 Bio-Rad Laboratories, Inc. Emulsion chemistry for encapsulated droplets
US8709762B2 (en) 2010-03-02 2014-04-29 Bio-Rad Laboratories, Inc. System for hot-start amplification via a multiple emulsion
US20100075862A1 (en) * 2008-09-23 2010-03-25 Quanterix Corporation High sensitivity determination of the concentration of analyte molecules or particles in a fluid sample
US9417190B2 (en) 2008-09-23 2016-08-16 Bio-Rad Laboratories, Inc. Calibrations and controls for droplet-based assays
US9132394B2 (en) 2008-09-23 2015-09-15 Bio-Rad Laboratories, Inc. System for detection of spaced droplets
US8222047B2 (en) * 2008-09-23 2012-07-17 Quanterix Corporation Ultra-sensitive detection of molecules on single molecule arrays
US8633015B2 (en) 2008-09-23 2014-01-21 Bio-Rad Laboratories, Inc. Flow-based thermocycling system with thermoelectric cooler
US9764322B2 (en) 2008-09-23 2017-09-19 Bio-Rad Laboratories, Inc. System for generating droplets with pressure monitoring
US10512910B2 (en) 2008-09-23 2019-12-24 Bio-Rad Laboratories, Inc. Droplet-based analysis method
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
US20100261189A1 (en) * 2008-10-03 2010-10-14 Roche Molecular Systems, Inc. System and method for detection of HLA Variants
US20100087325A1 (en) * 2008-10-07 2010-04-08 Illumina, Inc. Biological sample temperature control system and method
US8541207B2 (en) 2008-10-22 2013-09-24 Illumina, Inc. Preservation of information related to genomic DNA methylation
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
PL2963709T3 (en) 2008-10-24 2017-11-30 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
US9080211B2 (en) 2008-10-24 2015-07-14 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
US8288520B2 (en) * 2008-10-27 2012-10-16 Qiagen Gaithersburg, Inc. Fast results hybrid capture assay and system
US8486865B2 (en) * 2008-11-03 2013-07-16 The Regents Of The University Of California Methods for detecting modification resistant nucleic acids
JP2010110262A (en) * 2008-11-06 2010-05-20 Hitachi Maxell Ltd Method for amplifying nucleic acid by using well plate
WO2010053587A2 (en) 2008-11-07 2010-05-14 Mlc Dx Incorporated Methods of monitoring conditions by sequence analysis
US9394567B2 (en) 2008-11-07 2016-07-19 Adaptive Biotechnologies Corporation Detection and quantification of sample contamination in immune repertoire analysis
US8748103B2 (en) 2008-11-07 2014-06-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
US9528160B2 (en) 2008-11-07 2016-12-27 Adaptive Biotechnolgies Corp. Rare clonotypes and uses thereof
US9365901B2 (en) 2008-11-07 2016-06-14 Adaptive Biotechnologies Corp. Monitoring immunoglobulin heavy chain evolution in B-cell acute lymphoblastic leukemia
US8628927B2 (en) 2008-11-07 2014-01-14 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
US9506119B2 (en) 2008-11-07 2016-11-29 Adaptive Biotechnologies Corp. Method of sequence determination using sequence tags
EP3029158A1 (en) 2008-11-17 2016-06-08 Veracyte, Inc. Methods and compositions of molecular profiling for disease diagnostics
US9495515B1 (en) 2009-12-09 2016-11-15 Veracyte, Inc. Algorithms for disease diagnostics
US10236078B2 (en) 2008-11-17 2019-03-19 Veracyte, Inc. Methods for processing or analyzing a sample of thyroid tissue
CA2745853A1 (en) 2008-12-05 2010-06-10 Keygene N.V. Farnesene synthase
US8748094B2 (en) 2008-12-19 2014-06-10 President And Fellows Of Harvard College Particle-assisted nucleic acid sequencing
EP2379748A4 (en) * 2008-12-23 2012-08-29 Illumina Inc Multibase delivery for long reads in sequencing by synthesis protocols
US8672532B2 (en) 2008-12-31 2014-03-18 Integenx Inc. Microfluidic methods
ES2403312T3 (en) 2009-01-13 2013-05-17 Keygene N.V. New strategies for genome sequencing
EP2387627B1 (en) 2009-01-15 2016-03-30 Adaptive Biotechnologies Corporation Adaptive immunity profiling and methods for generation of monoclonal antibodies
US20100179074A1 (en) * 2009-01-15 2010-07-15 Honeywell International Inc. Methods and apparatus for fluid delivery and removal of micron scale structures
KR20110138340A (en) * 2009-01-20 2011-12-27 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 Single cell gene expression for diagnosis, prognosis and identification of drug targets
US20100331204A1 (en) 2009-02-13 2010-12-30 Jeff Jeddeloh Methods and systems for enrichment of target genomic sequences
US9347092B2 (en) 2009-02-25 2016-05-24 Roche Molecular System, Inc. Solid support for high-throughput nucleic acid analysis
JP5457222B2 (en) 2009-02-25 2014-04-02 エフ.ホフマン−ラ ロシュ アーゲー Miniaturized high-throughput nucleic acid analysis
US9074258B2 (en) 2009-03-04 2015-07-07 Genomedx Biosciences Inc. Compositions and methods for classifying thyroid nodule disease
EP2406003A2 (en) 2009-03-13 2012-01-18 President and Fellows of Harvard College Scale-up of flow-focusing microfluidic devices
WO2010107946A2 (en) * 2009-03-18 2010-09-23 Sequenom, Inc. Use of thermostable endonucleases for generating reporter molecules
GB0904934D0 (en) 2009-03-23 2009-05-06 Geneseqe As Method and apparatus for detecting molecules
GB0904957D0 (en) 2009-03-23 2009-05-06 Univ Erasmus Medical Ct Tumour gene profile
EP3415235A1 (en) 2009-03-23 2018-12-19 Raindance Technologies Inc. Manipulation of microfluidic droplets
CN104404134B (en) 2009-04-03 2017-05-10 莱弗斯基因股份有限公司 Multiplex nucleic acid detection methods and systems
WO2010117457A2 (en) * 2009-04-08 2010-10-14 Applied Biosystems, Llc System comprising dual-sided thermal cycler and emulsion pcr in pouch
US9090663B2 (en) * 2009-04-21 2015-07-28 The Trustees Of Columbia University In The City Of New York Systems and methods for the capture and separation of microparticles
WO2010126614A2 (en) 2009-04-30 2010-11-04 Good Start Genetics, Inc. Methods and compositions for evaluating genetic markers
EP2248914A1 (en) 2009-05-05 2010-11-10 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. The use of class IIB restriction endonucleases in 2nd generation sequencing applications
WO2010129934A2 (en) 2009-05-07 2010-11-11 Veracyte, Inc. Methods and compositions for diagnosis of thyroid conditions
US8003329B2 (en) * 2009-05-12 2011-08-23 Becton Dickinson & Company Molecular counting by color-coded micelles
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
EP3301104B1 (en) 2009-05-29 2019-10-30 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
US8574835B2 (en) 2009-05-29 2013-11-05 Life Technologies Corporation Scaffolded nucleic acid polymer particles and methods of making and using
CN102459565A (en) 2009-06-02 2012-05-16 尹特根埃克斯有限公司 Fluidic devices with diaphragm valves
JP2012529268A (en) 2009-06-05 2012-11-22 インテジェンクス,インコーポレイテッド Use of universal sample preparation system and integrated analysis system
US9524369B2 (en) 2009-06-15 2016-12-20 Complete Genomics, Inc. Processing and analysis of complex nucleic acid sequence data
RU2539032C2 (en) 2009-06-25 2015-01-10 Фред Хатчинсон Кансэр Рисёч Сентер Method for measuring artificial immunity
WO2011002319A2 (en) * 2009-07-02 2011-01-06 Zygem Corporation Limited Combined nucleic acid blocking, extraction, and detection in a single reaction vessel
JP5099455B2 (en) * 2009-07-16 2012-12-19 独立行政法人科学技術振興機構 Method for selective amplification of RNA using emulsion
DK2456892T3 (en) 2009-07-24 2014-12-08 Illumina Inc Procedure for sequencing of a polynukleotidskabelon
AU2010278668B2 (en) * 2009-07-29 2015-06-18 Pyrobett Pte Ltd Method and apparatus for conducting an assay
US9416409B2 (en) * 2009-07-31 2016-08-16 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
DK3133169T3 (en) 2009-08-25 2019-12-16 Illumina Inc PROCEDURES FOR SELECTION AND AMPLIFICATION OF POLYNUCLEOTIDES
CA2767056C (en) * 2009-09-02 2018-12-04 Bio-Rad Laboratories, Inc. System for mixing fluids by coalescence of multiple emulsions
EP2473263B1 (en) 2009-09-02 2022-11-02 President and Fellows of Harvard College Multiple emulsions created using jetting and other techniques
WO2011032040A1 (en) 2009-09-10 2011-03-17 Centrillion Technology Holding Corporation Methods of targeted sequencing
US10174368B2 (en) 2009-09-10 2019-01-08 Centrillion Technology Holdings Corporation Methods and systems for sequencing long nucleic acids
KR20120100938A (en) 2009-09-23 2012-09-12 셀매틱스, 인크. Methods and devices for assessing infertility and/or egg quality
US20120185176A1 (en) 2009-09-30 2012-07-19 Natera, Inc. Methods for Non-Invasive Prenatal Ploidy Calling
US8609339B2 (en) * 2009-10-09 2013-12-17 454 Life Sciences Corporation System and method for emulsion breaking and recovery of biological elements
WO2011042564A1 (en) 2009-10-09 2011-04-14 Universite De Strasbourg Labelled silica-based nanomaterial with enhanced properties and uses thereof
EP2493619B1 (en) 2009-10-27 2018-12-19 President and Fellows of Harvard College Droplet creation techniques
US8524450B2 (en) 2009-10-30 2013-09-03 Illumina, Inc. Microvessels, microparticles, and methods of manufacturing and using the same
EP2494069B1 (en) * 2009-10-30 2013-10-02 Roche Diagniostics GmbH Method for detecting balanced chromosomal aberrations in a genome
US10207240B2 (en) 2009-11-03 2019-02-19 Gen9, Inc. Methods and microfluidic devices for the manipulation of droplets in high fidelity polynucleotide assembly
CA2779750C (en) 2009-11-06 2019-03-19 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive diagnosis of graft rejection in organ transplant patients
JP2013510589A (en) 2009-11-16 2013-03-28 ゲノミクトリー インコーポレーテッド Genotyping method
EP3085791A1 (en) 2009-11-25 2016-10-26 Gen9, Inc. Methods and apparatuses for chip-based dna error reduction
JP2013511991A (en) * 2009-11-25 2013-04-11 クアンタライフ, インコーポレイテッド Methods and compositions for detecting genetic material
WO2011066185A1 (en) 2009-11-25 2011-06-03 Gen9, Inc. Microfluidic devices and methods for gene synthesis
US8584703B2 (en) 2009-12-01 2013-11-19 Integenx Inc. Device with diaphragm valve
US10446272B2 (en) 2009-12-09 2019-10-15 Veracyte, Inc. Methods and compositions for classification of samples
WO2011071382A1 (en) 2009-12-10 2011-06-16 Keygene N.V. Polymorfphic whole genome profiling
CN102656279A (en) 2009-12-17 2012-09-05 凯津公司 Restriction enzyme based whole genome sequencing
JP2013514080A (en) 2009-12-18 2013-04-25 キージーン・エン・フェー Improved bulk variant analysis
US9926593B2 (en) 2009-12-22 2018-03-27 Sequenom, Inc. Processes and kits for identifying aneuploidy
EP2517025B1 (en) 2009-12-23 2019-11-27 Bio-Rad Laboratories, Inc. Methods for reducing the exchange of molecules between droplets
US9217144B2 (en) 2010-01-07 2015-12-22 Gen9, Inc. Assembly of high fidelity polynucleotides
US20120100548A1 (en) 2010-10-26 2012-04-26 Verinata Health, Inc. Method for determining copy number variations
US20110245085A1 (en) 2010-01-19 2011-10-06 Rava Richard P Methods for determining copy number variations
ES2596655T3 (en) 2010-02-01 2017-01-11 Illumina Inc.  Focusing procedures and optical systems and assemblies that use them
US20110195457A1 (en) * 2010-02-09 2011-08-11 General Electric Company Isothermal amplification of nucleic acid using primers comprising a randomized sequence and specific primers and uses thereof
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
EP2534267B1 (en) 2010-02-12 2018-04-11 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
CA2790434A1 (en) 2010-02-18 2011-08-25 Anthony P. Shuber Compositions and methods for treating cancer
EP2539450B1 (en) * 2010-02-25 2016-02-17 Advanced Liquid Logic, Inc. Method of making nucleic acid libraries
US20110318748A1 (en) 2010-02-26 2011-12-29 Life Technologies Corporation Modified Proteins and Methods of Making and Using Same
ES2544635T3 (en) 2010-03-01 2015-09-02 Quanterix Corporation Methods to extend the dynamic range in assays for the detection of molecules or particles
US9678068B2 (en) * 2010-03-01 2017-06-13 Quanterix Corporation Ultra-sensitive detection of molecules using dual detection methods
US8236574B2 (en) * 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
US8415171B2 (en) 2010-03-01 2013-04-09 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
US8716467B2 (en) * 2010-03-03 2014-05-06 Gen9, Inc. Methods and devices for nucleic acid synthesis
US8481903B2 (en) 2010-03-06 2013-07-09 Alexander Triener Systems, methods, and apparatuses including a moveable optical component for detecting optical signals from a sample
US20110311963A1 (en) * 2010-03-16 2011-12-22 Life Technologies Corporation Method and Apparatus for Addressable Flow Cells in Single Molecule Sequencing
CA2767182C (en) 2010-03-25 2020-03-24 Bio-Rad Laboratories, Inc. Droplet generation for droplet-based assays
EP2556170A4 (en) 2010-03-25 2014-01-01 Quantalife Inc Droplet transport system for detection
CA2767113A1 (en) 2010-03-25 2011-09-29 Bio-Rad Laboratories, Inc. Detection system for droplet-based assays
WO2011123246A2 (en) 2010-04-01 2011-10-06 Illumina, Inc. Solid-phase clonal amplification and related methods
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
JP5893607B2 (en) 2010-04-05 2016-03-23 プログノシス バイオサイエンシズ インコーポレイテッドPrognosys Biosciences,Inc. Spatial-encoded biological assay
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
LT2558577T (en) 2010-04-16 2019-03-12 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes
US20110269194A1 (en) * 2010-04-20 2011-11-03 Swift Biosciences, Inc. Materials and methods for nucleic acid fractionation by solid phase entrapment and enzyme-mediated detachment
EP2388337B1 (en) * 2010-04-30 2014-07-02 Nxp B.V. Sensing device and manufacturing method thereof
EP2566959A1 (en) 2010-04-30 2013-03-13 Roche Diagniostics GmbH System and method for purification and use of inorganic pyrophosphatase from aquifex aeolicus
US9930297B2 (en) 2010-04-30 2018-03-27 Becton, Dickinson And Company System and method for acquiring images of medication preparations
CN103097888B (en) 2010-05-06 2016-03-09 赛昆塔有限责任公司 Utilize clone's type spectrum monitoring health and morbid state
AU2011249913B2 (en) 2010-05-06 2014-09-11 Ibis Biosciences, Inc. Integrated sample preparation systems and stabilized enzyme mixtures
US9234240B2 (en) 2010-05-07 2016-01-12 The Board Of Trustees Of The Leland Stanford Junior University Measurement and comparison of immune diversity by high-throughput sequencing
US8530158B2 (en) 2010-05-10 2013-09-10 Life Technologies Corporation System and method for processing a biological sample
US20110312520A1 (en) 2010-05-11 2011-12-22 Veracyte, Inc. Methods and compositions for diagnosing conditions
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US20190010543A1 (en) 2010-05-18 2019-01-10 Natera, Inc. Methods for simultaneous amplification of target loci
AU2011255641A1 (en) 2010-05-18 2012-12-06 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US20110287432A1 (en) 2010-05-21 2011-11-24 454 Life Science Corporation System and method for tailoring nucleotide concentration to enzymatic efficiencies in dna sequencing technologies
US8512538B2 (en) 2010-05-28 2013-08-20 Integenx Inc. Capillary electrophoresis device
US20120035062A1 (en) * 2010-06-11 2012-02-09 Life Technologies Corporation Alternative nucleotide flows in sequencing-by-synthesis methods
WO2011159942A1 (en) 2010-06-18 2011-12-22 Illumina, Inc. Conformational probes and methods for sequencing nucleic acids
AU2011226767B1 (en) 2010-06-30 2011-11-10 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
JP5952813B2 (en) 2010-06-30 2016-07-13 ライフ テクノロジーズ コーポレーション Method and apparatus for testing ISFET arrays
US8731847B2 (en) 2010-06-30 2014-05-20 Life Technologies Corporation Array configuration and readout scheme
CA2803940C (en) 2010-06-30 2019-07-02 Bgi Shenzhen Co., Limited Application of a pcr sequencing method, based on dna barcoding technique and dna incomplete shearing strategy, in hla genotyping
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
EP2589065B1 (en) 2010-07-03 2015-08-19 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9650629B2 (en) * 2010-07-07 2017-05-16 Roche Molecular Systems, Inc. Clonal pre-amplification in emulsion
WO2012008831A1 (en) 2010-07-13 2012-01-19 Keygene N.V. Simplified de novo physical map generation from clone libraries
EP3100786A1 (en) 2010-07-22 2016-12-07 Gencell Biosystems Limited Composite liquid cells
WO2012018387A2 (en) 2010-08-02 2012-02-09 Population Diagnotics, Inc. Compositions and methods for discovery of causative mutations in genetic disorders
US11203786B2 (en) 2010-08-06 2021-12-21 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US20120034603A1 (en) 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
US11031095B2 (en) 2010-08-06 2021-06-08 Ariosa Diagnostics, Inc. Assay systems for determination of fetal copy number variation
US10533223B2 (en) 2010-08-06 2020-01-14 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US10167508B2 (en) 2010-08-06 2019-01-01 Ariosa Diagnostics, Inc. Detection of genetic abnormalities
US20130261003A1 (en) 2010-08-06 2013-10-03 Ariosa Diagnostics, In. Ligation-based detection of genetic variants
US20130040375A1 (en) * 2011-08-08 2013-02-14 Tandem Diagnotics, Inc. Assay systems for genetic analysis
US20140342940A1 (en) 2011-01-25 2014-11-20 Ariosa Diagnostics, Inc. Detection of Target Nucleic Acids using Hybridization
US8700338B2 (en) 2011-01-25 2014-04-15 Ariosa Diagnosis, Inc. Risk calculation for evaluation of fetal aneuploidy
US9121058B2 (en) 2010-08-20 2015-09-01 Integenx Inc. Linear valve arrays
US8763642B2 (en) 2010-08-20 2014-07-01 Integenx Inc. Microfluidic devices with mechanically-sealed diaphragm valves
US20120070829A1 (en) 2010-09-10 2012-03-22 Bio-Rad Laboratories, Inc. Size selection of dna for chromatin analysis
WO2012036679A1 (en) 2010-09-15 2012-03-22 Life Technologies Corporation Methods and apparatus for measuring analytes
AU2011305445B2 (en) 2010-09-24 2017-03-16 The Board Of Trustees Of The Leland Stanford Junior University Direct capture, amplification and sequencing of target DNA using immobilized primers
EP2619564B1 (en) 2010-09-24 2016-03-16 Life Technologies Corporation Matched pair transistor circuits
US20120077716A1 (en) 2010-09-29 2012-03-29 454 Life Sciences Corporation System and method for producing functionally distinct nucleic acid library ends through use of deoxyinosine
US8759038B2 (en) 2010-09-29 2014-06-24 Illumina Cambridge Limited Compositions and methods for sequencing nucleic acids
GB201016484D0 (en) 2010-09-30 2010-11-17 Geneseque As Method
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
JP6114694B2 (en) 2010-10-04 2017-04-12 ジナプシス インコーポレイテッド Systems and methods for automated reusable parallel biological reactions
US9184099B2 (en) 2010-10-04 2015-11-10 The Board Of Trustees Of The Leland Stanford Junior University Biosensor devices, systems and methods therefor
US9399217B2 (en) 2010-10-04 2016-07-26 Genapsys, Inc. Chamber free nanoreactor system
US20120322665A1 (en) 2010-10-08 2012-12-20 454 Life Sciences Corporation System and method for detection of hiv-1 clades and recombinants of the reverse transcriptase and protease regions
CA2814049C (en) * 2010-10-08 2021-07-13 President And Fellows Of Harvard College High-throughput single cell barcoding
US9689012B2 (en) 2010-10-12 2017-06-27 Cornell University Method of dual-adapter recombination for efficient concatenation of multiple DNA fragments in shuffled or specified arrangements
US20150218639A1 (en) 2014-01-17 2015-08-06 Northwestern University Biomarkers predictive of predisposition to depression and response to treatment
US20150225792A1 (en) 2014-01-17 2015-08-13 Northwestern University Compositions and methods for identifying depressive disorders
US10093981B2 (en) 2010-10-19 2018-10-09 Northwestern University Compositions and methods for identifying depressive disorders
US10233501B2 (en) 2010-10-19 2019-03-19 Northwestern University Biomarkers predictive of predisposition to depression and response to treatment
EP2633069B1 (en) 2010-10-26 2015-07-01 Illumina, Inc. Sequencing methods
US10273540B2 (en) 2010-10-27 2019-04-30 Life Technologies Corporation Methods and apparatuses for estimating parameters in a predictive model for use in sequencing-by-synthesis
US9387476B2 (en) 2010-10-27 2016-07-12 Illumina, Inc. Flow cells for biological or chemical analysis
EP2633470B1 (en) 2010-10-27 2016-10-26 Life Technologies Corporation Predictive model for use in sequencing-by-synthesis
EP2632593B1 (en) 2010-10-27 2021-09-29 Illumina, Inc. Flow cells for biological or chemical analysis
EP3574990B1 (en) 2010-11-01 2022-04-06 Bio-Rad Laboratories, Inc. System for forming emulsions
EP3000883B8 (en) 2010-11-12 2018-02-28 Gen9, Inc. Methods and devices for nucleic acids synthesis
WO2012064975A1 (en) 2010-11-12 2012-05-18 Gen9, Inc. Protein arrays and methods of using and making the same
EP2643484A4 (en) 2010-11-22 2014-04-16 Univ California Methods of identifying a cellular nascent rna transcript
WO2012072705A1 (en) 2010-12-01 2012-06-07 Morphosys Ag Simultaneous detection of biomolecules in single cells
EP2652659B1 (en) 2010-12-14 2020-04-15 Life Technologies Corporation Systems and methods for run-time sequencing run quality monitoring
RU2620959C2 (en) 2010-12-22 2017-05-30 Натера, Инк. Methods of noninvasive prenatal paternity determination
US9163281B2 (en) 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
US9594870B2 (en) 2010-12-29 2017-03-14 Life Technologies Corporation Time-warped background signal for sequencing-by-synthesis operations
KR20140024270A (en) 2010-12-30 2014-02-28 파운데이션 메디신 인코포레이티드 Optimization of multigene analysis of tumor samples
WO2012092455A2 (en) 2010-12-30 2012-07-05 Life Technologies Corporation Models for analyzing data from sequencing-by-synthesis operations
WO2012092515A2 (en) 2010-12-30 2012-07-05 Life Technologies Corporation Methods, systems, and computer readable media for nucleic acid sequencing
US20130060482A1 (en) 2010-12-30 2013-03-07 Life Technologies Corporation Methods, systems, and computer readable media for making base calls in nucleic acid sequencing
US8951781B2 (en) 2011-01-10 2015-02-10 Illumina, Inc. Systems, methods, and apparatuses to image a sample for biological or chemical analysis
US20130005591A1 (en) * 2011-01-13 2013-01-03 Halgen Corporation Method for parallel amplification of nucleic acids
JP2014502513A (en) 2011-01-14 2014-02-03 キージーン・エン・フェー Genotyping based on paired-end random sequences
WO2012100194A1 (en) 2011-01-20 2012-07-26 Ibis Biosciences, Inc. Microfluidic transducer
US10131947B2 (en) 2011-01-25 2018-11-20 Ariosa Diagnostics, Inc. Noninvasive detection of fetal aneuploidy in egg donor pregnancies
US8756020B2 (en) 2011-01-25 2014-06-17 Ariosa Diagnostics, Inc. Enhanced risk probabilities using biomolecule estimations
US9994897B2 (en) 2013-03-08 2018-06-12 Ariosa Diagnostics, Inc. Non-invasive fetal sex determination
US11270781B2 (en) 2011-01-25 2022-03-08 Ariosa Diagnostics, Inc. Statistical analysis for non-invasive sex chromosome aneuploidy determination
US9952237B2 (en) 2011-01-28 2018-04-24 Quanterix Corporation Systems, devices, and methods for ultra-sensitive detection of molecules or particles
WO2012104851A1 (en) 2011-01-31 2012-08-09 Yeda Research And Development Co. Ltd. Methods of diagnosing disease using overlap extension pcr
CN103703143B (en) 2011-01-31 2016-12-14 爱普瑞斯生物公司 The method of the multiple epi-positions in identification of cell
BR112013020220B1 (en) 2011-02-09 2020-03-17 Natera, Inc. METHOD FOR DETERMINING THE PLOIDIA STATUS OF A CHROMOSOME IN A PREGNANT FETUS
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
CN103534360A (en) 2011-03-18 2014-01-22 伯乐生命医学产品有限公司 Multiplexed digital assays with combinatorial use of signals
US20120244523A1 (en) 2011-03-25 2012-09-27 454 Life Sciences Corporation System and Method for Detection of HIV Integrase Variants
US20120252682A1 (en) 2011-04-01 2012-10-04 Maples Corporate Services Limited Methods and systems for sequencing nucleic acids
US9121047B2 (en) 2011-04-07 2015-09-01 Life Technologies Corporation System and methods for making and processing emulsions
WO2012139125A2 (en) 2011-04-07 2012-10-11 Life Technologies Corporation System and methods for making and processing emulsions
US9428807B2 (en) 2011-04-08 2016-08-30 Life Technologies Corporation Phase-protecting reagent flow orderings for use in sequencing-by-synthesis
WO2012142301A2 (en) 2011-04-12 2012-10-18 Quanterix Corporation Methods of determining a treatment protocol for and/or a prognosis of a patients recovery from a brain injury
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
EP3907299A1 (en) 2011-04-15 2021-11-10 The Johns Hopkins University Safe sequencing system
JP2014512826A (en) 2011-04-25 2014-05-29 バイオ−ラド ラボラトリーズ インコーポレイテッド Methods and compositions for nucleic acid analysis
WO2012149339A2 (en) 2011-04-29 2012-11-01 Sequenom, Inc. Quantification of a minority nucleic acid species
US9487825B2 (en) * 2011-05-13 2016-11-08 Mount Sinai School Of Medicine Pooled adapter strategy for reducing bias in small RNA characterization
SG10201605049QA (en) * 2011-05-20 2016-07-28 Fluidigm Corp Nucleic acid encoding reactions
WO2012162296A2 (en) 2011-05-23 2012-11-29 President And Fellows Of Harvard College Control of emulsions, including multiple emulsions
US8585973B2 (en) 2011-05-27 2013-11-19 The Board Of Trustees Of The Leland Stanford Junior University Nano-sensor array
US9926596B2 (en) 2011-05-27 2018-03-27 Genapsys, Inc. Systems and methods for genetic and biological analysis
WO2012166647A1 (en) * 2011-05-27 2012-12-06 Life Technologies Corporation Methods for manipulating biomolecules
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
EP3709018A1 (en) 2011-06-02 2020-09-16 Bio-Rad Laboratories, Inc. Microfluidic apparatus for identifying components of a chemical reaction
BR112013031709A2 (en) 2011-06-10 2016-12-06 Stichting Technologisch Topinst Groene Genetica Foundation Technological Top Inst Green Genetics isolated, synthetic or recombinant nucleic acid sequence, chimeric gene, vector, host cell, polypeptide, methods for increasing production of at least one terpene, for reducing production of at least one terpene, for reducing terpene levels, for producing a terpene, terpene isomer, or terpene analog, and for an introgression assisted by the marker of producing at least one terpene, plant, and tissue culture
US9752176B2 (en) 2011-06-15 2017-09-05 Ginkgo Bioworks, Inc. Methods for preparative in vitro cloning
EP2721154B1 (en) 2011-06-15 2019-01-02 Gen9, Inc. Methods for preparative in vitro cloning
WO2013009654A1 (en) 2011-07-08 2013-01-17 Life Technologies Corporation Method and apparatus for automated sample manipulation
WO2013009175A1 (en) 2011-07-08 2013-01-17 Keygene N.V. Sequence based genotyping based on oligonucleotide ligation assays
WO2013009927A2 (en) 2011-07-11 2013-01-17 Advanced Liquid Logic, Inc. Droplet actuators and techniques for droplet-based assays
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
WO2013019714A1 (en) 2011-07-29 2013-02-07 The Trustees Of Columbia University In The City Of New York Mems affinity sensor for continuous monitoring of analytes
WO2013022778A1 (en) 2011-08-05 2013-02-14 Ibis Biosciences, Inc. Nucleic acid sequencing by electrochemical detection
EP3624124B1 (en) 2011-08-18 2023-11-22 Life Technologies Corporation Systems for making base calls in nucleic acid sequencing
ES2704126T3 (en) 2011-08-23 2019-03-14 Found Medicine Inc KIF5B-RET fusion molecules and their uses
DK3594340T3 (en) 2011-08-26 2021-09-20 Gen9 Inc COMPOSITIONS AND METHODS FOR COLLECTING WITH HIGH ACCURACY OF NUCLEIC ACIDS
US10704164B2 (en) 2011-08-31 2020-07-07 Life Technologies Corporation Methods, systems, computer readable media, and kits for sample identification
US8712697B2 (en) 2011-09-07 2014-04-29 Ariosa Diagnostics, Inc. Determination of copy number variations using binomial probability calculations
US9249460B2 (en) 2011-09-09 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Methods for obtaining a sequence
US10385475B2 (en) 2011-09-12 2019-08-20 Adaptive Biotechnologies Corp. Random array sequencing of low-complexity libraries
DK3623481T3 (en) 2011-09-23 2021-11-15 Illumina Inc COMPOSITIONS FOR NUCLEIC ACID SEQUENCE
CN103732760A (en) * 2011-09-23 2014-04-16 纽约市哥伦比亚大学理事会 Isolation and enrichment of nucleic acids on microchip
AU2012316218B2 (en) 2011-09-26 2016-03-17 Gen-Probe Incorporated Algorithms for sequence determinations
US10378051B2 (en) 2011-09-29 2019-08-13 Illumina Cambridge Limited Continuous extension and deblocking in reactions for nucleic acids synthesis and sequencing
DE102011054101A1 (en) 2011-09-30 2013-04-04 Albert-Ludwigs-Universität Freiburg Method for the spatial arrangement of sample fragments for amplification and immobilization for further derivatizations
US11008611B2 (en) * 2011-09-30 2021-05-18 Unm Rainforest Innovations Double gate ion sensitive field effect transistor
CA2851388C (en) 2011-10-10 2023-11-21 The Hospital For Sick Children Methods and compositions for screening and treating developmental disorders
US10501791B2 (en) 2011-10-14 2019-12-10 President And Fellows Of Harvard College Sequencing by structure assembly
CN102329876B (en) * 2011-10-14 2014-04-02 深圳华大基因科技有限公司 Method for measuring nucleotide sequence of disease associated nucleic acid molecules in sample to be detected
US9228233B2 (en) 2011-10-17 2016-01-05 Good Start Genetics, Inc. Analysis methods
EP2769007B1 (en) 2011-10-19 2016-12-07 Nugen Technologies, Inc. Compositions and methods for directional nucleic acid amplification and sequencing
US10865440B2 (en) 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems
US20150136604A1 (en) 2011-10-21 2015-05-21 Integenx Inc. Sample preparation, processing and analysis systems
EP2768982A4 (en) 2011-10-21 2015-06-03 Adaptive Biotechnologies Corp Quantification of adaptive immune cell genomes in a complex mixture of cells
DE102011085473A1 (en) 2011-10-28 2013-05-02 Albert-Ludwigs-Universität Freiburg Method for the identification of aptamers
US11180807B2 (en) 2011-11-04 2021-11-23 Population Bio, Inc. Methods for detecting a genetic variation in attractin-like 1 (ATRNL1) gene in subject with Parkinson's disease
CA2854832C (en) 2011-11-07 2023-05-23 Ingenuity Systems, Inc. Methods and systems for identification of causal genomic variants
EP2776165A2 (en) 2011-11-07 2014-09-17 Illumina, Inc. Integrated sequencing apparatuses and methods of use
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
GB201120711D0 (en) 2011-12-01 2012-01-11 Univ Erasmus Medical Ct Method for classifying tumour cells
CN104105797B (en) 2011-12-01 2016-08-31 吉纳普赛斯股份有限公司 System and method for efficent electronic order-checking with detection
WO2013085918A1 (en) * 2011-12-05 2013-06-13 The Regents Of The University Of California Methods and compostions for generating polynucleic acid fragments
KR101830778B1 (en) 2011-12-09 2018-02-22 삼성전자주식회사 Device and method for amplifying nucleic acid using oil layer comprising heating particles
AU2012347460B2 (en) 2011-12-09 2017-05-25 Adaptive Biotechnologies Corporation Diagnosis of lymphoid malignancies and minimal residual disease detection
EP2788499B1 (en) 2011-12-09 2016-01-13 Illumina, Inc. Expanded radix for polymeric tags
US9499865B2 (en) 2011-12-13 2016-11-22 Adaptive Biotechnologies Corp. Detection and measurement of tissue-infiltrating lymphocytes
AU2012352153B2 (en) 2011-12-13 2018-07-26 Veracyte, Inc. Cancer diagnostics using non-coding transcripts
US20130189679A1 (en) 2011-12-20 2013-07-25 The Regents Of The University Of Michigan Pseudogenes and uses thereof
US9803188B2 (en) 2011-12-22 2017-10-31 Ibis Biosciences, Inc. Systems and methods for isolating nucleic acids
US11021737B2 (en) 2011-12-22 2021-06-01 President And Fellows Of Harvard College Compositions and methods for analyte detection
US9334491B2 (en) 2011-12-22 2016-05-10 Ibis Biosciences, Inc. Systems and methods for isolating nucleic acids from cellular samples
US10227639B2 (en) 2011-12-22 2019-03-12 President And Fellows Of Harvard College Compositions and methods for analyte detection
US10150993B2 (en) 2011-12-22 2018-12-11 Ibis Biosciences, Inc. Macromolecule positioning by electrical potential
WO2013102091A1 (en) 2011-12-28 2013-07-04 Ibis Biosciences, Inc. Nucleic acid ligation systems and methods
US9823246B2 (en) 2011-12-28 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Fluorescence enhancing plasmonic nanoscopic gold films and assays based thereon
WO2013102081A2 (en) 2011-12-29 2013-07-04 Ibis Biosciences, Inc. Macromolecule delivery to nanowells
CA2863121A1 (en) 2011-12-30 2013-07-04 Abbott Molecular Inc. Microorganism nucleic acid purification from host samples
JP2015503923A (en) 2012-01-09 2015-02-05 オスロ ウニヴェルスィテーツスィーケフース ハーエフOslo Universitetssykehus Hf Methods and biomarkers for the analysis of colorectal cancer
WO2013106737A1 (en) 2012-01-13 2013-07-18 Data2Bio Genotyping by next-generation sequencing
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
KR102028225B1 (en) 2012-01-25 2019-10-02 젠셀 바이오시스템즈 리미티드 Biomolecule isolation
WO2013112923A1 (en) 2012-01-26 2013-08-01 Nugen Technologies, Inc. Compositions and methods for targeted nucleic acid sequence enrichment and high efficiency library generation
US9701959B2 (en) 2012-02-02 2017-07-11 Invenra Inc. High throughput screen for biologically active polypeptides
US8597882B2 (en) 2012-02-03 2013-12-03 Pyrobett Pte. Ltd. Method and apparatus for conducting an assay
WO2013117595A2 (en) * 2012-02-07 2013-08-15 Illumina Cambridge Limited Targeted enrichment and amplification of nucleic acids on a support
WO2013120018A1 (en) 2012-02-09 2013-08-15 Population Diagnostics, Inc. Methods and compositions for screening and treating developmental disorders
US9506117B2 (en) 2012-02-21 2016-11-29 Oslo Universitetssykehus Hf Methods and biomarkers for detection and prognosis of cervical cancer
US20130217023A1 (en) 2012-02-22 2013-08-22 454 Life Sciences Corporation System And Method For Generation And Use Of Compact Clonally Amplified Products
ES2930180T3 (en) 2012-03-02 2022-12-07 Sequenom Inc Methods for enriching for cancer nucleic acid from a biological sample
WO2013134162A2 (en) 2012-03-05 2013-09-12 Sequenta, Inc. Determining paired immune receptor chains from frequency matched subunits
NO2694769T3 (en) 2012-03-06 2018-03-03
CA2866254A1 (en) 2012-03-06 2013-09-12 Oslo Universitetssykehus Hf Gene signatures associated with efficacy of postmastectomy radiotherapy in breast cancer
US9150853B2 (en) 2012-03-21 2015-10-06 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
US20130261984A1 (en) 2012-03-30 2013-10-03 Illumina, Inc. Methods and systems for determining fetal chromosomal abnormalities
AU2013243998B2 (en) 2012-04-03 2016-07-28 Illumina, Inc. Integrated optoelectronic read head and fluidic cartridge useful for nucleic acid sequencing
EP2834370B1 (en) 2012-04-03 2019-01-02 The Regents Of The University Of Michigan Biomarker associated with irritable bowel syndrome and crohn's disease
US8209130B1 (en) 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly
US8812422B2 (en) 2012-04-09 2014-08-19 Good Start Genetics, Inc. Variant database
US20130274148A1 (en) 2012-04-11 2013-10-17 Illumina, Inc. Portable genetic detection and analysis system and method
CN204440396U (en) * 2012-04-12 2015-07-01 维里纳塔健康公司 For determining the kit of fetus mark
WO2013155531A2 (en) 2012-04-13 2013-10-17 Bio-Rad Laboratories, Inc. Sample holder with a well having a wicking promoter
US10227635B2 (en) 2012-04-16 2019-03-12 Molecular Loop Biosolutions, Llc Capture reactions
CN116064734A (en) 2012-04-19 2023-05-05 生命技术公司 Nucleic acid amplification
EP2839026B1 (en) 2012-04-19 2016-08-10 Life Technologies Corporation Nucleic acid amplification
WO2013163210A1 (en) * 2012-04-23 2013-10-31 Philip Alexander Rolfe Method and system for detection of an organism
EP3543350B1 (en) 2012-04-24 2021-11-10 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
JP6359007B2 (en) * 2012-04-30 2018-07-18 ライフ テクノロジーズ コーポレーション Centrifugal device and method for robotic polynucleotide sample preparation system
US20150133310A1 (en) 2012-05-02 2015-05-14 Ibis Biosciences, Inc. Nucleic acid sequencing systems and methods
SG10201507700VA (en) 2012-05-08 2015-10-29 Adaptive Biotechnologies Corp Compositions and method for measuring and calibrating amplification bias in multiplexed pcr reactions
US9646132B2 (en) 2012-05-11 2017-05-09 Life Technologies Corporation Models for analyzing data from sequencing-by-synthesis operations
US10192024B2 (en) 2012-05-18 2019-01-29 454 Life Sciences Corporation System and method for generation and use of optimal nucleotide flow orders
EP2852687A4 (en) * 2012-05-21 2016-10-05 Scripps Research Inst Methods of sample preparation
US9920361B2 (en) 2012-05-21 2018-03-20 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US10289800B2 (en) 2012-05-21 2019-05-14 Ariosa Diagnostics, Inc. Processes for calculating phased fetal genomic sequences
CN102766574B (en) * 2012-05-24 2013-12-25 中国科学院北京基因组研究所 Reaction chamber for DNA sequenator
CN108587867B (en) * 2012-05-25 2021-12-17 北卡罗来纳-查佩尔山大学 Microfluidic devices, solid supports for reagents, and related methods
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
WO2013184754A2 (en) 2012-06-05 2013-12-12 President And Fellows Of Harvard College Spatial sequencing of nucleic acids using dna origami probes
US9012022B2 (en) 2012-06-08 2015-04-21 Illumina, Inc. Polymer coatings
US8895249B2 (en) 2012-06-15 2014-11-25 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
CA2877094A1 (en) 2012-06-18 2013-12-27 Nugen Technologies, Inc. Compositions and methods for negative selection of non-desired nucleic acid sequences
IL236303B (en) 2012-06-25 2022-07-01 Gen9 Inc Methods for nucleic acid assembly and high throughput sequencing
WO2014005076A2 (en) 2012-06-29 2014-01-03 The Regents Of The University Of Michigan Methods and biomarkers for detection of kidney disorders
EP2870264A4 (en) 2012-07-03 2016-03-02 Sloan Kettering Inst Cancer Quantitative assessment of human t-cell repertoire recovery after allogeneic hematopoietic stem cell transplantation
US20150011396A1 (en) 2012-07-09 2015-01-08 Benjamin G. Schroeder Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
CA2878979C (en) 2012-07-13 2021-09-14 Sequenom, Inc. Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses
US9092401B2 (en) 2012-10-31 2015-07-28 Counsyl, Inc. System and methods for detecting genetic variation
US9977861B2 (en) 2012-07-18 2018-05-22 Illumina Cambridge Limited Methods and systems for determining haplotypes and phasing of haplotypes
GB201212775D0 (en) 2012-07-18 2012-08-29 Dna Electronics Ltd Sensing apparatus and method
CA2878280A1 (en) 2012-07-19 2014-01-23 Ariosa Diagnostics, Inc. Multiplexed sequential ligation-based detection of genetic variants
CA2877493C (en) * 2012-07-24 2020-08-25 Natera, Inc. Highly multiplex pcr methods and compositions
EP2880448B1 (en) 2012-08-03 2022-06-29 Foundation Medicine, Inc. Human papilloma virus as predictor of cancer prognosis
EP2882868B1 (en) 2012-08-08 2019-07-31 H. Hoffnabb-La Roche Ag Increasing dynamic range for identifying multiple epitopes in cells
EP2882872B1 (en) 2012-08-13 2021-10-06 The Regents of The University of California Methods and systems for detecting biological components
US20140378322A1 (en) * 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
US20140378345A1 (en) * 2012-08-14 2014-12-25 10X Technologies, Inc. Compositions and methods for sample processing
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20150005199A1 (en) * 2012-08-14 2015-01-01 10X Technologies, Inc. Compositions and methods for sample processing
US10584381B2 (en) 2012-08-14 2020-03-10 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20150005200A1 (en) * 2012-08-14 2015-01-01 10X Technologies, Inc. Compositions and methods for sample processing
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
CA2881685C (en) 2012-08-14 2023-12-05 10X Genomics, Inc. Microcapsule compositions and methods
NL2017959B1 (en) 2016-12-08 2018-06-19 Illumina Inc Cartridge assembly
EP2885640B1 (en) 2012-08-16 2018-07-18 Genomedx Biosciences, Inc. Prostate cancer prognostics using biomarkers
US11913065B2 (en) 2012-09-04 2024-02-27 Guardent Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10876152B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
WO2014043143A1 (en) 2012-09-11 2014-03-20 Life Technologies Corporation Nucleic acid amplification
EP2895620B1 (en) 2012-09-11 2017-08-02 Life Technologies Corporation Nucleic acid amplification
EP2895626B1 (en) 2012-09-12 2019-12-18 The Regents of The University of California Accurate genome sequencing of single cells by single-stranded amplification and sequencing
DK2895621T3 (en) 2012-09-14 2020-11-30 Population Bio Inc METHODS AND COMPOSITION FOR DIAGNOSIS, FORECAST AND TREATMENT OF NEUROLOGICAL CONDITIONS
CA2922005A1 (en) 2012-09-27 2014-04-03 Population Diagnostics, Inc. Methods and compositions for screening and treating developmental disorders
CN105189779B (en) 2012-10-01 2018-05-11 适应生物技术公司 The immunocompetence carried out by adaptive immunity receptor diversity and Clonal characterization is assessed
US10329608B2 (en) 2012-10-10 2019-06-25 Life Technologies Corporation Methods, systems, and computer readable media for repeat sequencing
US9177098B2 (en) 2012-10-17 2015-11-03 Celmatix Inc. Systems and methods for determining the probability of a pregnancy at a selected point in time
US10162800B2 (en) 2012-10-17 2018-12-25 Celmatix Inc. Systems and methods for determining the probability of a pregnancy at a selected point in time
US10150996B2 (en) 2012-10-19 2018-12-11 Adaptive Biotechnologies Corp. Quantification of adaptive immune cell genomes in a complex mixture of cells
WO2014068407A2 (en) * 2012-10-26 2014-05-08 Sysmex Inostics Gmbh Emulsion systems and emulsion-based amplification of nucleic acid
US9651539B2 (en) 2012-10-28 2017-05-16 Quantapore, Inc. Reducing background fluorescence in MEMS materials by low energy ion beam treatment
EP2912468B1 (en) 2012-10-29 2018-09-12 The Johns Hopkins University Papanicolaou test for ovarian and endometrial cancers
AU2013337277B2 (en) 2012-11-05 2018-03-08 Foundation Medicine, Inc. Novel NTRK1 fusion molecules and uses thereof
US9776182B2 (en) 2012-11-27 2017-10-03 Gencell Biosystems Ltd. Handling liquid samples
WO2014088979A1 (en) * 2012-12-03 2014-06-12 Yilin Zhang Compositions and methods of nucleic acid preparation and analyses
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9836577B2 (en) 2012-12-14 2017-12-05 Celmatix, Inc. Methods and devices for assessing risk of female infertility
EP3567116A1 (en) 2012-12-14 2019-11-13 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP2746405B1 (en) 2012-12-23 2015-11-04 HS Diagnomics GmbH Methods and primer sets for high throughput PCR sequencing
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9932626B2 (en) 2013-01-15 2018-04-03 Quanterix Corporation Detection of DNA or RNA using single molecule arrays and other techniques
CN105190656B (en) 2013-01-17 2018-01-16 佩索纳里斯公司 Method and system for genetic analysis
EP3939614A1 (en) 2013-01-18 2022-01-19 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014116729A2 (en) 2013-01-22 2014-07-31 The Board Of Trustees Of The Leland Stanford Junior University Haplotying of hla loci with ultra-deep shotgun sequencing
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US9411930B2 (en) 2013-02-01 2016-08-09 The Regents Of The University Of California Methods for genome assembly and haplotype phasing
GB2547875B (en) 2013-02-01 2017-12-13 Univ California Methods for meta-genomics analysis of microbes
EP2954065B1 (en) * 2013-02-08 2021-07-28 10X Genomics, Inc. Partitioning and processing of analytes and other species
US9512422B2 (en) 2013-02-26 2016-12-06 Illumina, Inc. Gel patterned surfaces
EP2964781B1 (en) 2013-03-08 2018-01-10 Roche Diagnostics GmbH Egfr mutation blood testing
US10138509B2 (en) 2013-03-12 2018-11-27 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
EP3597774A1 (en) 2013-03-13 2020-01-22 Sequenom, Inc. Primers for dna methylation analysis
CN105378108A (en) 2013-03-13 2016-03-02 雅培分子公司 Systems and methods for isolating nucleic acids
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US10443092B2 (en) 2013-03-13 2019-10-15 President And Fellows Of Harvard College Methods of elongating DNA
US9701999B2 (en) 2013-03-14 2017-07-11 Abbott Molecular, Inc. Multiplex methylation-specific amplification systems and methods
EP2971154A4 (en) 2013-03-14 2017-03-01 Ibis Biosciences, Inc. Nucleic acid control panels
US20140296080A1 (en) 2013-03-14 2014-10-02 Life Technologies Corporation Methods, Systems, and Computer Readable Media for Evaluating Variant Likelihood
EP2971159B1 (en) 2013-03-14 2019-05-08 Molecular Loop Biosolutions, LLC Methods for analyzing nucleic acids
US9146248B2 (en) 2013-03-14 2015-09-29 Intelligent Bio-Systems, Inc. Apparatus and methods for purging flow cells in nucleic acid sequencing instruments
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
DK3327123T3 (en) 2013-03-15 2019-11-25 Lineage Biosciences Inc METHODS FOR SEQUENCING THE IMMUN REPERTOIR
CN113337604A (en) 2013-03-15 2021-09-03 莱兰斯坦福初级大学评议会 Identification and use of circulating nucleic acid tumor markers
CN105051525B (en) 2013-03-15 2019-07-26 生命科技公司 Chemical device with thin conducting element
CN105264366B (en) 2013-03-15 2019-04-16 生命科技公司 Chemical sensor with consistent sensor surface area
GB2528205B (en) 2013-03-15 2020-06-03 Guardant Health Inc Systems and methods to detect rare mutations and copy number variation
CN105283758B (en) 2013-03-15 2018-06-05 生命科技公司 Chemical sensor with consistent sensor surface area
BR112015022490A2 (en) 2013-03-15 2017-07-18 Veracyte Inc methods and compositions for sample classification
WO2014144092A1 (en) 2013-03-15 2014-09-18 Nugen Technologies, Inc. Sequential sequencing
CA2906076A1 (en) 2013-03-15 2014-09-18 Abvitro, Inc. Single cell bar-coding for antibody discovery
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
US9591268B2 (en) 2013-03-15 2017-03-07 Qiagen Waltham, Inc. Flow cell alignment methods and systems
EP2971141B1 (en) 2013-03-15 2018-11-28 Genapsys, Inc. Systems for biological analysis
EP3533884A1 (en) 2013-03-15 2019-09-04 Ibis Biosciences, Inc. Dna sequences to assess contamination in dna sequencing
CN105358709B (en) 2013-03-15 2018-12-07 雅培分子公司 System and method for detecting genome copy numbers variation
US10767221B2 (en) 2013-03-15 2020-09-08 Illumina, Inc. Enzyme-linked nucleotides
JP6441893B2 (en) * 2013-03-19 2018-12-19 ディレクティド・ジェノミクス・エル・エル・シー Target sequence enrichment
EP2986741B1 (en) 2013-04-17 2019-07-24 Agency For Science, Technology And Research Method for generating extended sequence reads
US10486152B2 (en) 2013-04-19 2019-11-26 Siemens Healthcare Diagnostics Inc. Non-contact micro droplet dispenser and method
RU2578009C2 (en) * 2013-05-08 2016-03-20 Закрытое акционерное общество "ЕВРОГЕН" Method for identifying native pairs of dna or rna fragments in same living cells
US20140336063A1 (en) 2013-05-09 2014-11-13 Life Technologies Corporation Windowed Sequencing
US10160995B2 (en) * 2013-05-13 2018-12-25 Qiagen Waltham, Inc. Analyte enrichment methods and compositions
CN105283560B (en) 2013-05-24 2018-11-30 昆塔波尔公司 The foranalysis of nucleic acids detected by mixed FRET based on nano-pore
US8847799B1 (en) 2013-06-03 2014-09-30 Good Start Genetics, Inc. Methods and systems for storing sequence read data
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
KR101648252B1 (en) * 2014-01-28 2016-08-16 연세대학교 산학협력단 Method of collecting nucleic acid fragments separated from the sequencing process
US10526640B2 (en) 2013-06-19 2020-01-07 Industry-Academic Cooperation Foundation, Yonsei University Methods for retrieving sequence-verified nucleic acid fragments and apparatuses for amplifying sequence verified nucleic acid fragments
WO2014210225A1 (en) 2013-06-25 2014-12-31 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
PL3017065T3 (en) 2013-07-01 2019-03-29 Illumina, Inc. Catalyst-free surface functionalization and polymer grafting
US9708657B2 (en) 2013-07-01 2017-07-18 Adaptive Biotechnologies Corp. Method for generating clonotype profiles using sequence tags
EP3241913B1 (en) 2013-07-03 2019-02-20 Illumina, Inc. System for sequencing by orthogonal synthesis
US9926597B2 (en) 2013-07-26 2018-03-27 Life Technologies Corporation Control nucleic acid sequences for use in sequencing-by-synthesis and methods for designing the same
DK3030682T3 (en) 2013-08-05 2020-09-14 Twist Bioscience Corp DE NOVO SYNTHESIZED GENE LIBRARIES
CA2915875C (en) 2013-08-08 2018-09-18 Illumina, Inc. Fluidic system for reagent delivery to a flow cell
US20150051117A1 (en) * 2013-08-16 2015-02-19 President And Fellows Of Harvard College Assembly of Nucleic Acid Sequences in Emulsions
EP2840148B1 (en) 2013-08-23 2019-04-03 F. Hoffmann-La Roche AG Methods for nucleic acid amplification
EP2848698A1 (en) 2013-08-26 2015-03-18 F. Hoffmann-La Roche AG System and method for automated nucleic acid amplification
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
CN105916689A (en) 2013-08-30 2016-08-31 Illumina公司 Manipulation of droplets on hydrophilic or variegated-hydrophilic surfaces
EP3039161B1 (en) 2013-08-30 2021-10-06 Personalis, Inc. Methods and systems for genomic analysis
CN105764490B (en) * 2013-09-24 2020-10-09 加利福尼亚大学董事会 Encapsulated sensors and sensing systems for bioassays and diagnostics and methods of making and using the same
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
WO2015051275A1 (en) 2013-10-03 2015-04-09 Personalis, Inc. Methods for analyzing genotypes
US10410739B2 (en) 2013-10-04 2019-09-10 Life Technologies Corporation Methods and systems for modeling phasing effects in sequencing using termination chemistry
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
DK3572527T3 (en) 2013-10-17 2021-08-23 Illumina Inc METHODS AND PREPARATIONS FOR THE MANUFACTURE OF NUCLEIC ACID LIBRARIES
WO2015057565A1 (en) 2013-10-18 2015-04-23 Good Start Genetics, Inc. Methods for assessing a genomic region of a subject
US10851414B2 (en) 2013-10-18 2020-12-01 Good Start Genetics, Inc. Methods for determining carrier status
US9897986B2 (en) 2013-10-29 2018-02-20 Regal Beloit America, Inc. System and method for enabling a motor controller to communicate using multiple different communication protocols
CN103540672B (en) * 2013-10-29 2015-04-08 中国科学技术大学 Quick identification and separation method of affine nucleic acid molecule
WO2015069798A1 (en) * 2013-11-05 2015-05-14 The Regents Of The University Of California Single-cell forensic short tandem repeat typing within microfluidic droplets
BR112016010095A2 (en) 2013-11-07 2017-09-12 Univ Leland Stanford Junior free cell nucleic acids for human microbiome analysis and components thereof.
WO2015069634A1 (en) 2013-11-08 2015-05-14 President And Fellows Of Harvard College Microparticles, methods for their preparation and use
EP2891722B1 (en) 2013-11-12 2018-10-10 Population Bio, Inc. Methods and compositions for diagnosing, prognosing, and treating endometriosis
CN106103737B (en) 2013-11-12 2020-04-07 生命科技公司 System and method for emulsion breaking
EP3068883B1 (en) 2013-11-13 2020-04-29 Nugen Technologies, Inc. Compositions and methods for identification of a duplicate sequencing read
CN104630202A (en) * 2013-11-13 2015-05-20 北京大学 Amplification method capable of decreasing bias generation during trace nucleic acid substance entire amplification
WO2015073999A1 (en) 2013-11-18 2015-05-21 Integenx Inc. Cartridges and instruments for sample analysis
CN105940024B (en) 2013-12-05 2019-03-15 生捷科技控股公司 The surface of modification
WO2015085274A1 (en) 2013-12-05 2015-06-11 Centrillion Technology Holdings Corporation Methods for sequencing nucleic acids
EP3628747B1 (en) 2013-12-05 2022-10-05 Centrillion Technology Holdings Corporation Fabrication of patterned arrays
AU2014364180B2 (en) 2013-12-09 2021-03-04 Illumina, Inc. Methods and compositions for targeted nucleic acid sequencing
WO2015089243A1 (en) 2013-12-11 2015-06-18 The Regents For Of The University Of California Methods for labeling dna fragments to recontruct physical linkage and phase
US10125393B2 (en) 2013-12-11 2018-11-13 Genapsys, Inc. Systems and methods for biological analysis and computation
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US9909181B2 (en) 2013-12-13 2018-03-06 Northwestern University Biomarkers for post-traumatic stress states
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
WO2015095355A2 (en) 2013-12-17 2015-06-25 The Brigham And Women's Hospital, Inc. Detection of an antibody against a pathogen
SG11201604923XA (en) 2013-12-28 2016-07-28 Guardant Health Inc Methods and systems for detecting genetic variants
WO2015103225A1 (en) 2013-12-31 2015-07-09 Illumina, Inc. Addressable flow cell using patterned electrodes
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
WO2015107430A2 (en) 2014-01-16 2015-07-23 Oslo Universitetssykehus Hf Methods and biomarkers for detection and prognosis of cervical cancer
US9587268B2 (en) 2014-01-29 2017-03-07 Agilent Technologies Inc. Fast hybridization for next generation sequencing target enrichment
US9387451B2 (en) 2014-02-03 2016-07-12 International Business Machines Corporation Flow cell array and uses thereof
EP3105326A4 (en) 2014-02-10 2018-01-10 Gencell Biosystems Limited Composite liquid cell (clc) mediated nucleic acid library preparation device, and methods for using the same
WO2015131107A1 (en) 2014-02-28 2015-09-03 Nugen Technologies, Inc. Reduced representation bisulfite sequencing with diversity adaptors
AU2015227054A1 (en) 2014-03-05 2016-09-22 Adaptive Biotechnologies Corporation Methods using randomer-containing synthetic molecules
EP3736344A1 (en) 2014-03-13 2020-11-11 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
WO2015141649A1 (en) * 2014-03-20 2015-09-24 ユニバーサル・バイオ・リサーチ株式会社 Device for automating nucleic acid amplification, and device for automating nucleic acid amplification analysis
US11060139B2 (en) 2014-03-28 2021-07-13 Centrillion Technology Holdings Corporation Methods for sequencing nucleic acids
US10066265B2 (en) 2014-04-01 2018-09-04 Adaptive Biotechnologies Corp. Determining antigen-specific t-cells
US11390921B2 (en) 2014-04-01 2022-07-19 Adaptive Biotechnologies Corporation Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs)
US20150284715A1 (en) * 2014-04-07 2015-10-08 Qiagen Gmbh Enrichment Methods
AU2015243445B2 (en) 2014-04-10 2020-05-28 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
EP3132060B1 (en) 2014-04-18 2019-03-13 Genapsys Inc. Methods and systems for nucleic acid amplification
CN109971852A (en) 2014-04-21 2019-07-05 纳特拉公司 Detect the mutation and ploidy in chromosome segment
WO2015175530A1 (en) 2014-05-12 2015-11-19 Gore Athurva Methods for detecting aneuploidy
GB2544198B (en) 2014-05-21 2021-01-13 Integenx Inc Fluidic cartridge with valve mechanism
US10760109B2 (en) 2014-06-06 2020-09-01 The Regents Of The University Of Michigan Compositions and methods for characterizing and diagnosing periodontal disease
US9534215B2 (en) 2014-06-11 2017-01-03 Life Technologies Corporation Systems and methods for substrate enrichment
US20150361481A1 (en) * 2014-06-13 2015-12-17 Life Technologies Corporation Multiplex nucleic acid amplification
CN114214314A (en) 2014-06-24 2022-03-22 生物辐射实验室股份有限公司 Digital PCR barcoding
CN106575322B (en) 2014-06-26 2019-06-18 10X基因组学有限公司 The method and system of nucleic acid sequence assembly
CN106795553B (en) 2014-06-26 2021-06-04 10X基因组学有限公司 Methods of analyzing nucleic acids from individual cells or cell populations
BR112016030008A2 (en) 2014-06-27 2017-10-24 Abbott Lab method for detecting human pegivirus 2 infection in an individual, for detecting human pegivirus 2 nucleic acid and for detecting human pegivirus 2 in a sample, and, composition
US10697007B2 (en) 2014-06-27 2020-06-30 The Regents Of The University Of California PCR-activated sorting (PAS)
US10179932B2 (en) 2014-07-11 2019-01-15 President And Fellows Of Harvard College Methods for high-throughput labelling and detection of biological features in situ using microscopy
US10208350B2 (en) 2014-07-17 2019-02-19 Celmatix Inc. Methods and systems for assessing infertility and related pathologies
MX2017001134A (en) 2014-07-24 2017-10-11 Abbott Molecular Inc Compositions and methods for the detection and analysis of mycobacterium tuberculosis.
EP4219710A3 (en) 2014-08-01 2023-08-16 Dovetail Genomics, LLC Tagging nucleic acids for sequence assembly
WO2016022696A1 (en) 2014-08-05 2016-02-11 The Trustees Of Columbia University In The City Of New York Method of isolating aptamers for minimal residual disease detection
GB201413929D0 (en) 2014-08-06 2014-09-17 Geneseque As Method
SG11201700891SA (en) 2014-08-06 2017-03-30 Nugen Technologies Inc Digital measurements from targeted sequencing
WO2016025452A1 (en) 2014-08-11 2016-02-18 Luminex Corporation Probes for improved melt discrimination and multiplexing in nucleic acids assays
JP2017529199A (en) 2014-08-12 2017-10-05 ネクストジェン ジェイン, インコーポレイテッド System and method for monitoring health based on collected body fluid
US10435685B2 (en) 2014-08-19 2019-10-08 Pacific Biosciences Of California, Inc. Compositions and methods for enrichment of nucleic acids
US9982250B2 (en) 2014-08-21 2018-05-29 Illumina Cambridge Limited Reversible surface functionalization
GB2558326B (en) 2014-09-05 2021-01-20 Population Bio Inc Methods and compositions for inhibiting and treating neurological conditions
CA3180239A1 (en) 2014-09-08 2016-03-17 Becton, Dickinson And Company Enhanced platen for pharmaceutical compounding
WO2016040446A1 (en) 2014-09-10 2016-03-17 Good Start Genetics, Inc. Methods for selectively suppressing non-target sequences
CN106715713B (en) * 2014-09-12 2020-11-03 深圳华大智造科技有限公司 Kit and application thereof in nucleic acid sequencing
CN105400864B (en) * 2014-09-12 2020-04-14 深圳华大基因股份有限公司 Method for constructing sequencing libraries based on blood samples and use thereof in determining fetal genetic abnormalities
EP3192869B1 (en) * 2014-09-12 2019-03-27 MGI Tech Co., Ltd. Isolated oligonucleotide and use thereof in nucleic acid sequencing
EP3950944A1 (en) 2014-09-15 2022-02-09 AbVitro LLC High-throughput nucleotide library sequencing
EP3194643B1 (en) 2014-09-17 2020-02-19 Ibis Biosciences, Inc. Sequencing by synthesis using pulse read optics
AU2015318017B2 (en) 2014-09-18 2022-02-03 Illumina, Inc. Methods and systems for analyzing nucleic acid sequencing data
US10429399B2 (en) 2014-09-24 2019-10-01 Good Start Genetics, Inc. Process control for increased robustness of genetic assays
CA2963604C (en) 2014-10-10 2023-02-14 Quantapore, Inc. Nanopore-based polymer analysis with mutually-quenching fluorescent labels
US10344317B2 (en) 2014-10-13 2019-07-09 Mgi Tech Co., Ltd Method and a sequence combination for producing nucleic acid fragments
US10676787B2 (en) 2014-10-13 2020-06-09 Life Technologies Corporation Methods, systems, and computer-readable media for accelerated base calling
EP3209419A4 (en) 2014-10-22 2018-10-03 The Regents of The University of California High definition microdroplet printer
CN107106983B (en) 2014-10-22 2021-04-16 尹特根埃克斯有限公司 Systems and methods for sample preparation, processing, and analysis
CA2964790C (en) * 2014-10-24 2023-02-21 Quantapore, Inc. Efficient optical analysis of polymers using arrays of nanostructures
KR20170073667A (en) 2014-10-29 2017-06-28 10엑스 제노믹스, 인크. Methods and compositions for targeted nucleic acid sequencing
AU2015339191A1 (en) 2014-10-29 2017-05-18 Adaptive Biotechnologies Corp. Highly-multiplexed simultaneous detection of nucleic acids encoding paired adaptive immune receptor heterodimers from many samples
EP4026913A1 (en) 2014-10-30 2022-07-13 Personalis, Inc. Methods for using mosaicism in nucleic acids sampled distal to their origin
PT3212684T (en) 2014-10-31 2020-02-03 Illumina Cambridge Ltd Novel polymers and dna copolymer coatings
CN113549525A (en) * 2014-11-04 2021-10-26 凸版印刷株式会社 Nucleic acid introduction method, nucleic acid detection method, biological component analysis method, reagent kit, and array device for quantitative determination of biological component
CN111024936A (en) 2014-11-05 2020-04-17 纳迈达斯生物科技中心 Metal composites for enhanced imaging
CN114606309A (en) 2014-11-05 2022-06-10 威拉赛特公司 Diagnostic system and method using machine learning and high-dimensional transcription data
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
WO2016073237A1 (en) 2014-11-05 2016-05-12 Illumina Cambridge Limited Reducing dna damage during sample preparation and sequencing using siderophore chelators
US10246701B2 (en) 2014-11-14 2019-04-02 Adaptive Biotechnologies Corp. Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture
WO2016081712A1 (en) 2014-11-19 2016-05-26 Bigdatabio, Llc Systems and methods for genomic manipulations and analysis
WO2016081585A1 (en) * 2014-11-20 2016-05-26 Ampliwise Inc. Compositions and methods for nucleic acid amplification
US10233490B2 (en) 2014-11-21 2019-03-19 Metabiotech Corporation Methods for assembling and reading nucleic acid sequences from mixed populations
EP3498866A1 (en) 2014-11-25 2019-06-19 Adaptive Biotechnologies Corp. Characterization of adaptive immune response to vaccination or infection using immune repertoire sequencing
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US20160177386A1 (en) 2014-12-18 2016-06-23 Life Technologies Corporation Calibration panels and methods for designing the same
EP3234575B1 (en) 2014-12-18 2023-01-25 Life Technologies Corporation Apparatus for measuring analytes using large scale fet arrays
KR102593647B1 (en) 2014-12-18 2023-10-26 라이프 테크놀로지스 코포레이션 High data rate integrated circuit with transmitter configuration
EP3237616A1 (en) 2014-12-24 2017-11-01 Keygene N.V. Backbone mediated mate pair sequencing
EP4095261A1 (en) 2015-01-06 2022-11-30 Molecular Loop Biosciences, Inc. Screening for structural variants
CN112126675B (en) 2015-01-12 2022-09-09 10X基因组学有限公司 Method and system for preparing nucleic acid sequencing library and library prepared by using same
CN107209814B (en) 2015-01-13 2021-10-15 10X基因组学有限公司 System and method for visualizing structural variation and phase information
GB201501012D0 (en) * 2015-01-21 2015-03-04 Base4 Innovation Ltd Improved droplet sequencing apparatus and method
US20180013998A1 (en) * 2015-01-30 2018-01-11 Ent. Services Development Corporation Lp Relationship preserving projection of digital objects
GB2548763B (en) 2015-02-02 2021-07-21 Hitachi High Tech Corp Multicolor fluorescence analysis device
WO2016125251A1 (en) * 2015-02-03 2016-08-11 株式会社日立製作所 Flow cell device for single cell analysis, and single cell analysis device
WO2016126987A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
AU2016215304B2 (en) 2015-02-04 2022-01-27 The Regents Of The University Of California Sequencing of nucleic acids via barcoding in discrete entities
US10669304B2 (en) 2015-02-04 2020-06-02 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
CA2975529A1 (en) 2015-02-09 2016-08-18 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
US10421993B2 (en) 2015-02-11 2019-09-24 Paragon Genomics, Inc. Methods and compositions for reducing non-specific amplification products
EP3256584B1 (en) * 2015-02-11 2020-03-25 Paragon Genomics, Inc. Method and compositions for reducing non-specific amplification products
WO2016134034A1 (en) 2015-02-17 2016-08-25 Dovetail Genomics Llc Nucleic acid sequence assembly
JP6773687B2 (en) * 2015-02-17 2020-10-21 エムジーアイ テック カンパニー リミテッドMGI Tech Co., Ltd. DNA sequencing using controlled strand substitutions
EP3822361A1 (en) 2015-02-20 2021-05-19 Takara Bio USA, Inc. Method for rapid accurate dispensing, visualization and analysis of single cells
EP3262188B1 (en) 2015-02-24 2021-05-05 10X Genomics, Inc. Methods for targeted nucleic acid sequence coverage
US11047008B2 (en) 2015-02-24 2021-06-29 Adaptive Biotechnologies Corporation Methods for diagnosing infectious disease and determining HLA status using immune repertoire sequencing
WO2016137973A1 (en) 2015-02-24 2016-09-01 10X Genomics Inc Partition processing methods and systems
CN107614096A (en) 2015-03-13 2018-01-19 哈佛学院院长及董事 Use amplification assay cell
EP4089398A1 (en) 2015-03-24 2022-11-16 Illumina, Inc. Carrier assemblies and systems for imaging samples for biological or chemical analysis
US11807896B2 (en) 2015-03-26 2023-11-07 Dovetail Genomics, Llc Physical linkage preservation in DNA storage
WO2016160822A1 (en) * 2015-03-30 2016-10-06 Verily Life Sciences Llc Functionalized nanoparticles, methods and in vivo diagnostic system
WO2016160965A1 (en) * 2015-03-30 2016-10-06 Rubicon Genomics, Inc. Methods and compositions for repair of dna ends by multiple enzymatic activities
EP3277294A4 (en) 2015-04-01 2018-11-14 Adaptive Biotechnologies Corp. Method of identifying human compatible t cell receptors specific for an antigenic target
EP3277840A1 (en) 2015-04-02 2018-02-07 The Jackson Laboratory Method for detecting genomic variations using circularised mate-pair library and shotgun sequencing
US10774374B2 (en) 2015-04-10 2020-09-15 Spatial Transcriptomics AB and Illumina, Inc. Spatially distinguished, multiplex nucleic acid analysis of biological specimens
WO2016172377A1 (en) 2015-04-21 2016-10-27 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
EP3091026B1 (en) 2015-05-08 2019-02-20 Centrillion Technology Holdings Corporation Disulfide-linked reversible terminators
DK3294911T3 (en) 2015-05-11 2020-11-16 Illumina Inc Platform for discovery and analysis of therapeutic agents
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
EP3295345B1 (en) 2015-05-14 2023-01-25 Life Technologies Corporation Barcode sequences, and related systems and methods
WO2016196358A1 (en) 2015-05-29 2016-12-08 Epicentre Technologies Corporation Methods of analyzing nucleic acids
EP3527672B1 (en) 2015-06-09 2022-10-05 Centrillion Technology Holdings Corporation Oligonucleotide arrays for sequencing nucleic acids
CN107849600A (en) 2015-06-09 2018-03-27 生命技术公司 For the method for molecular labeling, system, composition, kit, device and computer-readable media
EP3320399A1 (en) 2015-07-07 2018-05-16 Illumina, Inc. Selective surface patterning via nanoimprinting
US10526664B2 (en) 2015-07-14 2020-01-07 Abbott Molecular Inc. Compositions and methods for identifying drug resistant tuberculosis
US10392613B2 (en) 2015-07-14 2019-08-27 Abbott Molecular Inc. Purification of nucleic acids using copper-titanium oxides
US20180207920A1 (en) 2015-07-17 2018-07-26 Illumina, Inc. Polymer sheets for sequencing applications
US10150994B2 (en) 2015-07-22 2018-12-11 Qiagen Waltham, Inc. Modular flow cells and methods of sequencing
US11155864B2 (en) 2015-07-30 2021-10-26 Illumina, Inc. Orthogonal deblocking of nucleotides
EP3332034A4 (en) 2015-08-06 2019-01-02 Arc Bio, LLC Systems and methods for genomic analysis
US11286531B2 (en) 2015-08-11 2022-03-29 The Johns Hopkins University Assaying ovarian cyst fluid
WO2017034868A1 (en) 2015-08-24 2017-03-02 Illumina, Inc. In-line pressure accumulator and flow-control system for biological or chemical assays
US10906044B2 (en) 2015-09-02 2021-02-02 Illumina Cambridge Limited Methods of improving droplet operations in fluidic systems with a filler fluid including a surface regenerative silane
US9938572B1 (en) 2015-09-08 2018-04-10 Raindance Technologies, Inc. System and method for forming an emulsion
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
WO2017049231A1 (en) 2015-09-18 2017-03-23 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
US11512347B2 (en) 2015-09-22 2022-11-29 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
US10465232B1 (en) 2015-10-08 2019-11-05 Trace Genomics, Inc. Methods for quantifying efficiency of nucleic acid extraction and detection
CN108289797B (en) 2015-10-13 2022-01-28 哈佛学院院长及董事 Systems and methods for making and using gel microspheres
CN108368542B (en) 2015-10-19 2022-04-08 多弗泰尔基因组学有限责任公司 Methods for genome assembly, haplotype phasing, and target-independent nucleic acid detection
MX2018005611A (en) 2015-11-03 2018-11-09 Harvard College Method and apparatus for volumetric imaging of a three-dimensional nucleic acid containing matrix.
US11371094B2 (en) 2015-11-19 2022-06-28 10X Genomics, Inc. Systems and methods for nucleic acid processing using degenerate nucleotides
CA3006867A1 (en) 2015-12-01 2017-06-08 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
WO2017096110A1 (en) * 2015-12-04 2017-06-08 Siemens Healthcare Diagnostics Inc. Method and device for optimizing the process of identification of pathogens
US10774370B2 (en) 2015-12-04 2020-09-15 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
CN108431223A (en) 2016-01-08 2018-08-21 生物辐射实验室股份有限公司 Multiple pearls under per drop resolution
TW201730563A (en) 2016-01-11 2017-09-01 伊路米納有限公司 Detection apparatus having a microfluorometer, a fluidic system, and a flow cell latch clamp module
US20190169602A1 (en) 2016-01-12 2019-06-06 Seqwell, Inc. Compositions and methods for sequencing nucleic acids
US10612089B2 (en) * 2016-01-12 2020-04-07 Bio-Rad Laboratories, Inc. Synthesizing barcoding sequences utilizing phase-shift blocks and uses thereof
EP4012416A1 (en) 2016-01-22 2022-06-15 Purdue Research Foundation Use of a charged mass labeling system for the detection of target analytes
JP6685138B2 (en) 2016-01-27 2020-04-22 シスメックス株式会社 Quality control method for nucleic acid amplification, quality control reagent and reagent kit therefor
WO2017139260A1 (en) 2016-02-08 2017-08-17 RGENE, Inc. Multiple ligase compositions, systems, and methods
SG11201806757XA (en) 2016-02-11 2018-09-27 10X Genomics Inc Systems, methods, and media for de novo assembly of whole genome sequence data
JP2017143783A (en) * 2016-02-17 2017-08-24 国立大学法人 筑波大学 Suspension for parallel reaction, parallel reaction method, screening method and examination method
EP3420108A4 (en) 2016-02-23 2019-11-06 Dovetail Genomics LLC Generation of phased read-sets for genome assembly and haplotype phasing
WO2017155858A1 (en) 2016-03-07 2017-09-14 Insilixa, Inc. Nucleic acid sequence identification using solid-phase cyclic single base extension
EP3430154B1 (en) 2016-03-14 2020-11-11 Rgene, Inc. Hyper-thermostable lysine-mutant ssdna/rna ligases
EP4071250A1 (en) 2016-03-22 2022-10-12 Myriad Women's Health, Inc. Combinatorial dna screening
KR102326769B1 (en) 2016-03-25 2021-11-17 카리우스, 인코포레이티드 Synthetic nucleic acid spike-ins
ES2861350T3 (en) 2016-03-28 2021-10-06 Illumina Inc Multi-plane microarrays
WO2017180909A1 (en) 2016-04-13 2017-10-19 Nextgen Jane, Inc. Sample collection and preservation devices, systems and methods
US11355328B2 (en) 2016-04-13 2022-06-07 Purdue Research Foundation Systems and methods for isolating a target ion in an ion trap using a dual frequency waveform
ITUA20162640A1 (en) * 2016-04-15 2017-10-15 Menarini Silicon Biosystems Spa METHOD AND KIT FOR THE GENERATION OF DNA LIBRARIES FOR PARALLEL MAXIMUM SEQUENCING
CN109415761B (en) 2016-04-25 2022-09-20 哈佛学院董事及会员团体 Hybrid chain reaction method for in situ molecular detection
CN105821482B (en) * 2016-04-29 2018-04-10 李星军 A kind of biochemistry micro- reaction system, high-flux sequence build storehouse instrument and application
US10077459B2 (en) 2016-05-04 2018-09-18 General Electric Company Cell-free protein expression using rolling circle amplification product
US10619205B2 (en) 2016-05-06 2020-04-14 Life Technologies Corporation Combinatorial barcode sequences, and related systems and methods
IL262946B2 (en) 2016-05-13 2023-03-01 Dovetail Genomics Llc Recovering long-range linkage information from preserved samples
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
KR102171865B1 (en) 2016-05-18 2020-10-29 일루미나, 인코포레이티드 Self-assembled patterning using patterned hydrophobic surfaces
US11299783B2 (en) 2016-05-27 2022-04-12 Personalis, Inc. Methods and systems for genetic analysis
EP3469078B1 (en) 2016-06-10 2024-03-27 Life Technologies Corporation Methods and compositions for nucleic acid amplification
US20190185921A1 (en) * 2016-06-14 2019-06-20 Base4 Innovation Ltd Polynucleotide separation method
US11091795B2 (en) 2016-07-11 2021-08-17 Arizona Board Of Regents On Behalf Of The University Of Arizona Compositions and methods for diagnosing and treating arrhythmias
EP3488017A4 (en) 2016-07-20 2020-02-26 Genapsys Inc. Systems and methods for nucleic acid sequencing
CA3020629A1 (en) 2016-07-21 2018-01-25 Takara Bio Usa, Inc. Multi-z imaging and dispensing with multi-well devices
US11142791B2 (en) 2016-08-10 2021-10-12 The Regents Of The University Of California Combined multiple-displacement amplification and PCR in an emulsion microdroplet
EP3500672A4 (en) 2016-08-22 2020-05-20 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
CA3034739A1 (en) 2016-08-22 2018-03-01 Biolumic Limited System, device and methods of seed treatment
EP3504348B1 (en) 2016-08-24 2022-12-14 Decipher Biosciences, Inc. Use of genomic signatures to predict responsiveness of patients with prostate cancer to post-operative radiation therapy
CN109923214A (en) * 2016-08-31 2019-06-21 哈佛学院董事及会员团体 The method of full-length genome digital amplification
CN109923216A (en) 2016-08-31 2019-06-21 哈佛学院董事及会员团体 By the detection combination of biomolecule to the method for the single test using fluorescent in situ sequencing
CN109983125A (en) 2016-08-31 2019-07-05 哈佛学院董事及会员团体 The method for generating the nucleic acid sequence library for detecting by fluorescent in situ sequencing
WO2018045162A1 (en) 2016-09-01 2018-03-08 Biogen Ma Inc. Biomarkers predictive of primary progressive multiple sclerosis and uses thereof
US20180073063A1 (en) * 2016-09-09 2018-03-15 Tl Biolabs Corp. Reusable microarray compositions and methods
US10428325B1 (en) 2016-09-21 2019-10-01 Adaptive Biotechnologies Corporation Identification of antigen-specific B cell receptors
US10417457B2 (en) 2016-09-21 2019-09-17 Twist Bioscience Corporation Nucleic acid based data storage
CN109790576A (en) 2016-09-27 2019-05-21 优比欧迈公司 The method and system of library preparation and sequencing based on CRISPR
WO2018064116A1 (en) 2016-09-28 2018-04-05 Illumina, Inc. Methods and systems for data compression
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US10190155B2 (en) 2016-10-14 2019-01-29 Nugen Technologies, Inc. Molecular tag attachment and transfer
IL290157B2 (en) 2016-10-14 2023-09-01 Illumina Inc Cartridge assembly
US11725232B2 (en) 2016-10-31 2023-08-15 The Hong Kong University Of Science And Technology Compositions, methods and kits for detection of genetic variants for alzheimer's disease
WO2018089944A1 (en) 2016-11-11 2018-05-17 uBiome, Inc. Method and system for fragment assembly and sequence identification
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
EP3554514A4 (en) 2016-12-16 2020-08-05 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
EP3555290B1 (en) 2016-12-19 2022-11-02 Bio-Rad Laboratories, Inc. Droplet tagging contiguity preserved tagmented dna
CN110062809B (en) * 2016-12-20 2023-05-05 豪夫迈·罗氏有限公司 Single-stranded circular DNA library for sequencing circular consensus sequences
CA3047328A1 (en) 2016-12-21 2018-06-28 The Regents Of The University Of California Single cell genomic sequencing using hydrogel based droplets
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2018121587A1 (en) * 2016-12-27 2018-07-05 深圳华大生命科学研究院 Single fluorescent dye based sequencing method
HUE059673T2 (en) * 2017-01-04 2022-12-28 Mgi Tech Co Ltd Nucleic acid sequencing using affinity reagents
GB201704754D0 (en) 2017-01-05 2017-05-10 Illumina Inc Kinetic exclusion amplification of nucleic acid libraries
ES2874143T3 (en) 2017-01-10 2021-11-04 Paragon Genomics Inc Methods and compositions to reduce redundant, molecular barcodes created in primer extension reactions
CA3050984A1 (en) 2017-01-20 2018-07-26 Decipher Biosciences, Inc. Molecular subtyping, prognosis, and treatment of bladder cancer
WO2018140966A1 (en) 2017-01-30 2018-08-02 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
GB201701688D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials in non-recliner layouts
GB201701689D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials of non-closed shapes
GB201701686D0 (en) 2017-02-01 2017-03-15 Illunina Inc System & method with fiducials having offset layouts
US10240205B2 (en) 2017-02-03 2019-03-26 Population Bio, Inc. Methods for assessing risk of developing a viral disease using a genetic test
US10995333B2 (en) 2017-02-06 2021-05-04 10X Genomics, Inc. Systems and methods for nucleic acid preparation
AU2018225348A1 (en) 2017-02-21 2019-07-18 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
EP3586255A4 (en) 2017-02-22 2021-03-31 Twist Bioscience Corporation Nucleic acid based data storage
EP4218738A1 (en) 2017-02-24 2023-08-02 The Regents of The University of California Particle-drop structures and methods for making and using the same
GB201703049D0 (en) * 2017-02-24 2017-04-12 Univ I Tromsø - Norges Arktiske Univ Single-strand binding protein
JP6931540B2 (en) * 2017-02-27 2021-09-08 シスメックス株式会社 Liquid feeding method using a sample processing chip, liquid feeding device for a sample processing chip
EP3593140A4 (en) 2017-03-09 2021-01-06 Decipher Biosciences, Inc. Subtyping prostate cancer to predict response to hormone therapy
WO2018170169A1 (en) 2017-03-15 2018-09-20 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
WO2018175399A1 (en) 2017-03-24 2018-09-27 Bio-Rad Laboratories, Inc. Universal hairpin primers
US10737267B2 (en) 2017-04-04 2020-08-11 Omniome, Inc. Fluidic apparatus and methods useful for chemical and biological reactions
FI3607065T3 (en) * 2017-04-06 2023-06-16 Qing Wang Method and kit for constructing nucleic acid library
CA3059370C (en) 2017-04-12 2022-05-10 Karius, Inc. Methods for concurrent analysis of dna and rna in mixed samples
CN109789167A (en) 2017-04-14 2019-05-21 哈佛学院董事及会员团体 Method for generating cell-derived microfilament network
WO2018195091A1 (en) 2017-04-18 2018-10-25 Dovetail Genomics, Llc Nucleic acid characteristics as guides for sequence assembly
US10161003B2 (en) 2017-04-25 2018-12-25 Omniome, Inc. Methods and apparatus that increase sequencing-by-binding efficiency
JP2018183097A (en) * 2017-04-26 2018-11-22 株式会社エンプラス Isolation method of analysis droplet derived from cells, and cell analysis method
WO2018205035A1 (en) 2017-05-12 2018-11-15 Genomedx Biosciences, Inc Genetic signatures to predict prostate cancer metastasis and identify tumor agressiveness
CN106957842B (en) * 2017-05-15 2020-05-22 青岛安德贝生命科技有限公司 Extraction method of BAC clone DNA
EP3625715A4 (en) 2017-05-19 2021-03-17 10X Genomics, Inc. Systems and methods for analyzing datasets
US10844372B2 (en) 2017-05-26 2020-11-24 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
EP4230746A3 (en) 2017-05-26 2023-11-01 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
CN110997934A (en) * 2017-05-31 2020-04-10 生捷科技控股公司 Oligonucleotide probe array with electronic detection system
WO2018227091A1 (en) 2017-06-08 2018-12-13 The Brigham And Women's Hospital, Inc. Methods and compositions for identifying epitopes
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
AU2018284227A1 (en) 2017-06-12 2020-01-30 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
US11001885B2 (en) * 2017-06-13 2021-05-11 Personal Genomics Taiwan, Inc. Apparatus for single molecular sequencing and method of sequencing nucleic acid molecules
CN110770356A (en) 2017-06-20 2020-02-07 生物辐射实验室股份有限公司 MDA using bead oligonucleotides
CA3068273A1 (en) 2017-06-21 2018-12-27 Bluedot Llc Systems and methods for identification of nucleic acids in a sample
US11217329B1 (en) 2017-06-23 2022-01-04 Veracyte, Inc. Methods and systems for determining biological sample integrity
WO2019035897A1 (en) 2017-08-15 2019-02-21 Omniome, Inc. Scanning apparatus and methods useful for detection of chemical and biological analytes
WO2019038594A2 (en) 2017-08-21 2019-02-28 Biolumic Limited High growth and high hardiness transgenic plants
US11667952B2 (en) 2017-08-24 2023-06-06 Takara Bio Usa, Inc. Methods of producing nucleic acids using oligonucleotides modified by a stimulus
KR20200047706A (en) 2017-09-11 2020-05-07 트위스트 바이오사이언스 코포레이션 GPCR binding protein and method for synthesis thereof
EP3684955A1 (en) 2017-09-20 2020-07-29 Regeneron Pharmaceuticals, Inc. Immunotherapy methods for patients whose tumors carry a high passenger gene mutation burden
MX2020003113A (en) 2017-09-21 2020-09-07 Genapsys Inc Systems and methods for nucleic acid sequencing.
WO2019060716A1 (en) 2017-09-25 2019-03-28 Freenome Holdings, Inc. Methods and systems for sample extraction
WO2019139650A2 (en) * 2017-09-29 2019-07-18 The Regents Of The University Of California Method of generating monodisperse emulsions
US10837047B2 (en) 2017-10-04 2020-11-17 10X Genomics, Inc. Compositions, methods, and systems for bead formation using improved polymers
JP7260553B2 (en) 2017-10-06 2023-04-18 ザ・ユニバーシティ・オブ・シカゴ Screening of T lymphocytes against cancer-specific antigens
US10501739B2 (en) 2017-10-18 2019-12-10 Mission Bio, Inc. Method, systems and apparatus for single cell analysis
CA3079411C (en) 2017-10-19 2023-12-05 Omniome, Inc. Simultaneous background reduction and complex stabilization in binding assay workflows
SG11202003574TA (en) 2017-10-20 2020-05-28 Twist Bioscience Corp Heated nanowells for polynucleotide synthesis
US11099202B2 (en) 2017-10-20 2021-08-24 Tecan Genomics, Inc. Reagent delivery system
WO2019084043A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. Methods and systems for nuclecic acid preparation and chromatin analysis
EP4241882A3 (en) 2017-10-27 2023-12-06 10X Genomics, Inc. Methods for sample preparation and analysis
EP4180534A1 (en) 2017-11-02 2023-05-17 Bio-Rad Laboratories, Inc. Transposase-based genomic analysis
EP3954782A1 (en) 2017-11-15 2022-02-16 10X Genomics, Inc. Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
AU2018372906A1 (en) 2017-11-22 2020-06-11 The Regents Of The University Of Michigan Compositions and methods for treating cancer
US11254980B1 (en) 2017-11-29 2022-02-22 Adaptive Biotechnologies Corporation Methods of profiling targeted polynucleotides while mitigating sequencing depth requirements
US11427867B2 (en) 2017-11-29 2022-08-30 Xgenomes Corp. Sequencing by emergence
CA3084554A1 (en) 2017-11-29 2019-06-06 Xgenomes Corp. Sequencing of nucleic acids by emergence
WO2019108851A1 (en) 2017-11-30 2019-06-06 10X Genomics, Inc. Systems and methods for nucleic acid preparation and analysis
US11701656B2 (en) 2018-01-02 2023-07-18 The Regents Of The University Of Michigan Multi-droplet capture
CA3088911A1 (en) 2018-01-04 2019-07-11 Twist Bioscience Corporation Dna-based digital information storage
US20190237163A1 (en) 2018-01-12 2019-08-01 Life Technologies Corporation Methods for flow space quality score prediction by neural networks
EP4324962A2 (en) 2018-01-31 2024-02-21 Bio-Rad Laboratories, Inc. Methods and compositions for deconvoluting partition barcodes
WO2019152543A1 (en) 2018-01-31 2019-08-08 Dovetail Genomics, Llc Sample prep for dna linkage recovery
WO2019157529A1 (en) 2018-02-12 2019-08-15 10X Genomics, Inc. Methods characterizing multiple analytes from individual cells or cell populations
US11639928B2 (en) 2018-02-22 2023-05-02 10X Genomics, Inc. Methods and systems for characterizing analytes from individual cells or cell populations
CN110184325A (en) * 2018-02-22 2019-08-30 张家港万众一芯生物科技有限公司 The gene order surveying method of unimolecule Library PCR amplification based on microwell array chip
CN112368397A (en) * 2018-03-13 2021-02-12 萨摩尔股份有限公司 Method for single molecule sequencing
AU2019247652A1 (en) 2018-04-02 2020-10-15 Enumera Molecular, Inc. Methods, systems, and compositions for counting nucleic acid molecules
CN112262218A (en) 2018-04-06 2021-01-22 10X基因组学有限公司 System and method for quality control in single cell processing
EP3553182A1 (en) 2018-04-11 2019-10-16 Université de Bourgogne Detection method of somatic genetic anomalies, combination of capture probes and kit of detection
CA3097583A1 (en) 2018-04-19 2019-10-24 Omniome, Inc. Improving accuracy of base calls in nucleic acid sequencing methods
US10400272B1 (en) 2018-04-26 2019-09-03 Omniome, Inc. Methods and compositions for stabilizing nucleic acid-nucleotide-polymerase complexes
WO2019213619A1 (en) 2018-05-04 2019-11-07 Abbott Laboratories Hbv diagnostic, prognostic, and therapeutic methods and products
CN108588200A (en) * 2018-05-06 2018-09-28 湖南大地同年生物科技有限公司 A kind of R-Loop high-throughput sequencing libraries construction method
WO2019222706A1 (en) 2018-05-18 2019-11-21 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
CA3101337A1 (en) 2018-05-31 2019-12-05 Omniome, Inc. Increased signal to noise in nucleic acid sequencing
US10801064B2 (en) 2018-05-31 2020-10-13 Personalis, Inc. Compositions, methods and systems for processing or analyzing multi-species nucleic acid samples
US11180794B2 (en) 2018-05-31 2021-11-23 Omniome, Inc. Methods and compositions for capping nucleic acids
US11814750B2 (en) 2018-05-31 2023-11-14 Personalis, Inc. Compositions, methods and systems for processing or analyzing multi-species nucleic acid samples
US11932899B2 (en) 2018-06-07 2024-03-19 10X Genomics, Inc. Methods and systems for characterizing nucleic acid molecules
US11703427B2 (en) 2018-06-25 2023-07-18 10X Genomics, Inc. Methods and systems for cell and bead processing
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
AU2019312152A1 (en) 2018-07-24 2021-02-18 Pacific Biosciences Of California, Inc. Serial formation of ternary complex species
US20200032335A1 (en) 2018-07-27 2020-01-30 10X Genomics, Inc. Systems and methods for metabolome analysis
EP3836967A4 (en) 2018-07-30 2022-06-15 ReadCoor, LLC Methods and systems for sample processing or analysis
SI3625368T1 (en) 2018-08-08 2023-04-28 Pml Screening, Llc Methods for assessing the risk of developing progressive multifocal leukoencephalopathy caused by john cunningham virus by genetic testing
EP3841202B1 (en) 2018-08-20 2023-10-04 Bio-Rad Laboratories, Inc. Nucleotide sequence generation by barcode bead-colocalization in partitions
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
US20220048940A1 (en) 2018-09-28 2022-02-17 Centrillion Technology Holdings Corporation Disulfide-linked reversible terminators
SG11202102722SA (en) 2018-10-25 2021-04-29 Illumina Inc Methods and compositions for identifying ligands on arrays using indexes and barcodes
WO2020101795A1 (en) 2018-11-15 2020-05-22 Omniome, Inc. Electronic detection of nucleic acid structure
WO2020112964A1 (en) * 2018-11-29 2020-06-04 Xgenomes Corp. Sequencing by coalascence
GB2578528B (en) 2018-12-04 2021-02-24 Omniome Inc Mixed-phase fluids for nucleic acid sequencing and other analytical assays
CA3121805A1 (en) 2018-12-07 2020-06-11 Octant, Inc. Systems for protein-protein interaction screening
US11459607B1 (en) 2018-12-10 2022-10-04 10X Genomics, Inc. Systems and methods for processing-nucleic acid molecules from a single cell using sequential co-partitioning and composite barcodes
CN113423841A (en) 2018-12-13 2021-09-21 Dna斯克瑞普特公司 Direct oligonucleotide synthesis on cells and biomolecules
BR112020026667A2 (en) 2018-12-19 2021-07-27 Illumina, Inc. methods to improve the clonality priority of the polynucleotide cluster
EP3899032A2 (en) 2018-12-20 2021-10-27 Omniome, Inc. Temperature control for analysis of nucleic acids and other analytes
US11358137B2 (en) 2018-12-26 2022-06-14 Industrial Technology Research Institute Tubular structure for producing droplets and method for producing droplets
CN109738469A (en) * 2018-12-29 2019-05-10 赛纳生物科技(北京)有限公司 A kind of compactness detection method of FOP surface micro-pit plated film
US20220081714A1 (en) 2019-01-04 2022-03-17 Northwestern University Storing temporal data into dna
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
US11845983B1 (en) 2019-01-09 2023-12-19 10X Genomics, Inc. Methods and systems for multiplexing of droplet based assays
EP3908678A1 (en) 2019-01-10 2021-11-17 Iovance Biotherapeutics, Inc. System and methods for monitoring adoptive cell therapy clonality and persistence
CN113728113A (en) * 2019-02-11 2021-11-30 阿尔缇玛基因组学公司 Nucleic acid analysis method
US11467153B2 (en) 2019-02-12 2022-10-11 10X Genomics, Inc. Methods for processing nucleic acid molecules
US11851683B1 (en) 2019-02-12 2023-12-26 10X Genomics, Inc. Methods and systems for selective analysis of cellular samples
SG11202108788TA (en) 2019-02-12 2021-09-29 10X Genomics Inc Methods for processing nucleic acid molecules
US11499189B2 (en) 2019-02-14 2022-11-15 Pacific Biosciences Of California, Inc. Mitigating adverse impacts of detection systems on nucleic acids and other biological analytes
WO2020172444A1 (en) 2019-02-20 2020-08-27 Omniome, Inc. Scanning apparatus and methods for detecting chemical and biological analytes
US11655499B1 (en) 2019-02-25 2023-05-23 10X Genomics, Inc. Detection of sequence elements in nucleic acid molecules
US11492727B2 (en) 2019-02-26 2022-11-08 Twist Bioscience Corporation Variant nucleic acid libraries for GLP1 receptor
WO2020176680A1 (en) 2019-02-26 2020-09-03 Twist Bioscience Corporation Variant nucleic acid libraries for antibody optimization
US11920183B2 (en) 2019-03-11 2024-03-05 10X Genomics, Inc. Systems and methods for processing optically tagged beads
CN113924041A (en) 2019-03-14 2022-01-11 因斯利克萨公司 Method and system for fluorescence detection based on time gating
WO2020191389A1 (en) 2019-03-21 2020-09-24 Illumina, Inc. Training data generation for artificial intelligence-based sequencing
NL2023310B1 (en) 2019-03-21 2020-09-28 Illumina Inc Training data generation for artificial intelligence-based sequencing
NL2023314B1 (en) 2019-03-21 2020-09-28 Illumina Inc Artificial intelligence-based quality scoring
US11210554B2 (en) 2019-03-21 2021-12-28 Illumina, Inc. Artificial intelligence-based generation of sequencing metadata
NL2023316B1 (en) 2019-03-21 2020-09-28 Illumina Inc Artificial intelligence-based sequencing
NL2023311B9 (en) 2019-03-21 2021-03-12 Illumina Inc Artificial intelligence-based generation of sequencing metadata
NL2023312B1 (en) 2019-03-21 2020-09-28 Illumina Inc Artificial intelligence-based base calling
WO2020206170A1 (en) 2019-04-02 2020-10-08 Progenity, Inc. Methods, systems, and compositions for counting nucleic acid molecules
WO2020210544A1 (en) * 2019-04-09 2020-10-15 University Of Washington Systems and methods for providing similarity based retrieval of information stored in dna
CN109853047A (en) * 2019-04-10 2019-06-07 翌圣生物科技(上海)有限公司 A kind of genomic DNA sequencing library fast construction method and matched reagent box
AU2020266530A1 (en) 2019-04-29 2021-04-08 Illumina, Inc. Identification and analysis of microbial samples by rapid incubation and nucleic acid enrichment
WO2020227382A1 (en) * 2019-05-08 2020-11-12 Qiagen Sciences, Llc Sequential sequencing methods and compositions
US11593649B2 (en) 2019-05-16 2023-02-28 Illumina, Inc. Base calling using convolutions
CA3138806A1 (en) 2019-05-22 2020-11-26 Dalia Dhingra Method and apparatus for simultaneous targeted sequencing of dna, rna and protein
CA3140902A1 (en) 2019-05-28 2020-12-03 Octant, Inc. Transcriptional relay system
US11644406B2 (en) 2019-06-11 2023-05-09 Pacific Biosciences Of California, Inc. Calibrated focus sensing
CN114729342A (en) 2019-06-21 2022-07-08 特韦斯特生物科学公司 Barcode-based nucleic acid sequence assembly
US11667954B2 (en) 2019-07-01 2023-06-06 Mission Bio, Inc. Method and apparatus to normalize quantitative readouts in single-cell experiments
US11377655B2 (en) 2019-07-16 2022-07-05 Pacific Biosciences Of California, Inc. Synthetic nucleic acids having non-natural structures
US10656368B1 (en) 2019-07-24 2020-05-19 Omniome, Inc. Method and system for biological imaging using a wide field objective lens
CN110499361B (en) * 2019-07-31 2022-11-25 齐鲁工业大学 Preparation method and application of terminal base flow type fluorescence sequencing microspheres
WO2021034034A1 (en) 2019-08-19 2021-02-25 주식회사 녹십자지놈 Method for detecting chromosomal abnormality by using information about distance between nucleic acid fragments
EP4028407B1 (en) 2019-09-10 2023-08-16 Pacific Biosciences of California, Inc. Reversible modification of nucleotides
US20210087613A1 (en) 2019-09-20 2021-03-25 Illumina, Inc. Methods and compositions for identifying ligands on arrays using indexes and barcodes
JP2022552194A (en) 2019-10-10 2022-12-15 1859,インク. Methods and systems for microfluidic screening
CN114599795A (en) * 2019-10-18 2022-06-07 加利福尼亚太平洋生物科学股份有限公司 Methods and compositions for capping nucleic acids
CA3151629A1 (en) 2019-11-07 2021-05-14 Laura E. BENJAMIN Classification of tumor microenvironments
WO2021092433A2 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Enhancing specificity of analyte binding
EP4055185A1 (en) 2019-11-08 2022-09-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
CN110951852B (en) * 2019-11-25 2022-11-25 齐鲁工业大学 Single-base continuous extension flow type target sequencing method
EP4068291A4 (en) 2019-11-29 2023-12-20 GC Genome Corporation Artificial intelligence-based chromosomal abnormality detection method
FI3891300T3 (en) 2019-12-23 2023-05-10 10X Genomics Inc Methods for spatial analysis using rna-templated ligation
JP2023511279A (en) 2020-01-13 2023-03-17 フルーエント バイオサイエンシーズ インコーポレイテッド Single cell sequencing
CA3167729A1 (en) 2020-01-13 2021-07-22 Fluent Biosciences Inc. Emulsion based drug screening
JP2023511278A (en) 2020-01-13 2023-03-17 フルーエント バイオサイエンシーズ インコーポレイテッド Methods and systems for single-cell gene profiling
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US11732299B2 (en) 2020-01-21 2023-08-22 10X Genomics, Inc. Spatial assays with perturbed cells
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
WO2021152586A1 (en) 2020-01-30 2021-08-05 Yeda Research And Development Co. Ltd. Methods of analyzing microbiome, immunoglobulin profile and physiological state
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
CN115243792A (en) 2020-02-04 2022-10-25 加利福尼亚太平洋生物科学股份有限公司 Flow cell and methods of making and using the same
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
US11835462B2 (en) 2020-02-11 2023-12-05 10X Genomics, Inc. Methods and compositions for partitioning a biological sample
CN115349128A (en) 2020-02-13 2022-11-15 齐默尔根公司 Metagenomic libraries and natural product discovery platform
US20210265018A1 (en) 2020-02-20 2021-08-26 Illumina, Inc. Knowledge Distillation and Gradient Pruning-Based Compression of Artificial Intelligence-Based Base Caller
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11926863B1 (en) 2020-02-27 2024-03-12 10X Genomics, Inc. Solid state single cell method for analyzing fixed biological cells
US11768175B1 (en) 2020-03-04 2023-09-26 10X Genomics, Inc. Electrophoretic methods for spatial analysis
CA3175931A1 (en) 2020-03-16 2021-09-23 Fluent Biosciences Inc. Multi-omic analysis in monodisperse droplets
CN111455469B (en) * 2020-04-07 2023-08-18 深圳易倍科华生物科技有限公司 Single-chain rapid library construction method and library construction instrument
WO2021214766A1 (en) 2020-04-21 2021-10-28 Yeda Research And Development Co. Ltd. Methods of diagnosing viral infections and vaccines thereto
EP4242325A3 (en) 2020-04-22 2023-10-04 10X Genomics, Inc. Methods for spatial analysis using targeted rna depletion
WO2021224677A1 (en) 2020-05-05 2021-11-11 Akershus Universitetssykehus Hf Compositions and methods for characterizing bowel cancer
US11188778B1 (en) 2020-05-05 2021-11-30 Illumina, Inc. Equalization-based image processing and spatial crosstalk attenuator
EP4146822A1 (en) 2020-05-05 2023-03-15 Pacific Biosciences of California, Inc. Compositions and methods for modifying polymerase-nucleic acid complexes
US11851700B1 (en) 2020-05-13 2023-12-26 10X Genomics, Inc. Methods, kits, and compositions for processing extracellular molecules
US10941453B1 (en) 2020-05-20 2021-03-09 Paragon Genomics, Inc. High throughput detection of pathogen RNA in clinical specimens
EP4153776A1 (en) 2020-05-22 2023-03-29 10X Genomics, Inc. Spatial analysis to detect sequence variants
EP4153775A1 (en) 2020-05-22 2023-03-29 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
WO2021242834A1 (en) 2020-05-26 2021-12-02 10X Genomics, Inc. Method for resetting an array
WO2021237292A1 (en) 2020-05-27 2021-12-02 Genetic Technologies Limited Methods of assessing risk of developing a severe response to coronavirus infection
EP4025692A2 (en) 2020-06-02 2022-07-13 10X Genomics, Inc. Nucleic acid library methods
AU2021283184A1 (en) 2020-06-02 2023-01-05 10X Genomics, Inc. Spatial transcriptomics for antigen-receptors
WO2021252499A1 (en) 2020-06-08 2021-12-16 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
WO2021252591A1 (en) 2020-06-10 2021-12-16 10X Genomics, Inc. Methods for determining a location of an analyte in a biological sample
AU2021294334A1 (en) 2020-06-25 2023-02-02 10X Genomics, Inc. Spatial analysis of DNA methylation
US11761038B1 (en) 2020-07-06 2023-09-19 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
EP4179113A1 (en) 2020-07-08 2023-05-17 F. Hoffmann-La Roche AG Targeted depletion of non-target library molecules using poison primers during target capture of next-generation sequencing libraries
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
US20220136071A1 (en) * 2020-11-03 2022-05-05 Fluent Biosciences Inc. Methods and systems for detecting pathogenic microbes in a patient
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
KR20220074088A (en) 2020-11-27 2022-06-03 주식회사 지씨지놈 Method for diagnosing and predicting cancer type based on artificial intelligence
WO2022140028A1 (en) 2020-12-21 2022-06-30 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
CN116997411A (en) 2021-01-13 2023-11-03 加利福尼亚太平洋生物科学股份有限公司 Surface structuring using colloid assembly
WO2022174054A1 (en) 2021-02-13 2022-08-18 The General Hospital Corporation Methods and compositions for in situ macromolecule detection and uses thereof
WO2022182682A1 (en) 2021-02-23 2022-09-01 10X Genomics, Inc. Probe-based analysis of nucleic acids and proteins
EP4301870A1 (en) 2021-03-18 2024-01-10 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
US20220333178A1 (en) 2021-03-22 2022-10-20 Illumina Cambridge Limited Methods for improving nucleic acid cluster clonality
WO2022208171A1 (en) 2021-03-31 2022-10-06 UCL Business Ltd. Methods for analyte detection
US20220336052A1 (en) * 2021-04-19 2022-10-20 University Of Utah Research Foundation Systems and methods for facilitating rapid genome sequence analysis
KR20220160806A (en) 2021-05-28 2022-12-06 주식회사 지씨지놈 Method for diagnosing and predicting cancer type using fragment end motif frequency and size of cell-free nucleic acid
CN117677435A (en) 2021-06-15 2024-03-08 伊鲁米纳公司 Surface functionalization of non-aqueous gels for sequencing
US11236388B1 (en) 2021-06-17 2022-02-01 Element Biosciences, Inc. Compositions and methods for pairwise sequencing
US11859241B2 (en) 2021-06-17 2024-01-02 Element Biosciences, Inc. Compositions and methods for pairwise sequencing
CN113174388B (en) * 2021-06-28 2021-09-10 中国农业大学 Preparation and morphology conversion method of functional nucleic acid nanorod and functional nucleic acid nanoflower
KR20240031968A (en) 2021-07-19 2024-03-08 일루미나, 인코포레이티드 Intensity extraction with interpolation and adaptation to base calling
US11455487B1 (en) 2021-10-26 2022-09-27 Illumina Software, Inc. Intensity extraction and crosstalk attenuation using interpolation and adaptation for base calling
GB202110479D0 (en) 2021-07-21 2021-09-01 Dnae Diagnostics Ltd Compositions, kits and methods for sequencing target polynucleotides
GB202110485D0 (en) 2021-07-21 2021-09-01 Dnae Diagnostics Ltd Compositions, kits and methods for sequencing target polynucleotides
WO2023002203A1 (en) 2021-07-21 2023-01-26 Dnae Diagnostics Limited Method and system comprising a cartridge for sequencing target polynucleotides
WO2023004357A1 (en) 2021-07-23 2023-01-26 Illumina, Inc. Methods for preparing substrate surface for dna sequencing
WO2023034489A1 (en) 2021-09-01 2023-03-09 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
WO2023049215A1 (en) 2021-09-22 2023-03-30 Illumina, Inc. Compressed state-based base calling
WO2023069927A1 (en) 2021-10-20 2023-04-27 Illumina, Inc. Methods for capturing library dna for sequencing
WO2023081300A2 (en) * 2021-11-03 2023-05-11 Abbott Laboratories Systems and methods for sample analysis
WO2023108014A1 (en) 2021-12-07 2023-06-15 Luminex Corporation Methods and compositions for nucleic acid analysis
WO2023114190A1 (en) * 2021-12-13 2023-06-22 Cz Biohub Sf, Inc. Single-cell epigenomic profiling using fluidics and hydrogels
WO2023122363A1 (en) 2021-12-23 2023-06-29 Illumina Software, Inc. Dynamic graphical status summaries for nucelotide sequencing
US20230215515A1 (en) 2021-12-23 2023-07-06 Illumina Software, Inc. Facilitating secure execution of external workflows for genomic sequencing diagnostics
WO2023129764A1 (en) 2021-12-29 2023-07-06 Illumina Software, Inc. Automatically switching variant analysis model versions for genomic analysis applications
WO2023135485A1 (en) 2022-01-13 2023-07-20 Oslo Universitetssykehus Hf Prostate cancer markers and uses thereof
WO2023141154A1 (en) 2022-01-20 2023-07-27 Illumina Cambridge Limited Methods of detecting methylcytosine and hydroxymethylcytosine by sequencing
WO2023152568A2 (en) 2022-02-10 2023-08-17 Oslo Universitetssykehus Hf Compositions and methods for characterizing lung cancer
CA3223669A1 (en) * 2022-03-15 2023-09-21 Niall Gormley Concurrent sequencing of forward and reverse complement strands on concatenated polynucleotides for methylation detection
WO2023183937A1 (en) 2022-03-25 2023-09-28 Illumina, Inc. Sequence-to-sequence base calling
CN114592023B (en) * 2022-03-31 2023-03-24 杭州优玛达生物科技有限公司 Cell lysis self-assembly polypeptide compound, self-assembly method, self-assembly polypeptide preparation and application
EP4253550A1 (en) 2022-04-01 2023-10-04 GenCC GmbH 6 Co. KG Method for the manufacture of a viral system, a vector system or any transport system for cancer-specific crispr complexes
US11680293B1 (en) 2022-04-21 2023-06-20 Paragon Genomics, Inc. Methods and compositions for amplifying DNA and generating DNA sequencing results from target-enriched DNA molecules
WO2023240093A1 (en) 2022-06-06 2023-12-14 Element Biosciences, Inc. Methods for assembling and reading nucleic acid sequences from mixed populations
US20230407386A1 (en) 2022-06-09 2023-12-21 Illumina, Inc. Dependence of base calling on flow cell tilt
WO2024050450A1 (en) 2022-08-31 2024-03-07 Gigamune, Inc. Engineered enveloped vectors and methods of use thereof
WO2024072614A1 (en) 2022-09-27 2024-04-04 Nautilus Subsidiary, Inc. Polypeptide capture, in situ fragmentation and identification

Family Cites Families (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175054A (en) 1976-11-11 1979-11-20 Petrolite Corporation Use of hydrocarbon polymers in demulsification
US5821058A (en) * 1984-01-16 1998-10-13 California Institute Of Technology Automated DNA sequencing technique
US5171534A (en) * 1984-01-16 1992-12-15 California Institute Of Technology Automated DNA sequencing technique
US4965188A (en) * 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683202A (en) * 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4801529A (en) 1985-06-18 1989-01-31 Brandeis University Methods for isolating mutant microoganisms using microcapsules coated with indicator material
US4863849A (en) * 1985-07-18 1989-09-05 New York Medical College Automatable process for sequencing nucleotide
US4811218A (en) * 1986-06-02 1989-03-07 Applied Biosystems, Inc. Real time scanning electrophoresis apparatus for DNA sequencing
US5254477A (en) * 1986-06-25 1993-10-19 Trustees Of Tufts College Flourescence intramolecular energy transfer conjugate compositions and detection methods
US4822746A (en) * 1986-06-25 1989-04-18 Trustees Of Tufts College Radiative and non-radiative energy transfer and absorbance modulated fluorescence detection methods and sensors
US5143853A (en) * 1986-06-25 1992-09-01 Trustees Of Tufts College Absorbance modulated fluorescence detection methods and sensors
US5252494A (en) * 1986-06-25 1993-10-12 Trustees Of Tufts College Fiber optic sensors, apparatus, and detection methods using controlled release polymers and reagent formulations held within a polymeric reaction matrix
US4994372A (en) * 1987-01-14 1991-02-19 President And Fellows Of Harvard College DNA sequencing
US5525464A (en) * 1987-04-01 1996-06-11 Hyseq, Inc. Method of sequencing by hybridization of oligonucleotide probes
IL86724A (en) 1987-06-19 1995-01-24 Siska Diagnostics Inc Method and kits for the amplification and detection of nucleic acid sequences
WO1989006700A1 (en) 1988-01-21 1989-07-27 Genentech, Inc. Amplification and detection of nucleic acid sequences
CA1340807C (en) 1988-02-24 1999-11-02 Lawrence T. Malek Nucleic acid amplification process
GB8810400D0 (en) 1988-05-03 1988-06-08 Southern E Analysing polynucleotide sequences
SE8801070D0 (en) * 1988-03-23 1988-03-23 Pharmacia Ab METHOD FOR IMMOBILIZING A DNA SEQUENCE ON A SOLID SUPPORT
US4971903A (en) * 1988-03-25 1990-11-20 Edward Hyman Pyrophosphate-based method and apparatus for sequencing nucleic acids
EP0411038B1 (en) 1988-04-22 1994-12-28 Massachusetts Institute Of Technology Process for forming and using microdroplets
US5225332A (en) * 1988-04-22 1993-07-06 Massachusetts Institute Of Technology Process for manipulation of non-aqueous surrounded microdroplets
US5700637A (en) * 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
US6054270A (en) * 1988-05-03 2000-04-25 Oxford Gene Technology Limited Analying polynucleotide sequences
GB8822228D0 (en) * 1988-09-21 1988-10-26 Southern E M Support-bound oligonucleotides
US5512439A (en) * 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US4938876A (en) 1989-03-02 1990-07-03 Ohsol Ernest O Method for separating oil and water emulsions
US5629158A (en) * 1989-03-22 1997-05-13 Cemu Bitecknik Ab Solid phase diagnosis of medical conditions
JPH02299598A (en) * 1989-04-14 1990-12-11 Ro Inst For Molecular Genetics & Geneteic Res Determination by means of hybridization, together with oligonucleotide probe of all or part of extremely short sequence in sample of nucleic acid connecting with separate particle of microscopic size
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5871928A (en) * 1989-06-07 1999-02-16 Fodor; Stephen P. A. Methods for nucleic acid analysis
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5800992A (en) * 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5302509A (en) * 1989-08-14 1994-04-12 Beckman Instruments, Inc. Method for sequencing polynucleotides
US5545522A (en) * 1989-09-22 1996-08-13 Van Gelder; Russell N. Process for amplifying a target polynucleotide sequence using a single primer-promoter complex
EP0494955B1 (en) 1989-10-05 1998-07-15 Optein, Inc. Cell-free synthesis and isolation of novel genes and polypeptides
JP3087907B2 (en) * 1990-02-16 2000-09-18 エフ.ホフマン ― ラ ロシュ アーゲー Improvement of specificity and simplicity of polymerase chain reaction
CA2036946C (en) * 1990-04-06 2001-10-16 Kenneth V. Deugau Indexing linkers
JPH04223A (en) * 1990-04-16 1992-01-06 Toshiba Corp Wireless telephone, charging method therefor and wireless telephone charging system
US5506100A (en) 1990-10-11 1996-04-09 Indiana University Foundation Process and apparatus for fragmenting biomaterials
ES2142805T3 (en) * 1990-10-11 2000-05-01 Advanced Res & Tech Inst PROCESS AND APPARATUS FOR FRAGMENTING BIOLOGICAL MATERIALS.
US5250264A (en) * 1991-01-25 1993-10-05 Trustees Of Tufts College Method of making imaging fiber optic sensors to concurrently detect multiple analytes of interest in a fluid sample
US5320814A (en) * 1991-01-25 1994-06-14 Trustees Of Tufts College Fiber optic array sensors, apparatus, and methods for concurrently visualizing and chemically detecting multiple analytes of interest in a fluid sample
US5244636A (en) * 1991-01-25 1993-09-14 Trustees Of Tufts College Imaging fiber optic array sensors, apparatus, and methods for concurrently detecting multiple analytes of interest in a fluid sample
US5114984A (en) * 1991-04-26 1992-05-19 Olin Corporation Process for producing an antimicrobially effective polyurethane
EP0597960B1 (en) 1991-08-10 1999-01-20 Medical Research Council Treatment of cell populations
US5474796A (en) 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
WO1993005183A1 (en) * 1991-09-09 1993-03-18 Baylor College Of Medicine Method and device for rapid dna or rna sequencing determination by a base addition sequencing scheme
PT534858E (en) * 1991-09-24 2000-09-29 Keygene Nv SELECTIVE AMPLIFICATION OF RESTRICTION FRAGMENTS A GENERAL METHOD FOR OBTAINING "DIGITAL IMPRESSIONS" OF DNA
US5270170A (en) 1991-10-16 1993-12-14 Affymax Technologies N.V. Peptide library and screening method
AU675054B2 (en) * 1991-11-22 1997-01-23 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US5445971A (en) * 1992-03-20 1995-08-29 Abbott Laboratories Magnetically assisted binding assays using magnetically labeled binding members
GB9208733D0 (en) 1992-04-22 1992-06-10 Medical Res Council Dna sequencing method
GB9210176D0 (en) * 1992-05-12 1992-06-24 Cemu Bioteknik Ab Chemical method
DE4223169C1 (en) 1992-07-10 1993-11-25 Ferring Arzneimittel Gmbh Process for the microencapsulation of water-soluble active substances
GB9214873D0 (en) * 1992-07-13 1992-08-26 Medical Res Council Process for categorising nucleotide sequence populations
US6114114A (en) * 1992-07-17 2000-09-05 Incyte Pharmaceuticals, Inc. Comparative gene transcript analysis
RU2048522C1 (en) 1992-10-14 1995-11-20 Институт белка РАН Method of nucleic acid copying, method of their expression and a medium for their realization
US5436143A (en) * 1992-12-23 1995-07-25 Hyman; Edward D. Method for enzymatic synthesis of oligonucleotides
IL104384A (en) 1993-01-13 1996-11-14 Yeda Res & Dev Method for screening catalytic non-enzyme polypeptides and proteins
US5298741A (en) * 1993-01-13 1994-03-29 Trustees Of Tufts College Thin film fiber optic sensor array and apparatus for concurrent viewing and chemical sensing of a sample
JPH08506664A (en) 1993-02-01 1996-07-16 セック,リミテッド Method and apparatus for DNA sequencing
US5436149A (en) 1993-02-19 1995-07-25 Barnes; Wayne M. Thermostable DNA polymerase with enhanced thermostability and enhanced length and efficiency of primer extension
US5714320A (en) 1993-04-15 1998-02-03 University Of Rochester Rolling circle synthesis of oligonucleotides and amplification of select randomized circular oligonucleotides
CA2160878A1 (en) 1993-04-19 1994-10-27 Sandra Gertrude Mcelligott Encapsulation of nucleic acids with conjugates that facilitate and target cellular uptake and gene expression
WO1994024314A1 (en) 1993-04-19 1994-10-27 Kauffman Stuart A Random chemistry for the generation of new compounds
GB9315847D0 (en) * 1993-07-30 1993-09-15 Isis Innovation Tag reagent and assay method
US5482845A (en) * 1993-09-24 1996-01-09 The Trustees Of Columbia University In The City Of New York Method for construction of normalized cDNA libraries
US5429807A (en) * 1993-10-28 1995-07-04 Beckman Instruments, Inc. Method and apparatus for creating biopolymer arrays on a solid support surface
EP1157743B1 (en) * 1993-10-28 2009-03-11 Houston Advanced Research Center Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
AU8124694A (en) 1993-10-29 1995-05-22 Affymax Technologies N.V. In vitro peptide and antibody display libraries
GB9401833D0 (en) * 1994-02-01 1994-03-30 Isis Innovation Method for discovering ligands
US5928905A (en) * 1995-04-18 1999-07-27 Glaxo Group Limited End-complementary polymerase reaction
US5834252A (en) * 1995-04-18 1998-11-10 Glaxo Group Limited End-complementary polymerase reaction
EP0804249A2 (en) 1994-03-15 1997-11-05 Brown University Research Foundation Polymeric gene delivery system
WO1995025538A1 (en) * 1994-03-18 1995-09-28 The General Hospital Corporation Cleaved amplified rflp detection methods
JP2556293B2 (en) * 1994-06-09 1996-11-20 日本電気株式会社 MOS OTA
US5512490A (en) * 1994-08-11 1996-04-30 Trustees Of Tufts College Optical sensor, optical sensing apparatus, and methods for detecting an analyte of interest using spectral recognition patterns
US5604097A (en) * 1994-10-13 1997-02-18 Spectragen, Inc. Methods for sorting polynucleotides using oligonucleotide tags
US6013445A (en) * 1996-06-06 2000-01-11 Lynx Therapeutics, Inc. Massively parallel signature sequencing by ligation of encoded adaptors
US5695934A (en) * 1994-10-13 1997-12-09 Lynx Therapeutics, Inc. Massively parallel sequencing of sorted polynucleotides
US5795716A (en) * 1994-10-21 1998-08-18 Chee; Mark S. Computer-aided visualization and analysis system for sequence evaluation
FR2726286B1 (en) 1994-10-28 1997-01-17 Genset Sa SOLID PHASE NUCLEIC ACID AMPLIFICATION PROCESS AND REAGENT KIT USEFUL FOR CARRYING OUT SAID PROCESS
US5919673A (en) * 1995-03-22 1999-07-06 The Scripps Research Institute One-pot enzymatic sulfation process using 3'-phosphoadenosine-5'-phosphosulfate and recycled phosphorylated adenosine intermediates
US5707807A (en) * 1995-03-28 1998-01-13 Research Development Corporation Of Japan Molecular indexing for expressed gene analysis
GB9507238D0 (en) * 1995-04-07 1995-05-31 Isis Innovation Detecting dna sequence variations
US5750341A (en) * 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
EP0822990A4 (en) 1995-04-24 2002-07-03 Chromaxome Corp Methods for generating and screening novel metabolic pathways
US5648245A (en) * 1995-05-09 1997-07-15 Carnegie Institution Of Washington Method for constructing an oligonucleotide concatamer library by rolling circle replication
DE19518505A1 (en) * 1995-05-19 1996-11-21 Max Planck Gesellschaft Procedure for gene expression analysis
US5690894A (en) * 1995-05-23 1997-11-25 The Regents Of The University Of California High density array fabrication and readout method for a fiber optic biosensor
US5814444A (en) * 1995-06-07 1998-09-29 University Of Washington Methods for making and using single-chromosome amplfication libraries
US5910408A (en) 1995-06-07 1999-06-08 The General Hospital Corporation Catalytic DNA having ligase activity
US5989892A (en) * 1995-06-14 1999-11-23 Tonen Corporation Microorganisms, demulsifiers and processes for breaking an emulsion
US5728529A (en) * 1995-06-23 1998-03-17 Baylor College Of Medicine Alternative dye-labeled ribonucleotides, deoxyribonucleotides, and dideoxyribonucleotides for automated DNA analysis
US6200737B1 (en) * 1995-08-24 2001-03-13 Trustees Of Tufts College Photodeposition method for fabricating a three-dimensional, patterned polymer microstructure
US5843655A (en) * 1995-09-18 1998-12-01 Affymetrix, Inc. Methods for testing oligonucleotide arrays
US5871697A (en) * 1995-10-24 1999-02-16 Curagen Corporation Method and apparatus for identifying, classifying, or quantifying DNA sequences in a sample without sequencing
DE19646372C1 (en) 1995-11-11 1997-06-19 Evotec Biosystems Gmbh Conjugates of polypeptide and encoding nucleic acid
US5780231A (en) * 1995-11-17 1998-07-14 Lynx Therapeutics, Inc. DNA extension and analysis with rolling primers
US5962228A (en) * 1995-11-17 1999-10-05 Lynx Therapeutics, Inc. DNA extension and analysis with rolling primers
DE69612013T2 (en) 1995-11-21 2001-08-02 Univ Yale New Haven UNIMOLECULAR SEGMENT AMPLIFICATION AND DETERMINATION
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
US5633972A (en) * 1995-11-29 1997-05-27 Trustees Of Tufts College Superresolution imaging fiber for subwavelength light energy generation and near-field optical microscopy
US5814524A (en) * 1995-12-14 1998-09-29 Trustees Of Tufts College Optical sensor apparatus for far-field viewing and making optical analytical measurements at remote locations
US5851772A (en) * 1996-01-29 1998-12-22 University Of Chicago Microchip method for the enrichment of specific DNA sequences
AU2264197A (en) * 1996-02-09 1997-08-28 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Restriction display (rd-pcr) of differentially expressed mrnas
AU2069597A (en) 1996-03-04 1997-09-22 Genetrace Systems, Inc. Methods of screening nucleic acids using mass spectrometry
GB9608540D0 (en) 1996-04-25 1996-07-03 Medical Res Council Isolation of enzymes
US5770637A (en) * 1996-05-01 1998-06-23 Johnson & Johnson Vision Products, Inc. Anti-bacterial, UV absorbable, tinted, metal-chelating polymers
US6022688A (en) * 1996-05-13 2000-02-08 Sequenom, Inc. Method for dissociating biotin complexes
EP0923650B1 (en) * 1996-06-06 2007-03-07 Solexa, Inc Sequencing by ligation of encoded adaptors
US5846727A (en) * 1996-06-06 1998-12-08 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Microsystem for rapid DNA sequencing
US6083693A (en) 1996-06-14 2000-07-04 Curagen Corporation Identification and comparison of protein-protein interactions that occur in populations
US5916524A (en) * 1997-07-23 1999-06-29 Bio-Dot, Inc. Dispensing apparatus having improved dynamic range
US5846721A (en) * 1996-09-19 1998-12-08 The Trustees Of Columbia University In The City Of New York Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs
GB9620209D0 (en) 1996-09-27 1996-11-13 Cemu Bioteknik Ab Method of sequencing DNA
CA2236867A1 (en) 1996-09-27 1998-04-02 Icos Corporation Method to identify compounds for disrupting protein/protein interactions
US6124092A (en) 1996-10-04 2000-09-26 The Perkin-Elmer Corporation Multiplex polynucleotide capture methods and compositions
US5900481A (en) * 1996-11-06 1999-05-04 Sequenom, Inc. Bead linkers for immobilizing nucleic acids to solid supports
US6133436A (en) * 1996-11-06 2000-10-17 Sequenom, Inc. Beads bound to a solid support and to nucleic acids
US6887665B2 (en) * 1996-11-14 2005-05-03 Affymetrix, Inc. Methods of array synthesis
DE19648372A1 (en) 1996-11-22 1998-05-28 Serck Como Gmbh Process and assembly for treating refuse tip water
US6395524B2 (en) 1996-11-27 2002-05-28 University Of Washington Thermostable polymerases having altered fidelity and method of identifying and using same
US6310354B1 (en) 1996-12-03 2001-10-30 Erkki Soini Method and a device for monitoring nucleic acid amplification reactions
US20020172965A1 (en) * 1996-12-13 2002-11-21 Arcaris, Inc. Methods for measuring relative amounts of nucleic acids in a complex mixture and retrieval of specific sequences therefrom
US6060245A (en) * 1996-12-13 2000-05-09 Stratagene Methods and adaptors for generating specific nucleic acid populations
GB9626815D0 (en) 1996-12-23 1997-02-12 Cemu Bioteknik Ab Method of sequencing DNA
CN1238366C (en) 1997-01-21 2006-01-25 综合医院公司 Selection of proteins using RNA-protein fusions
US6136543A (en) * 1997-01-31 2000-10-24 Hitachi, Ltd. Method for determining nucleic acids base sequence and apparatus therefor
CA2196496A1 (en) 1997-01-31 1998-07-31 Stephen William Watson Michnick Protein fragment complementation assay for the detection of protein-protein interactions
CA2281205A1 (en) 1997-02-12 1998-08-13 Eugene Y. Chan Methods and products for analyzing polymers
GB9703369D0 (en) 1997-02-18 1997-04-09 Lindqvist Bjorn H Process
US5994068A (en) * 1997-03-11 1999-11-30 Wisconsin Alumni Research Foundation Nucleic acid indexing
US6023540A (en) * 1997-03-14 2000-02-08 Trustees Of Tufts College Fiber optic sensor with encoded microspheres
EP0975969A4 (en) 1997-03-18 2002-07-31 Chromaxome Corp Methods for screening compounds using encapsulated cells
US5891477A (en) 1997-03-28 1999-04-06 Biohybrid Technologies, Inc. Non-steroidal anti-inflammatory agents inhibition of fibrotic response to an implanted device
ATE269908T1 (en) * 1997-04-01 2004-07-15 Manteia S A METHOD FOR SEQUENCING NUCLEIC ACIDS
EP3034626A1 (en) * 1997-04-01 2016-06-22 Illumina Cambridge Limited Method of nucleic acid sequencing
US6143496A (en) 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
US6406845B1 (en) 1997-05-05 2002-06-18 Trustees Of Tuft College Fiber optic biosensor for selectively detecting oligonucleotide species in a mixed fluid sample
DE69801749T2 (en) * 1997-05-13 2002-07-04 Azign Bioscience As Kopenhagen A METHOD FOR CLONING MRNA AND PRESENTING DIFFERENTLY EXPRESSED TRANSCRIPTS (DODET)
CA2792122C (en) 1997-07-07 2015-09-08 Medical Research Council In vitro sorting method
JP3610231B2 (en) * 1997-08-01 2005-01-12 キヤノン株式会社 Reaction field array, method for producing reaction field array, reaction method using reaction field array, and method for quantifying substances in sample solution using reaction field array
ATE443866T1 (en) 1997-08-01 2009-10-15 Canon Kk REACTION SITE ARRAY, METHOD FOR PRODUCING IT, REACTION METHOD USING IT AND QUANTITATIVE DETERMINATION METHOD FOR A SUBSTANCE IN A SAMPLE SOLUTION USING IT
US5961228A (en) * 1997-08-22 1999-10-05 Paxar Corporation Modular printer
US20010006630A1 (en) * 1997-09-02 2001-07-05 Oron Yacoby-Zeevi Introducing a biological material into a patient
US6087099A (en) * 1997-09-08 2000-07-11 Myriad Genetics, Inc. Method for sequencing both strands of a double stranded DNA in a single sequencing reaction
US6475722B1 (en) 1997-12-03 2002-11-05 Curagen Corporation Surface treatments for DNA processing devices
NL1007781C2 (en) 1997-12-12 1999-06-15 Packard Instr Bv Microtiter plate.
ATE260989T1 (en) 1997-12-19 2004-03-15 Affymetrix Inc INSIGHTS FROM GENOME RESEARCH FOR THE SEARCH FOR NOVEL ACTIVE INGREDIENTS
DE69839734D1 (en) 1997-12-22 2008-08-28 Hitachi Chemical Co Ltd Direct RT-PCR on microtiter plates with immobilized oligonucleotide
KR100280219B1 (en) * 1998-02-26 2001-04-02 이수빈 Diagnostic Method and Diagnostic Reagent of Neuropsychiatric Disease Using Trinucleic Acid Repeat Sequence
US5882874A (en) * 1998-02-27 1999-03-16 The Trustees Of Columbia University In The City Of New York Reciprocal subtraction differential display
US6210910B1 (en) * 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
US6378527B1 (en) 1998-04-08 2002-04-30 Chondros, Inc. Cell-culture and polymer constructs
AU3572799A (en) * 1998-04-24 1999-11-16 Genova Pharmaceuticals Corporation Function-based gene discovery
JP2981547B1 (en) 1998-07-02 1999-11-22 農林水産省食品総合研究所長 Cross-flow type microchannel device and method for producing or separating emulsion using the device
EP1100889A4 (en) 1998-07-17 2002-03-06 Mirus Corp Micellar systems
US6210896B1 (en) * 1998-08-13 2001-04-03 Us Genomics Molecular motors
US6263286B1 (en) * 1998-08-13 2001-07-17 U.S. Genomics, Inc. Methods of analyzing polymers using a spatial network of fluorophores and fluorescence resonance energy transfer
GB9820185D0 (en) 1998-09-15 1998-11-11 Dynal As Method
US6287825B1 (en) * 1998-09-18 2001-09-11 Molecular Staging Inc. Methods for reducing the complexity of DNA sequences
AR021833A1 (en) 1998-09-30 2002-08-07 Applied Research Systems METHODS OF AMPLIFICATION AND SEQUENCING OF NUCLEIC ACID
US6203989B1 (en) * 1998-09-30 2001-03-20 Affymetrix, Inc. Methods and compositions for amplifying detectable signals in specific binding assays
WO2000039343A1 (en) * 1998-12-31 2000-07-06 City Of Hope Method for detecting mutations in nucleic acids
GB9900298D0 (en) * 1999-01-07 1999-02-24 Medical Res Council Optical sorting method
US20020150909A1 (en) 1999-02-09 2002-10-17 Stuelpnagel John R. Automated information processing in randomly ordered arrays
US6255476B1 (en) * 1999-02-22 2001-07-03 Pe Corporation (Ny) Methods and compositions for synthesis of labelled oligonucleotides and analogs on solid-supports
WO2000050632A2 (en) * 1999-02-22 2000-08-31 Lynx Therapeutics, Inc. Polymorphic dna fragments and uses thereof
EP1159453B1 (en) * 1999-03-10 2008-05-28 ASM Scientific, Inc. A method for direct nucleic acid sequencing
US6225061B1 (en) * 1999-03-10 2001-05-01 Sequenom, Inc. Systems and methods for performing reactions in an unsealed environment
ES2324513T3 (en) * 1999-03-18 2009-08-10 Complete Genomics As CLONING AND PRODUCTION PROCEDURES OF FRAGMENT CHAINS WITH LEGIBLE INFORMATION CONTENT.
US6506594B1 (en) 1999-03-19 2003-01-14 Cornell Res Foundation Inc Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays
GB9907812D0 (en) 1999-04-06 1999-06-02 Medical Biosystems Ltd Sequencing
US6284465B1 (en) * 1999-04-15 2001-09-04 Agilent Technologies, Inc. Apparatus, systems and method for locating nucleic acids bound to surfaces
US6355431B1 (en) * 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
US20030108867A1 (en) 1999-04-20 2003-06-12 Chee Mark S Nucleic acid sequencing using microsphere arrays
EP1923472B1 (en) 1999-04-20 2012-04-11 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US6221653B1 (en) * 1999-04-27 2001-04-24 Agilent Technologies, Inc. Method of performing array-based hybridization assays using thermal inkjet deposition of sample fluids
EP1190100B1 (en) 1999-05-20 2012-07-25 Illumina, Inc. Combinatorial decoding of random nucleic acid arrays
US20020051971A1 (en) * 1999-05-21 2002-05-02 John R. Stuelpnagel Use of microfluidic systems in the detection of target analytes using microsphere arrays
US6300070B1 (en) * 1999-06-04 2001-10-09 Mosaic Technologies, Inc. Solid phase methods for amplifying multiple nucleic acids
US6340589B1 (en) 1999-07-23 2002-01-22 Mj Research, Inc. Thin-well microplate and methods of making same
GB9921155D0 (en) 1999-09-08 1999-11-10 Medical Res Council Selection system
US7244559B2 (en) 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US7211390B2 (en) 1999-09-16 2007-05-01 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6274320B1 (en) 1999-09-16 2001-08-14 Curagen Corporation Method of sequencing a nucleic acid
AU2438501A (en) 1999-12-21 2001-07-03 Government Of The United States Of America, As Represented By The Secretary Of The Navy, The Expression of proteins from amplified, immobilized nucleic acids
US6500620B2 (en) * 1999-12-29 2002-12-31 Mergen Ltd. Methods for amplifying and detecting multiple polynucleotides on a solid phase support
CA2398690A1 (en) 2000-01-20 2001-07-26 Rosetta Inpharmatics, Inc. Barcoded synthetic lethal screening to identify drug targets
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
EP1255865B1 (en) 2000-02-07 2007-04-18 Illumina, Inc. Nucleic acid detection method using universal priming
US6714874B1 (en) 2000-03-15 2004-03-30 Applera Corporation Method and system for the assembly of a whole genome using a shot-gun data set
JP3442338B2 (en) 2000-03-17 2003-09-02 株式会社日立製作所 DNA analyzer, DNA base sequencer, DNA base sequence determination method, and reaction module
CN1189159C (en) 2000-05-05 2005-02-16 欧莱雅 Micro-capsule contg. water soluble beauty-care activity component water nuclear, and composition contg. same
US6475736B1 (en) * 2000-05-23 2002-11-05 Variagenics, Inc. Methods for genetic analysis of DNA using biased amplification of polymorphic sites
US6808874B2 (en) 2000-06-13 2004-10-26 Cyclacel Ltd. Methods of monitoring enzyme activity
WO2002012897A2 (en) 2000-08-09 2002-02-14 Illumina, Inc. Automated information processing in randomly ordered arrays
GB0021977D0 (en) 2000-09-07 2000-10-25 Pyrosequencing Ab Method of sequencing DNA
GB0022069D0 (en) * 2000-09-08 2000-10-25 Pyrosequencing Ab Method
GB0022458D0 (en) 2000-09-13 2000-11-01 Medical Res Council Directed evolution method
AU2001293163A1 (en) * 2000-09-27 2002-04-08 Lynx Therapeutics, Inc. Method for determining relative abundance of nucleic acid sequences
US6632610B2 (en) 2000-10-12 2003-10-14 Gensat S.A. Methods of identification and isolation of polynucleotides containing nucleic acid differences
US20020172980A1 (en) * 2000-11-27 2002-11-21 Phan Brigitte Chau Methods for decreasing non-specific binding of beads in dual bead assays including related optical biodiscs and disc drive systems
JP2002257070A (en) * 2001-02-28 2002-09-11 Toyota Industries Corp Shaft sealing structure of vacuum pump
US6936264B2 (en) 2001-03-05 2005-08-30 The Procter & Gamble Company Delivery of reactive agents via multiple emulsions for use in shelf stable products
US6996287B1 (en) 2001-04-20 2006-02-07 Adobe Systems, Inc. Method and apparatus for texture cloning
GB0114856D0 (en) 2001-06-18 2001-08-08 Medical Res Council Selection by avidity capture
GB0114854D0 (en) * 2001-06-18 2001-08-08 Medical Res Council Selective gene amplification
US20050009022A1 (en) * 2001-07-06 2005-01-13 Weiner Michael P. Method for isolation of independent, parallel chemical micro-reactions using a porous filter
US20030064400A1 (en) 2001-08-24 2003-04-03 Li-Cor, Inc. Microfluidics system for single molecule DNA sequencing
US6902921B2 (en) * 2001-10-30 2005-06-07 454 Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US6956114B2 (en) 2001-10-30 2005-10-18 '454 Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
GB0127564D0 (en) 2001-11-16 2002-01-09 Medical Res Council Emulsion compositions
WO2003045310A2 (en) 2001-11-21 2003-06-05 Applera Corporation Digital assay
US7198897B2 (en) * 2001-12-19 2007-04-03 Brandeis University Late-PCR
DE60301622T2 (en) * 2002-04-04 2006-06-14 Biotage Ab Uppsala PRIMER EXTENSION BASED PROCESS USING NUCLEOTIDES MARKED OVER COLD LINKERS
JP4395133B2 (en) 2002-12-20 2010-01-06 カリパー・ライフ・サイエンシズ・インク. Single molecule amplification and detection of DNA
CA2509512A1 (en) * 2003-01-15 2004-08-05 Eugene L. Brown Novel high throughput method of generating and purifying labeled crna targets for gene expression analysis
US7575865B2 (en) 2003-01-29 2009-08-18 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
AU2004254552B2 (en) 2003-01-29 2008-04-24 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
US8150627B2 (en) 2003-05-15 2012-04-03 Illumina, Inc. Methods and compositions for diagnosing lung cancer with specific DNA methylation patterns
EP2918595B1 (en) * 2003-07-05 2019-12-11 The Johns-Hopkins University Method and compositions for detection and enumeration of genetic variations
WO2005073410A2 (en) 2004-01-28 2005-08-11 454 Corporation Nucleic acid amplification with continuous flow emulsion
US7682816B2 (en) 2005-04-07 2010-03-23 454 Life Sciences Corporation Thin film coated microwell arrays and methods of using same
US7785862B2 (en) 2005-04-07 2010-08-31 454 Life Sciences Corporation Thin film coated microwell arrays
EP1910537A1 (en) 2005-06-06 2008-04-16 454 Life Sciences Corporation Paired end sequencing
US8364417B2 (en) 2007-02-15 2013-01-29 454 Life Sciences Corporation System and method to correct out of phase errors in DNA sequencing data by use of a recursive algorithm
JP5808515B2 (en) 2006-02-16 2015-11-10 454 ライフ サイエンシーズ コーポレイション System and method for correcting primer extension errors in nucleic acid sequence data
US8715934B2 (en) 2006-06-19 2014-05-06 The Johns Hopkins University Single-molecule PCR on microparticles in water-in-oil emulsions
WO2008011621A2 (en) 2006-07-21 2008-01-24 The Penn State Research Foundation Protein kinase c zeta inhibition to treat vascular permeability
CA2679511A1 (en) 2007-03-16 2008-09-25 454 Life Sciences Corporation System and method for detection of hiv drug resistant variants
ES2774725T3 (en) 2017-05-16 2020-07-22 Arkema France Method of manufacturing 1,4-bis (4-phenoxybenzoyl) benzene under supersaturated conditions

Also Published As

Publication number Publication date
JP4768598B2 (en) 2011-09-07
US20090011959A1 (en) 2009-01-08
EP1590477A2 (en) 2005-11-02
US20040185484A1 (en) 2004-09-23
JP5495399B2 (en) 2014-05-21
US20190203263A1 (en) 2019-07-04
JP4480715B2 (en) 2010-06-16
ES2396245T3 (en) 2013-02-20
EP1594980A4 (en) 2007-05-02
AU2004209001A1 (en) 2004-08-19
US20090048124A1 (en) 2009-02-19
JP2006515522A (en) 2006-06-01
JP5258822B2 (en) 2013-08-07
JP2010142233A (en) 2010-07-01
CN101128601A (en) 2008-02-20
DE602004036672C5 (en) 2012-11-29
ATE437945T1 (en) 2009-08-15
ES2380893T3 (en) 2012-05-21
EP1594981A4 (en) 2008-03-05
EP1594950A2 (en) 2005-11-16
ATE461291T1 (en) 2010-04-15
CN101128601B (en) 2011-06-08
EP1594980B2 (en) 2017-08-16
CA2727850A1 (en) 2005-01-13
DE602004024034D1 (en) 2009-12-24
DE602004026033D1 (en) 2010-04-29
CA2513899C (en) 2013-03-26
EP2261372B1 (en) 2012-08-22
EP2261372A2 (en) 2010-12-15
EP2145955B1 (en) 2012-02-22
US20050130173A1 (en) 2005-06-16
JP2013066475A (en) 2013-04-18
WO2004070007A2 (en) 2004-08-19
EP1594980B1 (en) 2009-11-11
JP2007523627A (en) 2007-08-23
US10240192B2 (en) 2019-03-26
JP5726155B2 (en) 2015-05-27
JP2012231799A (en) 2012-11-29
WO2004070005B1 (en) 2005-01-20
CA2728746C (en) 2018-01-16
EP1594981B1 (en) 2010-03-17
CA2728746A1 (en) 2005-01-13
CA2513899A1 (en) 2005-01-13
US20140162885A1 (en) 2014-06-12
US20150099672A1 (en) 2015-04-09
EP2159285A2 (en) 2010-03-03
WO2004069849A3 (en) 2005-03-24
US8790876B2 (en) 2014-07-29
AU2004209426B2 (en) 2008-04-17
US20080132693A1 (en) 2008-06-05
US8012690B2 (en) 2011-09-06
EP1590477A4 (en) 2008-04-09
WO2004069849A8 (en) 2007-04-19
US8765380B2 (en) 2014-07-01
CA2727850C (en) 2013-04-30
US20120238475A1 (en) 2012-09-20
US8158359B2 (en) 2012-04-17
EP1997889A3 (en) 2009-09-23
EP1590477B1 (en) 2009-07-29
US10982274B2 (en) 2021-04-20
US20160298175A1 (en) 2016-10-13
CA2513535A1 (en) 2004-08-19
US7323305B2 (en) 2008-01-29
EP2159285B1 (en) 2012-09-26
US20060134633A1 (en) 2006-06-22
US20110009275A1 (en) 2011-01-13
CN102212614B (en) 2013-12-25
DE602004022253D1 (en) 2009-09-10
WO2004070005A2 (en) 2004-08-19
CN102212614A (en) 2011-10-12
JP4473878B2 (en) 2010-06-02
WO2004069849A2 (en) 2004-08-19
EP2145955A2 (en) 2010-01-20
JP2010178744A (en) 2010-08-19
US7244567B2 (en) 2007-07-17
US7842457B2 (en) 2010-11-30
EP2145955A3 (en) 2011-03-30
ATE448302T1 (en) 2009-11-15
EP2261372A3 (en) 2011-04-06
JP2007525151A (en) 2007-09-06
US20130078638A1 (en) 2013-03-28
US20110201526A1 (en) 2011-08-18
CA2513889A1 (en) 2004-08-19
EP1594981A2 (en) 2005-11-16
US8748102B2 (en) 2014-06-10
AU2004254552A1 (en) 2005-01-13
ES2338654T5 (en) 2017-12-11
ES2330339T3 (en) 2009-12-09
AU2004209426A1 (en) 2004-08-19
EP1997889A2 (en) 2008-12-03
EP1594950A4 (en) 2007-07-25
JP2013090635A (en) 2013-05-16
EP1594980A2 (en) 2005-11-16
ATE546525T1 (en) 2012-03-15
WO2004070007A3 (en) 2005-12-22
ES2342665T3 (en) 2010-07-12
AU2004209416B2 (en) 2007-08-02
US20050079510A1 (en) 2005-04-14
AU2004254552B2 (en) 2008-04-24
WO2004070005A3 (en) 2004-11-11
AU2004209416A1 (en) 2004-08-19
WO2005003375A3 (en) 2007-08-23
JP2007535892A (en) 2007-12-13
CA2513535C (en) 2012-06-12
EP2159285A3 (en) 2011-06-29
ES2338654T3 (en) 2010-05-11
AU2004209001B2 (en) 2007-10-11
WO2005003375A2 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
AU2004209426B2 (en) Method for preparing single-stranded DNA libraries
EP2689028B1 (en) Isolation of polymerase-nucleic acid complexes and loading onto substrates
US20050221341A1 (en) Sequence-based karyotyping
CN110997932A (en) Single cell whole genome library for methylation sequencing
KR102592367B1 (en) Systems and methods for clonal replication and amplification of nucleic acid molecules for genomic and therapeutic applications
JP2010537643A (en) Alternative nucleic acid sequencing methods
CA2741996A1 (en) Sequence preserved dna conversion
KR20210061962A (en) Chemical composition and method of use thereof
AU2008200151B2 (en) Bead Emulsion Nucleic Acid Amplification
CA2773059A1 (en) Bead emulsion nucleic acid amplification

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued