CA2510819A1 - Methods of monitoring the concentration of an analyte - Google Patents

Methods of monitoring the concentration of an analyte Download PDF

Info

Publication number
CA2510819A1
CA2510819A1 CA002510819A CA2510819A CA2510819A1 CA 2510819 A1 CA2510819 A1 CA 2510819A1 CA 002510819 A CA002510819 A CA 002510819A CA 2510819 A CA2510819 A CA 2510819A CA 2510819 A1 CA2510819 A1 CA 2510819A1
Authority
CA
Canada
Prior art keywords
sensor
wireless signal
signal
relay
analyte concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002510819A
Other languages
French (fr)
Inventor
Ulrich Kraft
Manfred Ebner
Matthias Stiene
Joseph Mccluskey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LifeScan Scotland Ltd
Original Assignee
LifeScan Scotland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LifeScan Scotland Ltd filed Critical LifeScan Scotland Ltd
Publication of CA2510819A1 publication Critical patent/CA2510819A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement

Abstract

Methods are disclosed for remotely monitoring an analyte concentration of an individual by one or more other individuals.

Description

Methods of Monitoring the Concentration of an Analyte BACKGROUl~'D
[OOOI] There is a need to measure and monitor analyte concentrations in a continuous or in a frequent, periodic manner. For example, certain diabetics benefit from a system that can measure glucose concentration levels continuously and automatically without the need for human intervention. A variety of such systems exist, including those having sensors which are permanently or temporarily implantable or which establish continuous access to the patient's blood or interstitial fluid. Such systems provide diabetics with real-time glucose concentration levels.
[0002] It is contemplated that these systems include an alarm mechanism that is automatically activated to notify the user when his or her glucose level is outside of a physiologically normal zone. This would be especially useful for the nocturnal monitoring of diabetics. In such a scenario, when the patient enters a hypo or hyperglycemic state, the continuous glucose sensor activates an acoustical alarm (located either on the sensor itself or on a separate but closely positioned unit which is wired to or in wireless contact with the sensor) to wake up the diabetic person so that the appropriate therapy can be invoked. In certain cases, however, the alarm may not be sufficient to v~~ake up the diabetic, particularly in situations where the diabetic is unable to be easily woken or has gone into a comatose state due to the hypo or hyperglycemic condition. Such an alarm is also not useful in situations where the diabetic is a baby or a very young child or is otherwise physically or mentally handicapped and unable to help himself in response to the alarm. In these situations, a parent or other caretaker must frequently and regularly check on the diabetic to monitor the diabetic's glucose Ievel.
[0003] While «~ireless technologies are available to enable remote placement of an alarm, such as in the parent or caretaker's bedroom, due to Federal Communications Commission (FCC) regulations, these types of sensor systems are required to use a very low transmission frequency which limits placement of the alarm to no more than several meters from the sensor. Low frequency devices and specifically their antennas are necessarily relatively large. On the other hand, sensor-alainl systems capable of transmitting high frequency (above about 100 MHzI are subject to interference by the human body and, thus, have limited transmission range capacity, especially indoors. Additionally, high frequency wireless signals can consume large amounts of power requiring a battery size that limits portability of the alarm unit.
[0004] Accordingly, there is a continued need for the development of new devices and techniques for facilitating the remote monitoring of real-time analyte levels and other physiological characteristics that address the shortcomings of current technologies.
SUMMARY
[0005] The present invention is directed to methods of monitoring analytes that satisfy the need to remotely monitor a patient and to remotely transmit patient data and/or to activate an alarm that obviates the drawbacks and shortcomings of prior systems. Further, the subject methods utilize systems which consume minimal power;
provide relatively long-range signal transmissions and are less inclined to have interference with the human body than conventional analyte monitoring systems.
[0006] The analyte monitoring systems include a sensor for monitoring an analyte concentration of a user, a signal relay, and a signal receiver. In addition to monitoring analyte concentrations, the sensor is configured to transmit a first wireless signal to the signal relay which signal is representative of a real-time analyte concentration level, e.g., a value representative of a current glucose level, or a physiological state, e.g., hypo- or hyperglycemia. The signal relay is configured to receive the first wireless signal and to, in turn, transmit a second wireless signal to the signal receiver which is representative of such concentration level or state, wherein the second wireless signal has a different frequency and/or transmission protocol (i.e., including but not limited to signal transmission and reception times and data packaging (e.g., addressing, encoding, etc.)) than that of the first wireless signal. The signal receiver is configured to receive the second wireless signal and to provide notification to a user of the actual real-time analyte level, sensor state (function status, failure occurrence, error code, etc.) or a state representative thereof. Such notification may be an audible, tactile and/or visual alarm and may further include a display of the actual analyte concentration value. Accordingly, the analyte monitoring systems of the present invention can transmit an alarm by using a first frequency to communicate with the sensor to the relay over a relatively short distance, and subsequently using a second frequency to communicate with the relay to the receiving device over a relatively longer distance. The t\wo signals may have the same or different frequencies. If the same frequency is used, the signals typically have different transmission protocols which do not interfere with each other.
[0007] A method of the present invention is directed to monitoring an analyte concentration of a first person by at least one secondary person. The method includes measuring the analyte concentration of the first person and transmitting a wireless signal representative of a real-time status of the analyte concentration value. A
second wireless signal representative of the real-time status of the analyte concentration the concentration value having is then transmitted to the location of the at least one secondary person. The transmission range of the second signal is greater than the transmission range of the first signal.
(0008] Another method of the present invention is directed to relaying a real-time analyte concentration value of a first person by at least one secondary person. This method includes measuring the analyte concentration of the first person with a sensor and transmitting a first wireless signal representative of the real-time status of the anal5~te concentration from the sensor to a handheld device located a first distance from the sensor. A second wireless signal representative of the concentration value is then transmitted from the handheld device to a relay located a second distance from the sensor. A third wireless signal is then transmitted from the relay to at least one signal receiver located a third distance from the sensor, wherein the third wireless signal has a transmission range greater than the transmission range of the first wireless signal.
[0009] These and other objects, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the invention as more fully described below.
BRIEF DESCRIPTION OF THE DRAVVINGS
[001 Oj The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings:
[0011 ] Figure 1 is a schematic illustration of a first embodiment of an analyte monitoring system of the present invention.
[0012] Figure 2 is a schematic illustration of a second embodiment of an analyte monitoring system of the present invention.
DETAILED DESCRIPTION OF THE DRAVVIIVGS
[0013] Before the subject systems and method are described, it is to be understood that this invention is not limited to particular embodiments described or illustrated, as such may, of course; vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
[0014) Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherv~rise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
[0015] Unless defined otherwise, all technical and scientific terms used herein - ~ have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
[0016] It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a signal"
includes a plurality of such signals and so forth.
[0017] All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided might be different from the actual publication dates which may need to be independently confirmed.
[0018] Exemplary embodiments and variations of the present invention will now be described in detail. In further describing the present invention, the subject systems and device components will be described first. Next, various methods of using the subject devices and systems as well as methods for the transmission of real-time physiological information will then be described. Finally, a brief description is provided of the subject kits, which kits include the subject devices and systems for use in practicing the subject methods.
[OOI9] In the following description, the present invention will be described in the context of glucose concentration measurement; however, such is not intended to be limiting and those skilled in the art will appreciate that the subject devices, systems and methods are useful in the measurement and monitoring of other physical, neurological and chemical characteristics, e.g., blood pressure, heart rate, respiratory rate, neurological activity, therapeutic drug levels, fetal activity, sleep states, etc.
[0020] Figure 1 is a schematic representation of an embodiment of an analyte monitoring system of the present invention. Analyte monitoring sysiem includes an analyte sensor 100, a signal relay 4, and a signal-receiving device 6.
[0021 ] Sensor 100 may be any suitable type of sensor, including but not limited to one that is permanently or temporarily implantable through or within subcutaneous, dermal, sub-dermal, infra-peritoneal or peritoneal tissue or is otherwise worn or attached to the body allowing continuous or intermittent measurement and access to the user's blood, interstitial fluid or the like. The sensors may be electrochemical, chemical or optical sensors or the like. Examples of such sensors which may be used with the present invention are disclosed in U.S. Patent Nos. 6,040,194;
6,232,130;
6,233,471; 6,272,364; 6,329,161; 6,514,718; 6,558,321 and 6,702,857, and in International Publication WO 02/49507, which are fully incorporated by reference herein. Examples of commercially available sensors usable with the present invention include but are not limited to GlucoWatch G2~ Biographer from Cygnus, Inc., Redwood City, CA; CGMS~ System GoIdTM from Medtronic Minimed, Inc., Northridge, CA.
[0022] Sensor 100 may include an integrated signal transmitter or one that is directly coupled to the sensing portion of the sensor. The transmitter is preferably configured to transmit signals within the radio frequency (RF) spectrum. The sensor further includes a processor which may be progra.-nmed to enable the sensor to make continuous or intermittent but frequent measurements of the target analyte(s) and to transmit signals representative of those measurements continuously or intermittently.
With non-implantable or partially implantable sensors, the sensor itself may also be configured to provide an alarm to the user to indicate a less than acceptable analyte measurement. With implantable sensors, the sensor may be configured to transmit a signal to activate an external alarm adjacent the user. Additionally, the sensor's processor may enable the detection of sensor malfunction, e.g., due to low battery power, temperature extremes, disconnection of the sensor from the user, etc., and the transmission of alarm signals representative of those malfimctions.
[0023] Signal relay 4 includes a signal-recei«ng portion configured to receive transmitted signals from sensor 100 and a transmitting portion configured to transmit signals to signal receiver 6. Again, the receiving and transmitting portions are preferably configured to operate within the RF band. Relay 4 is further configured to convert a received signal having one frequency and/or transmission protocol to a signal having another frequency and/or transmission protocol, and to transmit the converted signal having a transmission range greater than that of the received signal.
Suitable relays which may be used with the present invention include those by Millenial Net, Inc. and ZigBee, Inc.
[0024] Depending on the user's setup, relay 4 may be used as a stationary and/or portable device. For example, relay 4 may be integrated into a substantially stationary base unit or station, as illustrated in Fig. 1, v~~hich may be powered by a designated power supply or by a wire or cable connection to a conventional AC
outlet. With the relatively low energy signals transmitted by sensor 100, better results are achieved when the relay 4 is placed within about 3 meters from sensor 100.
In one embodiment of this invention, relay 4 may be positioned in the room inhere a diabetic user resides. Alternatively, as illustrated in Fig. 2, relay 4 may be configured to interface with a handheld, battery-powered unit 2. Handheld device 2 may be configured to mate with relay 4 in a modular fashion using an electrical socket union such as a USB port wherein device 2 communicates information (signals) to relay 4 and relay 4 is powered by device 2. Alternately, relay 4 may be electrically integrated within handheld unit 2.
[0025] Handheld device 2 may also have the electronic fiznctionality to measure an analyte concentration such as glucose in an episodic manner using a disposable glucose test strip. An example of an episodic glucose meter that can be incorporated into handheld device 2 is the commercially available LifeScan OneTouch~
UltraSmartTM Monitoring System. Under certain situations it may be desirable for a system to measure glucose episodically in addition to the continuous method.
For example, episodic glucose measurements may be needed to help calibrate sensor 100, perform a quality control check, make an emergency glucose measurement test wr~ile sensor 100 is equilibrating, or to confirm an extremely high or low measurement made by sensor I00 before taking drastic therapeutic actions. In another embodiment of the invention, handheld device 2 can be used as a remote control device sending and receiving data from sensor 100, an insulin pump (not shown), and other medical devices.
j0026] With any of the relay configurations described above, the base unit or handheld trait or both may include user interface controls for controlling sensor function as well as a display for displaying analyte values and other system parameters. The unit also typically includes a primary alarm, such as an audible, tactical (vibration) and/or visual (flashing LED) alarm signal, to notify the user of a critical or potentially critical state. Because relay 4 has an AC power source, it can generate a stronger alarm, e.g., a louder noise or a brighter light, than one that is generated solely from sensor 100 to help alert the diabetic user. Where sensor 100 is used in conjunction with an insulin pump as part of a closed-loop or feedback control system to control delivery of the appropriate dosage of insulin to maintain a euglycemic state, such an alarm may not be necessary. However, where such a closed-loop system is not employed, this primary alarm alone may not be sufficient to wake up a user when the user's glucose levels have reached a critical state.
[0027] Signal receiver 6 is configured to receive the higher energy signals fi-om relay 4 and, as such, may be placed further away from relay 4 than the distance relay 4 is able to be placed from sensor 100, i.e., greater than about 3 meters.
Receiving device 6 may be configured to be stationary whereby it is placed in a location or room (e.g., a bedroom, nurses' station) where a secondary person or user (e.g., parent, caregiver, nurse, etc.) is located. The stationary receiver may be battery powered or powered via an AC outlet source. Alternately, receiving device 6 may be a portable, battery-powered device which is configured to be worn or carried by the secondary person such as, for example, with a belt clip or on an armband.

[0028] Vi'ith either of the signal receiver configurations,~the receiver provides a secondary system alarm, such as an audible, a tactical (vibration) and/or a visual (e.g., one or more flashing light emitting diodes (LED)) alarm mechanism which is activated when the analyte concentration is outside of a physiological normal zone.
In this way, the secondary user is immediately alerted to a critical or potentially critical state being experienced by the primary (e.g., diabetic) user. In one embodiment, an audible alarm may be configured to emit various volume (decibel) levels depending on the urgency or type of situation at hand. For example, a more urgent situation, e.g., the primary user's glucose levels have entered a physiological critical zone, would be provide a very loud alarm while: Alternatively, the alarm sound may be a recorded voice which literally announces the primary user's real-time status, e.g., "urgent", "caution", etc. Also, the type of sound may vary depending on the situation necessitating an alarnl. For example, a beeping sound may be emitted for signaling the primary user's physiological status while a buzzing sound may be emitted for signaling a system problem, e.g., low battery, loss of signal reception, etc.
Visual alarms may be configured to emit a plurality of colors, for example, where green indicates that the primary user is in a euglycemic state, yellow indicates that the primary user is in or entering a potentially hypo or h3~perglycemic zone, and red indicates that the primary'user's glucose level has entered unsafe hypo or hyperglycemic zone, where a blue light indicates a system failure or problem.
[0029] Receiving device 6 may further include a display, such as a liquid crystal display (LCD), which displays quantitative and/or qualitative real-time or stored (e.g., primary user information data about the primary user, e.g., a real-time measurement or several recently taken measurements of the primary user's glucose concentration.
The display may also provide information regarding system parameters, e.g., remaining battery power, signal reception level, etc. As with the base unit or handheld unit associated v~rith relay 4, signal receiver 6 may provide user interface controls such as functional menus, volume adjustment, etc.
[0030] So configured, the systems of the present invention enable wireless signals, i.e., alarm signals as well as information representative of analyte measurement and system operation parameters, to be transmitted to signal receiving device 6 from sensor 100 via signal relay 4. In other words, relay 4 is used as a conduit to transmit information to a person remotely located from a monitored individual. The system may include one or more additional signal receivers placed in different locations so as to transmit information to more than one person. In the context of the application discussed herein, the subject systems provide a convenient way to wirelessly alert one or more secondary persons about the glycemic status of a monitored diabetic.
[0031 ] Typically, the distance between the monitored individual and the secondary person is about 30 to 100 meters but may be more or less depending on the size of the building (e.g., home, hospital ward, etc) or area in wl-~ich they users are located. Such a transmission range necessitates a signal transmission frequency that is greater than the allowable frequency range of sensor 100. Notwithstanding the federal regulations limiting medical sensor frequency ranges, practicality dictates that the size of sensor 100 be relatively small, e.g., no more than about a few cubic centimeters cubed, particularly if implanted, and thus having limited space capacity in which to house a battery or efficient antenna. Thus, only very small batteries having a low energy output are suitable for use with sensor 100. Due to the limited power supply, the range of signal transmission by sensor 100 is limited and the energy of the signals transmitted by sensor 100 is relatively low, e.g.; no more than several hundred microwatts.
(0032] According to the present invention, signal relay 4 is employed to compensate for the limited range of transmission of sensor 100. As signal relay 4 is not implanted v~rithin the body, and in certain embodiments is not worn by the primary user, it does not have the size, space, transmission range and power constraints of sensor 100. As such, relay 4 is usable with a larger power supply source and is able to transmit signals at a higher energy over a longer distance. Although the higher energy is more susceptible to absorption by the body, the relay is remote enough to minimize such absorption.
(0033] Sensor 100 wirelessly communicates v~~ith relay 4 by means of a first transmission signal having a first frequency 8a and employing a first transmission IO

protocol, and relay 4 wirelessly communicates with signal receiver 6 by means of a second transmission signal having a second frequency 8b and employing a second transmission protocol. If the same frequency is used for both, then the two transmission protocols are different, and visa-versa. Alternatively, both frequencies and both transmission protocols may be different. With any embodiment, first frequency 8a is sufficient to allow wireless communication from sensor 100 to relay 4 over a distance of no more than about 3 meters, and second frequency 8b is sufficient to allow wireless communication to occur between relay 4 and receiving device over a distance greater than about 3 meters, and most typically up to about 30 to about 100 meters. Of course, the total transmission distance may be expanded as necessary by using one or more successively spaced relays.
[0034] In the embodiment of Fig. 2, handheld unit 2 may wirelessly communicate with relay 4 using a third transmission signal having a third frequency 8c employing a third transmission protocol sufficient to allow wireless communication to occur between unit 2 and relay 4 over a distance similar to the distance between sensor 100 and relay 4, but such distance may be greater or smaller. The third signal may have the same or a different frequency and/or utilize the same or a different transmission protocol as the first signal.
(0035] For practical reasons, signals within the radio frequency spectrum are preferable for applications of the present invention. Typically, the transmission signals used in the present invention have frequencies in the range from about MHz to greater than 2.4 GHz. In one variation, the first and/or third frequencies 8a, 8c are typically in the range from about 200 MHz to about 950 MHz, and second frequency 8b is about 2.4 GHz (which enables the use of 802.11 wireless standards), but may be higher or lower as the application dictates. In one embodiment, either or both first and third frequencies are about 903 MHz (which frequency is available as part of the unlicensed spectrum of radio frequencies).
[0036] The wireless communication within the described systems may be entirely unidirectional, i.e., from the sensor to the relay to the receiver, or entirely bidirectional, i.e., the receiver may be able to transmit to the relay which is able to transmit to the sensor, or the systems may be partially unidirectional and partially bidirectional, e.g., communication between the sensor and relay or handheld unit may be bidirectional while communication between the relay and the signal receiver may be unidirectional. The frequencies of the signals transmitted in the opposite direction to what has been primarily described herein (i.e., transmissions from the receiver to the relay and from the relay to the sensor) may be the same or different from frequencies 8a, 8b and 8c, respectively.
[0037) The present invention further includes methods for monitoring an analyte concentration of a first person by at least one secondary person. In one variation, the method involves measuring the analyte concentration of the first person, such as with sensor 100 described above, and then transmitting a lower-energy wireless signal representative of a real-time status of the analyte concentration and/or an alarm reflective of such status to a relay station, such as with relay 4 described above (and/or to a handheld or base unit 2), where it is converted to a higher-energy wireless signal. The higher-energy signal is then transmitted to the secondary person at the location; and is received at the second location by of signal receiver, such as signal receiver 6 described above. An alarm on the signal receiver may be activated to alert the secondary person in response to an analyte concentration level of the first person v~~hich is outside an acceptable range. Additionally, the sensor and/or relay and/or handheld unit may have respective alarms which are activated under similar circumstances.
(0038) Vfith the embodiment of Fig. 2, the first wireless signal may be sent simultaneously to both the handheld unit 2 and the relay 4, or may be sent to one or the other first which may then transmit a second wireless signal to the other.
TSPically, the first signal is sent to the handheld unit which in turn transmits it to the relay. As mentioned above, the handheld unit may transmit signals having the same or different energy as the sensor.
[0039) It is an advantage of this invention in that the first frequency range requires relatively low power and is less inclined to have interferences with the human body where sensor 100 is likely to be situated. A further advantage of the low power requirement is that it allows sensor 100 to have a smaller battery and/or less frequent battery charging/replacement which is highly desirable for both implanted and wearable continuous sensors. However, as discussed above, a lower energy signal generally causes the range of transmission to be limited. Relay 4 is thus used to relay the transmission of signals (i.e., information and data) from sensor 100 to receiving device 6.
[0040] It is a further advantage of the present invention in that second frequency 8b allows a much larger transmittal range. Although second frequency 8b requires relatively more power than first frequency 8a, the use of a stationary relay 4 using an AC power source or a large battery having higher energy output, thus, mitigating the power issue. It should be noted that the use of a higher-energy signal is more inclined to have physiological interferences with the human body, but this is typically not an issue as relay 4 is usually remote from a human body.
[0041) Also provided by the subject invention are kits for use in practicing the subject methods. The kits of one embodiment of the subject invention include at least one sensor, a relay and at least one receiver, as described above. The kits may further include software programs recorded on a CD-ROM or the like, v~~hich programs may be downloaded to the sensor, a base or handheld unit or meter, and/or a signal receiver by a user or a physician by means of an external device, such as a computer. Finally, the kits may further include instructions for using the subject devices. These instructions may be present on one or more of the packaging, label inserts or containers within the kits, or may be provided on a CD-ROM or the like.
[0042] It is evident from the above description and discussion that the above-described invention provides a simple and convenient way to wirelessly alert one or more secondary persons about the real-time glycemic status of a monitored diabetic.
As such, the subject invention represents a significant contribution to the art.
[0043] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing froril the spirit or scope of the appended claims.

Claims (13)

1. A method of monitoring an analyte concentration of a first person by at least one secondary person, the method comprising:
measuring the analyte concentration of the first person;
transmitting a first wireless signal representative of a real-time status of the analyte concentration, the first signal having a first transmission range; and transmitting a second wireless signal representative of the real-time status of the analyte concentration to the location of the at least one secondary person, the second wireless signal having a second transmission range;
wherein the second transmission range is greater than the first transmission range.
2. The method of claim 1, wherein a signal frequency of the first wireless signal is in the range from about 200 MHz to about 950 MHz and a signal frequency of the second wireless signal is about 2.4 GHz.
3. The method of claim 1 or 2, wherein the first wireless signal is transmitted about 3 meters or less and the second wireless signal is transmitted up to about 30 meters or more.
4. The method of claim 1, 2 or 3, further comprising activating an alarm at the location of the at least one secondary person in response to the real-time status of the analyte concentration.
5. The method of claim 4, further comprising activating an alarm at the location of the first person in response to the real-time status of the analyte concentration.
6. The method of any of the preceding claims, wherein in the analyte measuring is performed continuously.
7. The method of claim 6, wherein the analyte measuring is also performed episodically.
8. A method of relaying a real-time analyte concentration of a first person by at least one secondary person, the method comprising:
measuring the analyte concentration of the first person with a sensor;
transmitting a first wireless signal representative of a real-time status of the analyte concentration from the sensor to a handheld device located a first distance from the sensor, the first signal having a first transmission range;
transmitting a second wireless signal representative of the real-time status of the analyte concentration from the handheld device to a relay located a second distance from the sensor, the second wireless signal having a second transmission range; and transmitting a third wireless signal representative of the real-time status of the analyte concentration from the relay to at least one signal receiver located a third distance from the sensor, wherein the third wireless signal has a transmission range than the transmission range of the first wireless signal.
9. The method of claim 8, further comprising activating an alarm at the location of the at least one secondary person in response to the real-time status of the analyte concentration.
10. The method of claim 8 or 9, wherein the third distance is substantially greater than the first distance.
11. The method of claim 8, 9 or 10, wherein the first distance and the second distance are substantially the same.
12. The method of claim 8, 9 or 10, wherein the third wireless signal has a signal frequency greater than a signal frequency of the second wireless signal
13. The method of claim 8, 9 or 10, wherein the third wireless signal has a transmission protocol different from a transmission protocol of the second wireless signal.
CA002510819A 2004-06-30 2005-06-22 Methods of monitoring the concentration of an analyte Abandoned CA2510819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/882,642 2004-06-30
US10/882,642 US20060001538A1 (en) 2004-06-30 2004-06-30 Methods of monitoring the concentration of an analyte

Publications (1)

Publication Number Publication Date
CA2510819A1 true CA2510819A1 (en) 2005-12-30

Family

ID=34941685

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002510819A Abandoned CA2510819A1 (en) 2004-06-30 2005-06-22 Methods of monitoring the concentration of an analyte

Country Status (9)

Country Link
US (1) US20060001538A1 (en)
EP (1) EP1611839A1 (en)
JP (1) JP2006015146A (en)
KR (1) KR20060049251A (en)
CN (1) CN1722186A (en)
AU (1) AU2005202514A1 (en)
CA (1) CA2510819A1 (en)
SG (1) SG118408A1 (en)
TW (1) TW200622950A (en)

Families Citing this family (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
CA2501825C (en) * 2002-10-09 2009-12-01 Therasense, Inc. Fluid delivery device, system and method
US7993108B2 (en) * 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US7727181B2 (en) * 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US7679407B2 (en) * 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US7695239B2 (en) * 2003-07-14 2010-04-13 Fortrend Engineering Corporation End effector gripper arms having corner grippers which reorient reticle during transfer
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
USD902408S1 (en) 2003-11-05 2020-11-17 Abbott Diabetes Care Inc. Analyte sensor control unit
CA2556331A1 (en) 2004-02-17 2005-09-29 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
CA3090413C (en) 2004-06-04 2023-10-10 Abbott Diabetes Care Inc. Glucose monitoring and graphical representations in a data management system
US20060020192A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US20090105569A1 (en) * 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7731657B2 (en) * 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US20070027381A1 (en) * 2005-07-29 2007-02-01 Therasense, Inc. Inserter and methods of use
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US20060166629A1 (en) * 2005-01-24 2006-07-27 Therasense, Inc. Method and apparatus for providing EMC Class-B compliant RF transmitter for data monitoring an detection systems
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
EP1863559A4 (en) 2005-03-21 2008-07-30 Abbott Diabetes Care Inc Method and system for providing integrated medication infusion and analyte monitoring system
US8112240B2 (en) * 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7768408B2 (en) * 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
CA2620586A1 (en) 2005-08-31 2007-03-08 Boris P. Kovatchev Improving the accuracy of continuous glucose sensors
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US20090054747A1 (en) * 2005-10-31 2009-02-26 Abbott Diabetes Care, Inc. Method and system for providing analyte sensor tester isolation
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
CA2636034A1 (en) * 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US7736310B2 (en) * 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7826879B2 (en) * 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) * 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US8473022B2 (en) * 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US20090054749A1 (en) * 2006-05-31 2009-02-26 Abbott Diabetes Care, Inc. Method and System for Providing Data Transmission in a Data Management System
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US20090105571A1 (en) * 2006-06-30 2009-04-23 Abbott Diabetes Care, Inc. Method and System for Providing Data Communication in Data Management Systems
JP4853207B2 (en) * 2006-09-28 2012-01-11 ニプロ株式会社 Blood glucose measuring device
JP4894439B2 (en) * 2006-09-28 2012-03-14 ニプロ株式会社 Blood glucose measuring device
JP5011935B2 (en) * 2006-10-11 2012-08-29 パナソニック株式会社 Blood test equipment
JP5011936B2 (en) * 2006-10-11 2012-08-29 パナソニック株式会社 Blood test equipment
AU2007308804A1 (en) 2006-10-26 2008-05-02 Abbott Diabetes Care, Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US8579853B2 (en) * 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US20080119710A1 (en) * 2006-10-31 2008-05-22 Abbott Diabetes Care, Inc. Medical devices and methods of using the same
US20080161666A1 (en) * 2006-12-29 2008-07-03 Abbott Diabetes Care, Inc. Analyte devices and methods
US8121857B2 (en) * 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US20080228056A1 (en) 2007-03-13 2008-09-18 Michael Blomquist Basal rate testing using frequent blood glucose input
JP2008253560A (en) * 2007-04-05 2008-10-23 Shinichi Yoshida Device for detecting pseudohypoglycemia and issuing alarm
CA2683959C (en) * 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
WO2008130896A1 (en) * 2007-04-14 2008-10-30 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
WO2009096992A1 (en) 2007-04-14 2009-08-06 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US9008743B2 (en) * 2007-04-14 2015-04-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683930A1 (en) 2007-04-14 2008-10-23 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080312845A1 (en) * 2007-05-14 2008-12-18 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) * 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) * 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) * 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7751907B2 (en) 2007-05-24 2010-07-06 Smiths Medical Asd, Inc. Expert system for insulin pump therapy
EP2535830B1 (en) 2007-05-30 2018-11-21 Ascensia Diabetes Care Holdings AG Method and system for managing health data
US8221345B2 (en) * 2007-05-30 2012-07-17 Smiths Medical Asd, Inc. Insulin pump based expert system
WO2008150917A1 (en) 2007-05-31 2008-12-11 Abbott Diabetes Care, Inc. Insertion devices and methods
EP3533387A3 (en) 2007-06-21 2019-11-13 Abbott Diabetes Care, Inc. Health management devices and methods
CA2690870C (en) * 2007-06-21 2017-07-11 Abbott Diabetes Care Inc. Health monitor
US20080319294A1 (en) * 2007-06-21 2008-12-25 Abbott Diabetes Care, Inc. Health management devices and methods
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US7768386B2 (en) * 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US20090036760A1 (en) * 2007-07-31 2009-02-05 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090105567A1 (en) * 2007-10-19 2009-04-23 Smiths Medical Pm, Inc. Wireless telecommunications network adaptable for patient monitoring
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US20090164239A1 (en) * 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US20090164190A1 (en) * 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Physiological condition simulation device and method
US20090177147A1 (en) 2008-01-07 2009-07-09 Michael Blomquist Insulin pump with insulin therapy coaching
WO2009124095A1 (en) * 2008-03-31 2009-10-08 Abbott Diabetes Care Inc. Shallow implantable analyte sensor with rapid physiological response
EP2982383B1 (en) * 2008-04-10 2019-05-15 Abbott Diabetes Care, Inc. Method for sterilizing an analyte sensor
US8591410B2 (en) * 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US20090300616A1 (en) * 2008-05-30 2009-12-03 Abbott Diabetes Care, Inc. Automated task execution for an analyte monitoring system
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US9943644B2 (en) * 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US20100082364A1 (en) * 2008-09-30 2010-04-01 Abbott Diabetes Care, Inc. Medical Information Management
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US20100198196A1 (en) * 2009-01-30 2010-08-05 Abbott Diabetes Care, Inc. Therapy Delivery Device Programming Tool
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US9402544B2 (en) * 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
DK3912551T3 (en) * 2009-02-26 2023-10-30 Abbott Diabetes Care Inc Procedure for calibrating an analyte sensor
WO2010114942A1 (en) * 2009-03-31 2010-10-07 Abbott Diabetes Care Inc. Precise fluid dispensing method and device
US8497777B2 (en) * 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
WO2010121229A1 (en) 2009-04-16 2010-10-21 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8467972B2 (en) * 2009-04-28 2013-06-18 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
US9226701B2 (en) * 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US20100274515A1 (en) * 2009-04-28 2010-10-28 Abbott Diabetes Care Inc. Dynamic Analyte Sensor Calibration Based On Sensor Stability Profile
EP2424426B1 (en) 2009-04-29 2020-01-08 Abbott Diabetes Care, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc Method and system for providing real time analyte sensor calibration with retrospective backfill
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
EP3173014B1 (en) * 2009-07-23 2021-08-18 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
EP3932309A1 (en) 2009-07-23 2022-01-05 Abbott Diabetes Care, Inc. Continuous analyte measurement system
WO2011014851A1 (en) 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
WO2011025999A1 (en) * 2009-08-29 2011-03-03 Abbott Diabetes Care Inc. Analyte sensor
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc Analyte signal processing device and methods
AU2010286917B2 (en) 2009-08-31 2016-03-10 Abbott Diabetes Care Inc. Medical devices and methods
ES2912584T3 (en) 2009-08-31 2022-05-26 Abbott Diabetes Care Inc A glucose monitoring system and method
WO2011026130A1 (en) * 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Inserter device including rotor subassembly
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
WO2011041449A1 (en) * 2009-09-29 2011-04-07 Abbott Diabetes Care Inc. Sensor inserter having introducer
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
WO2011044386A1 (en) * 2009-10-07 2011-04-14 Abbott Diabetes Care Inc. Sensor inserter assembly having rotatable trigger
WO2011053881A1 (en) 2009-10-30 2011-05-05 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US8882701B2 (en) 2009-12-04 2014-11-11 Smiths Medical Asd, Inc. Advanced step therapy delivery for an ambulatory infusion pump and system
US8803688B2 (en) * 2010-01-07 2014-08-12 Lisa Halff System and method responsive to an event detected at a glucose monitoring device
US20110163880A1 (en) * 2010-01-07 2011-07-07 Lisa Halff System and method responsive to an alarm event detected at an insulin delivery device
US20110184258A1 (en) * 2010-01-28 2011-07-28 Abbott Diabetes Care Inc. Balloon Catheter Analyte Measurement Sensors and Methods for Using the Same
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
CN102548476A (en) 2010-03-24 2012-07-04 雅培糖尿病护理公司 Medical device inserters and processes of inserting and using medical devices
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
EP2624745A4 (en) 2010-10-07 2018-05-23 Abbott Diabetes Care, Inc. Analyte monitoring devices and methods
EP3583901A3 (en) 2011-02-28 2020-01-15 Abbott Diabetes Care, Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
EP3575796B1 (en) 2011-04-15 2020-11-11 DexCom, Inc. Advanced analyte sensor calibration and error detection
WO2013044153A1 (en) 2011-09-23 2013-03-28 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
JP6443802B2 (en) 2011-11-07 2018-12-26 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Analyte monitoring apparatus and method
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
FI4056105T3 (en) 2011-12-11 2023-12-28 Abbott Diabetes Care Inc Analyte sensor devices
WO2013138369A1 (en) 2012-03-16 2013-09-19 Dexcom, Inc. Systems and methods for processing analyte sensor data
US9238100B2 (en) 2012-06-07 2016-01-19 Tandem Diabetes Care, Inc. Device and method for training users of ambulatory medical devices
WO2014026113A1 (en) * 2012-08-10 2014-02-13 The Research Foundation For The State University Of New York Near-infrared spectroscopy and optical reporter
US10132793B2 (en) 2012-08-30 2018-11-20 Abbott Diabetes Care Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9907492B2 (en) 2012-09-26 2018-03-06 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US10357606B2 (en) 2013-03-13 2019-07-23 Tandem Diabetes Care, Inc. System and method for integration of insulin pumps and continuous glucose monitoring
WO2014152034A1 (en) 2013-03-15 2014-09-25 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US10016561B2 (en) 2013-03-15 2018-07-10 Tandem Diabetes Care, Inc. Clinical variable determination
WO2015065922A1 (en) * 2013-10-28 2015-05-07 Dexcom, Inc. Devices used in connection with continuous analyte monitoring that provide the user with one or more notifications, and related methods
CA3205443A1 (en) 2013-11-07 2015-05-14 Dexcom, Inc. Systems and methods for transmitting and continuous monitoring of analyte values
EP3086828B1 (en) 2013-12-26 2023-08-09 Tandem Diabetes Care, Inc. Integration of infusion pump with remote electronic device
WO2015102745A1 (en) 2013-12-31 2015-07-09 Abbott Diabetes Care Inc. Self-powered analyte sensor and devices using the same
WO2015153482A1 (en) 2014-03-30 2015-10-08 Abbott Diabetes Care Inc. Method and apparatus for determining meal start and peak events in analyte monitoring systems
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
US10674944B2 (en) 2015-05-14 2020-06-09 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US11553883B2 (en) 2015-07-10 2023-01-17 Abbott Diabetes Care Inc. System, device and method of dynamic glucose profile response to physiological parameters
US10569016B2 (en) 2015-12-29 2020-02-25 Tandem Diabetes Care, Inc. System and method for switching between closed loop and open loop control of an ambulatory infusion pump
WO2018136898A1 (en) 2017-01-23 2018-07-26 Abbott Diabetes Care Inc. Systems, devices and methods for analyte sensor insertion
US11596330B2 (en) 2017-03-21 2023-03-07 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
CN111246797A (en) 2017-10-24 2020-06-05 德克斯康公司 Pre-attached analyte sensors
JP6597935B2 (en) * 2017-10-31 2019-10-30 住友電気工業株式会社 Wireless sensor system, management apparatus, communication control method, and communication control program
EP3927391A4 (en) 2019-02-19 2022-11-16 Tandem Diabetes Care, Inc. System and method of pairing an infusion pump with a remote control device
EP3946514A4 (en) 2019-03-26 2022-12-21 Tandem Diabetes Care, Inc. Method of pairing an infusion pump with a remote control device
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676248A (en) * 1982-04-30 1987-06-30 Medtronic, Inc. Circuit for controlling a receiver in an implanted device
US6040194A (en) * 1989-12-14 2000-03-21 Sensor Technologies, Inc. Methods and device for detecting and quantifying substances in body fluids
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
EP0672427A1 (en) * 1994-03-17 1995-09-20 Siemens-Elema AB System for infusion of medicine into the body of a patient
US5748103A (en) * 1995-11-13 1998-05-05 Vitalcom, Inc. Two-way TDMA telemetry system with power conservation features
US20010044588A1 (en) * 1996-02-22 2001-11-22 Mault James R. Monitoring system
US5807336A (en) * 1996-08-02 1998-09-15 Sabratek Corporation Apparatus for monitoring and/or controlling a medical device
US5895371A (en) * 1996-08-27 1999-04-20 Sabratek Corporation Medical treatment apparatus and method
US6198394B1 (en) * 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
US6558321B1 (en) * 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US6232130B1 (en) * 1997-06-04 2001-05-15 Sensor Technologies, Inc. Method for detecting or quantifying carbohydrate containing compounds
WO1999058973A1 (en) * 1998-05-13 1999-11-18 Cygnus, Inc. Method and device for predicting physiological values
PT1077636E (en) * 1998-05-13 2004-06-30 Cygnus Therapeutic Systems SIGNAL PROCESSING FOR PHYSIOLOGICAL ANALYZES MEDICATION
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6554798B1 (en) * 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6287252B1 (en) * 1999-06-30 2001-09-11 Monitrak Patient monitor
US6804558B2 (en) * 1999-07-07 2004-10-12 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US6441747B1 (en) * 2000-04-18 2002-08-27 Motorola, Inc. Wireless system protocol for telemetry monitoring
AU2001264654B2 (en) * 2000-05-19 2005-06-16 Welch Allyn Protocol Inc. Patient monitoring system
US6868288B2 (en) * 2000-08-26 2005-03-15 Medtronic, Inc. Implanted medical device telemetry using integrated thin film bulk acoustic resonator filtering
JP3972578B2 (en) * 2000-10-27 2007-09-05 義明 根東 Hospital medical information system to prevent patient misidentification.
GB0030929D0 (en) 2000-12-19 2001-01-31 Inverness Medical Ltd Analyte measurement
US6560471B1 (en) * 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
JP2003076791A (en) * 2001-06-19 2003-03-14 Toyo Commun Equip Co Ltd Support system for health management
US7044911B2 (en) * 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US6702857B2 (en) * 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
WO2003043494A1 (en) * 2001-11-23 2003-05-30 Medit As A cluster system for remote monitoring and diagnostic support
US7060030B2 (en) * 2002-01-08 2006-06-13 Cardiac Pacemakers, Inc. Two-hop telemetry interface for medical device
US20030212379A1 (en) * 2002-02-26 2003-11-13 Bylund Adam David Systems and methods for remotely controlling medication infusion and analyte monitoring
EP1356762A1 (en) * 2002-04-22 2003-10-29 UbiCom Gesellschaft für Telekommunikation mbH Device for remote monitoring of body functions
DE10221201A1 (en) * 2002-05-13 2003-12-24 Henry Arthur Muglia Personal surveillance system and its components
GB2418258B (en) * 2002-06-05 2006-08-23 Diabetes Diagnostics Inc Analyte testing device
JP2004016418A (en) * 2002-06-14 2004-01-22 Nec Corp Cellular phone with measurement function for biological information
US7278983B2 (en) * 2002-07-24 2007-10-09 Medtronic Minimed, Inc. Physiological monitoring device for controlling a medication infusion device
US20060001551A1 (en) * 2004-06-30 2006-01-05 Ulrich Kraft Analyte monitoring system with wireless alarm

Also Published As

Publication number Publication date
JP2006015146A (en) 2006-01-19
CN1722186A (en) 2006-01-18
TW200622950A (en) 2006-07-01
SG118408A1 (en) 2006-01-27
EP1611839A1 (en) 2006-01-04
KR20060049251A (en) 2006-05-18
AU2005202514A1 (en) 2006-01-19
US20060001538A1 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
CA2510820C (en) Analyte monitoring system with wireless alarm
EP1611839A1 (en) Methods of monitoring the concentration of an analyte
US20210393130A1 (en) Continuous analyte monitoring system
US11456074B2 (en) Systems and methods for managing a person's position based on a personal health factor
US7400257B2 (en) Vital signals and glucose monitoring personal wireless system
Panescu Emerging technologies [wireless communication systems for implantable medical devices]
CA2669294C (en) Analyte sensing apparatus for hospital use
JP2010540181A (en) Glucose sensor transceiver
WO2008076464A2 (en) Wireless medical telemetry system and methods using radio-frequency energized biosensors
CN109644327A (en) For the method for the wireless data communication between sensing system and receiver, system and computer program product for wireless data communication
WO2009124326A1 (en) Radio frequency transmitter and receiver system and apparatus
US20120165688A1 (en) Wireless optical pulsimetry system for a healthcare environment
JP2022511944A (en) Continuous and on-demand analytical material monitoring systems and methods
WO2018178942A1 (en) Method and system of displaying a real-time glucose reading with an alarm clock
US11717175B2 (en) Wireless patient monitoring system and method with disposable sensor activation
US20050273013A1 (en) Wireless patient monitoring system

Legal Events

Date Code Title Description
FZDE Discontinued