CA2444498C - Inserting apparatus and method with controlled, master cycle speed-dependent actuator operations - Google Patents

Inserting apparatus and method with controlled, master cycle speed-dependent actuator operations Download PDF

Info

Publication number
CA2444498C
CA2444498C CA002444498A CA2444498A CA2444498C CA 2444498 C CA2444498 C CA 2444498C CA 002444498 A CA002444498 A CA 002444498A CA 2444498 A CA2444498 A CA 2444498A CA 2444498 C CA2444498 C CA 2444498C
Authority
CA
Canada
Prior art keywords
master cycle
actuator
envelope
cycle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002444498A
Other languages
French (fr)
Other versions
CA2444498A1 (en
Inventor
James R. Rivenbark
Keith A. Harshman
Frank J. Shinn
Bradford D. Henry
Steven W. Mccay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bell and Howell LLC
Original Assignee
Bowe Bell and Howell Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bowe Bell and Howell Co filed Critical Bowe Bell and Howell Co
Publication of CA2444498A1 publication Critical patent/CA2444498A1/en
Application granted granted Critical
Publication of CA2444498C publication Critical patent/CA2444498C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43MBUREAU ACCESSORIES NOT OTHERWISE PROVIDED FOR
    • B43M3/00Devices for inserting documents into envelopes
    • B43M3/04Devices for inserting documents into envelopes automatic
    • B43M3/045Devices for inserting documents into envelopes automatic for envelopes with only one flap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43MBUREAU ACCESSORIES NOT OTHERWISE PROVIDED FOR
    • B43M3/00Devices for inserting documents into envelopes
    • B43M3/04Devices for inserting documents into envelopes automatic

Landscapes

  • Making Paper Articles (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)
  • Control Of Conveyors (AREA)
  • Basic Packing Technique (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Glass Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Dental Preparations (AREA)
  • Container Filling Or Packaging Operations (AREA)

Abstract

In an inserting apparatus (10) and method such as the continuous motion type, a motion controller ( C ) electrically communicates with an encoder, a first motor driving an insert conveyor assembly (30), a second motor driving an envelope conveyor assembly (40), and an actuator operatively interfaces with a peripheral device.

Description

Description INSERTING APPARATUS AND METHOD WITH CONTROLLED, MASTER
CYCLE SPEED-DEPENDENT ACTUATOR OPERATIONS
Technical Field The present invention is generally directed to an inserting apparatus and method, such as the type of apparatus and method useful in performing mail Inserting operations in which an insert is inserted into an envelope for subsequent processing. More particularly, the present invention is din3cted to an inserting apparatus and method capable of adaptively controlling one or more actuated components in response to a change in the cycle speed of the apparatus.
Background Art Mali insertion machines implementing continuous motion, or at least substantially continuous motion, have been developed in the past. A basic function of such machines is to establish a flow of inserts, such as documents or other sheet-type products, establish a flow of envelopes, and combine both flows into a single, common feed path. Once a given insert and a given envelope enter the common feed path, the insert must be inserted into the opened envelope at a common insertion point, after which point the stuffed envelope is transported downstream along a single output path for subsequent processing.
In the continuous motion-type insertion machine, an effort is made to increase throughput by reducing the number of times the feed path must be stopped and/or reducing the duration of the stoppage. This has been accomplished by transporting the inserts along the feed path at a higher speed than the envelopes, or by at least accelerating the inserts in relation to the envelopes, so that a given insert °overtakes° or catches up to its corresponding, aligned envelope and is completely inserted into the envelope with minimal stoppage of the flow of either the insert or the envelope along the feed path.
As will be appreciated by persons skilled in the art, the successful operation of the above-described mail insertion machine depends upon.
adequate synchronization of the various moving components involved in canying out the insertion process. It is often desirable to change the overall speed of the machine, such as when differently-sized Inserts and/or envelopes are to be processed, in which case steps must be taken to ensure all moving components are still synchronized at the different machine speed. For example, in U.S.
Patent No. 3,423,900 to Orsin er, a continuous motion inserting machine is disclosed in which all moving components, such as the envelope feeding and insert feeding mechanisms, are entirely mechanically linked together. It can be appreciated that any change in the operating speed of such a machine would necessitate laborious mechanical adjustments of several components in orderto preserve synchronization.
Even with the modem development of servo motors and motion controllers, satisfactory methods have not heretofore been developed for . interfacing such modem control components with mail inserting machines for the purpose of maintaining synchronization in response to varied machine speeds, particularly in the context of continuous motion-type inserting machines.
Indeed, the use of modem machine components often exacerbates the problem of synchronization. This has been particularly observed in the case of modem, variable-speed, cyclical mail inserting machines. During the operation of such machines, the duration of.time between certain events vary according to overall machine speed. These machines, however, contain both servo motor-driven components or assemblies and actuator-driven components.. The respective operating speeds of the motor-driven components or assemblies can be easily controlled and varied by a motion controller. At the same time, however, the respective activation speeds of the actuator-driven components (i.e., the duration of time required for the component to move from its inactive or OFF state to its active or ON state) are inherently fixed and thus cannot be forced to vary. It can therefore be appreciated that the use of variable-speed components together with fixed-speed components renders synchronization difficult.
As an example, a variable-speed cyclical machine contains one or more rotating assemblies or components whose respective operating speeds somehow depend on the master speed of the machine (such as through actual linkage to the main drive shaft of the machine, or simply due to the requisite timing relation among the various moving components of the 'machine). If, for example, the machine is running at a machine speed of 1 cycle per second, the machine takes 250 milliseconds to move through 90 degrees of its machine cycle. If the speed of the machine is increased to 5 cycles per second, the machine now takes only 50 milliseconds to move through the same 90 degrees of the machine cycle at this new machine speed. As part of its operation, the machine can further contain at least one component driven by a solenoid. As a general matter, solenoids take a constant duration of time to become active (e.g., the time required for the plunger of the solenoid to fully extend outwardly and actually cause the required actuation event), and this activation time is completely independent of the machine speed. In the present example, the solenoid takes 50 milliseconds to become active. The successful operation of this machine dictates that the solenoid be fully active at a given point in time during the machine cycle (e.g., 90 degrees). In addition, the operation requires that the solenoid be inactive until another given point during the cycle (e.g., 85 degrees). Accordingly, there exists no common point during any machine cycle at which the solenoid can be turned ON for all speeds over which the machine is intended to operate.
Continuing with the present example, at the machine rate of one cycle per second, the machine travels 18 degrees (90 degrees divided by 5) in 50 milliseconds (250 milliseconds divided by 5). At this rate, the solenoid must be activated, orfired, at72 degrees (90 degrees minus 18 degrees) in order for the solenoid to be fully activated at 90 degrees. This is because, upon the initial energizing of this particular solenoid, it always takes 50 milliseconds for the solenoid to become completely active. In the present example, at 1 cycle per second, 50 milliseconds corresponds to 18 degrees of rotation through the machine cycle. As discussed above, at the machine rate of 5 cycles per second, the machine travels 90 degrees in 50 milliseconds. Hence, at this increased machine cycle speed, the solenoid must fire at 0 degrees in order to be fully activated at 90 degrees (because at 5 cycles per second, 50 milliseconds corresponds to 90 degrees, instead of 18 degrees in the case of a cycle speed of 1 cycle per second).
It can thus be seen that if the machine has been operating at 5 cycles per second and the solenoid is correctly set to fire at 0 degrees at that machine speed, the solenoid will fire at the wrong time if the machine speed is changed.
In the specific example, if the machine speed is decreased to 1 cycle per second and the solenoid fires at 0 degrees, the solenoid will become fully active at degrees, which is much too early during the machine cycle if the machine is running at 1 cycle per second. One the other hand, if the solenoid is set to fire correctly (at 72 degrees) while the.machine speed is 1 cycle per second, and the machine is actually running at 5 cycles per second, then the solenoid will not be fired until the machine cycle reaches 72 degrees and thus will not be active until 162 degrees (72 degrees plus 90 degrees, where 90 degrees corresponds to the fixed activation time of the solenoid, 50 milliseconds, at the machine speed of 5 cycles per second), which is much too late.
In either scenario, the solenoid will fire, and thus eventually become fully 15- active, at the wrong point in time during the operating cycle of the machine. In the context of a continuous motion inserting machine, as well as in othertypes of machines requiring coordination and synchronization of different moving components, the improper activation time of the solenoid could result in an insert or an envelope failing to be presented at the proper time into the feed path, an envelope failing to open, an insert failing to be completely inserted into an envelope prior to ejection to downstream processes, and so on. .
One approach to maintaining proper control and synchronization in a variable-speed inserter machine is disclosed in~ the following series of related disclosures: U.S. Patent Numbers 5,823,521; 5,941,516; 5,949,687; 5,954,323;
and 5,975,514; all of which issued to ~Emiah et al. and are owned by Bell &
Howell Mail and 'Messaging Technologies Co. In the main embodiment disclosed in these patents, a Phillipsburg-type mail inserter machine has twelve stations or subassemblies, all of which operate (i.e., are activated and deactivated) in timed relation over the 360-degree timing cycle of the inserter machine. The respective operations of these stations is put under computer-driven, adaptive control, in order to compensate for the electromechanical time lags exhibited by certain components such as pneumatic cylinders that require extension and retraction. As a result, the ON-OFF control signal used to initiate and terminate the respective electromechanical functions of the actuator-type components can be adjusted in response a change machine speed, thereby maintaining correct timing of the various components.
In the Emiah et al. patents, the adaptive control is implemented by programming "look-up" speed tables into the control software executed by the computer. These speed tables include the correct start angles (i.e., the timing ~ for an ON control signal) and stop angles (i.e., the timing for an OFF
control signal) for each station requiring such control. A "love' speed table, derived empirically, is provided for the machine operating within the range of 0 -cycles per hour. Additionally, the respective time lags (or activation times) for the various actuator type components are empirically measured, and the resulting value stored in an "operational delay" look-up table. The values from the operational delay tables are used together with the cycle speed of the machine to calculate adaptive adjustment factors, which in tum are used in further calculations to determine new start and stop angles for a different cycle speed. These new values are entered into a new speed table. This process is . 25 carried out until five successive speed tables are generated, each corresponding to a cycle speed range of 2,000 cycles per hour in width, such that the five speed tables cover the operation of the machine over a total range of 0 -10,000 cycles per hour. The mail inserter machine is ready for operation only after all five predetermined speed tables have been stored in memory.
During operation of the mail inserter machine disclosed in the Emiah et al.
patents, the computer samples the output of a tachometer such as an absolute optical encoder interfaced with the main drive, shaft of the machine. This sampling is rigidly performed at constant intervals as dictated by a clock speed, regardless of what the machine is actually doing. In the specific embodiment disclosed, the sampling is taken without exception every 100 milliseconds.
Based on the cycle speed measured by the encoder, the computer selects the appropriate speed table and uses the values from the selected speed table to determine the proper control signals to be issued to the actuator type components. As an alternative, the computer can use the low speed table and the operational delay table to update a new speed table every 100 milliseconds.
It is disclosed, however, that this latter method has the disadvantage of possibly slowing down the computer due to the CPU having to make repetitive calculations every 100 milliseconds.
It would be therefore be advantageous to provide a method and apparatus for more precisely controlling and adjusting actuators in response to variable machine speeds on a substantially continuous basis, particularly in the operating environment of continuous motion inserting machines, in orderto more easily and precisely maintain synchronization after a speed adjustment occurs, and further to ensure more consistent performance during ramp-up and shut down portions of the machine cycle.

_g_ Disclosure of the Invention .
The present invention provides a method for controlling a machine that operates over a master cycle at variable cycle speeds, and that includes one or more assemblies which perform rotational movements in synchrony and in combination with one or more other actuated peripheral devices. The peripheral devices are activated by actuators such as solenoids known to exhibit generally constant time lags. Conventionally, such machines are not capable of operating at different cycle speeds, since such a change has in the past thrown the rotational assemblies out of synchronization with the peripheral devices. The method according to the present invention, however, has the advantageous feature of being able to make on-the-fly adjustments to solenoid timing in response to changing cycle speed, and thus efficiently maintain synchronization.
This method is implemented by a motion controller or other suitable device capable of electronic processing of an instruction set for performing position-based velocity compensation. The method has been successfully demonstrated in the environment of a continuous motion inserting apparatus, such as the type employed in mail processing jobs, although it will be understood that the present invention will have application outside the immediate scope of the continuous motion inserting apparatus. The present invention can be implemented in mail inserting machines other than the continuous-motion type, as well. as any machine requiring synchronization among rotational and actuated components.
Acconiing to one embodiment of the present invention, an inserting apparatus operable over a range of master cycle speeds comprises a master drive assembly, an encoder, an insert conveyor assembly, an envelope conveyor ~ assembly, a first actuator, and a motion controller. The masterdrive assembly is _g_ operative over a master cycle and at variable master cycle speeds. The encoder is operatively coupled to the master drive assembly, and is adapted to produce an encoder signal indicative of a current master cycle speed at which the master drive assembly is operating. The insert conveyor assembly is driven by a first motor at a variable insert conveyor speed. The envelope conveyor assembly is driven by a second motor at a variable envelope conveyor speed. During any master cycle, the insert conveyor assembly speed can be greater than the envelope conveyor assembly speed In order to implement continuous-motion inserting operations. The first actuator has a substantially constant activation time lag, and is disposed in actuating communication with a first peripheral device. The motion controller controls the insert conveyor assembly speed, the envelope conveyor assembly speed and an activation position of the first actuator based on the encoder signal. Accordingly, the motion controller electrically communicates with the encoder, the first motor, the second motor and the first actuator. Once during every master cycle, the motion controller calculates the first actuator activation position, and causes the first actuator to be activated at the calculated first actuator activation position.
According to another embodiment of the present invention, the inserting apparatus includes a computer program product comprising computer executable instructions embodied in a computer-readable medium. The computer program product communicates with the motion controller and is adapted to, once during every master cycle, calculate the first actuator activation position and cause the first actuator to be activated at the calculated first actuator activation position.

According to yet another embodiment of the present invention, a method is provided for controlling an inserting apparatus over a range of master cycle speeds. The method encompasses monitoring a master cycle speed at which an inserting apparatus operates over a plurality of master cycles, and determining when a new master cycle has begun. Once during every master cycle of operation of the inserting apparatus, a first calculation is performed.
The first calculation determines a first cyclical position of the new master cycle at which an actuated device should begin to be activated. The calculation is based on the master cycle speed measured forthe new master cycle, a predetermined time duration required for the actuated device to become fully active, and a predetermined cyclical position of the new master cycle at which the actuated device should be fully active. The actuated device is caused to begin to be activated when the new master cycle reaches or exceeds the calculated first cyclical position.
According to still another embodiment of the present invention, the method also encompasses, once during every master cycle of operation of the inserting apparatus, performing a second calculation to determine a second cyclical position of the new master cycle at which an actuated device should begin to be deactivated. This calculation is based on the master cycle speed measured for the new master cycle, a predetermined time duration required for the actuated device to become inactive, and a predetermined cyclical position of the new master cycle at which the actuated device should be fully inactive.
The actuated device is caused to become Inactive when the new master cycle reaches or exceeds the calculated second cyclical position.

According to a further embodiment of the present invention, the method is implemented by a computer program product comprising computer-executable instructions embodied in a computer readable medium.
According to a still further embodiment of the present invention, a method is provided for continuously inserting inserts into corresponding envelopes in a controlled manner, and over a range of master cycle speeds at which an inserting apparatus operates. The method encompasses monitoring a master cycle speed at which an inserting apparatus operates over a plurality of master cycles, and determining when a new master cycle has begun. Once during every master cycle of operation of the inserting apparatus, a first calculation is performed. The first calculation determines a first cyclical position of the new master cycle at, which an actuated device should begin to be activated. The calculation is based on the master cycle speed measured for the new master cycle, a predetermined time duration required for the actuated device to become fully active, and a predetermined cyclical position of the new master cycle at which the actuated device should be fully active. The actuated device is caused to begin to be activated when the new master cycle reaches or exceeds the calculated first cyclical position. Activation of the actuated device assists in an inserting process performed by the inserting apparatus, such as by opening an envelope prior to insertion, registering an envelope, or transporting the stuffed envelope away at the correct point in time during the machine cycle.
The method further encompasses feeding an insert along a feed path at an insert feed rate in timed relation with 'the activation of the actuated device, and likewise feeding an envelope along the feed path at an envelope feed rate in timed relation with the activation of the actuated device. The insert feed rate is greater than the ewelope feed rate, so that the insert is caused to be inserted into the envelope, again In timed relation with the activation of the actuated device.
It is therefore an object of the present invention to provide an improved continuous motion inserting machine and an improved inserting method, wherein tight control and synchronization of the various moving components can be maintained over a wide range of machine speeds.
It is another object of the present invention to provide an inserting machine and related method that include a motion controller or other electronic processing device, which motion controller is capable of calculating in real time the correct cyclic positioning of certain actuated components during operation of the inserting machine, so that a change in machine speed will not require a reconfiguration of one of more machine components.
It is yet another object of the present invention to provide an inserting machine and related method that update the activation times of certain components every master rotation or master cycle of the inserting machine, such that the frequency of the updating process varies directly with the speed of the master cycle..
Some of the objects of the Invention having been stated hereinabove, other objects will become evident as the description proceeds 'when taken in connection with the accompanying drawings as best described hereinbelow.
Brief Descripfion of the Drawings Figure 1 is a schematic diagram of an inserting apparatus according to the present invention;

Figure 2 is a flow diagram illustrating a control process performed during operation of the inserting apparatus shown in Figure 1;
Figure 3 is a top plan view of one embodiment of.the inserting apparatus according to the present invention;
Figure 4 is a side elevation view of a portion of the inserting apparatus shown in Figure 3;
Figures 5A and 5B are perspective views of another embodiment of the inserting apparatus according to the present invention;
Figure 5C is a top plan view of the inserting apparatus shown in Figures 5A and 5B;
Figure 6 is a side elevation view of another portion of the inserting apparatus shown in Figure 3;
Figure 7A is a side elevation view of a portion of the inserting apparatus shown in Figures 5A and 5B;
Figure 7B is a side elevation view of another 'portion of the inserting apparatus shown in Figures 5A and 5B; and Figure 8 is a side elevation view of a mail piece take-away device provided in acconiance with the present invention.
~ Detailed Description of the Invention Referring now to Figure 1, an inserting apparatus or system, generally designated 10, is schematically illustrated. Inserting apparatus includes a master drive assembly 15 that typically drives a primary function such as the transport of inserts downstream to one or more assemblies associated with insertion apparatus 10. Master drive assembly 15 includes a rotating component (not specifically shown), such as a motor-driven drive shaft, which might be mechanically linked to other rotating components as understood by persons skilled in the art. An encoder 20 or similar device interfaces with the rotating component of master drive assembly 15. Encoder 20 measures the rate at which master drive assembly 15 is physically rotating (i.e., the master cycle speed) in encoder pulses per second, and converts this measurement into an electrical output signal. The encoder signal is read and interpreted by a motion controller C, which includes an I/O interface, signal conditioning and amplification elements, and associated circuitry as understood by persons skilled in the art.
Inserting apparatus 10 further includes a number of assemblies (or subassemblies) necessary for implementing the continuous-motion inserting process. Accordingly, inserting apparatus 10 preferably includes at least an insert conveyor assembly, generally designated 30, and an envelope conveyor assembly, generally designated 40. Insert conveyor assembly 30 includes at least one rotating component that is controlled by a servo motor 32. Likewise, envelope conveyor assembly 40 includes at least one rotating component controlled by a servo motor 42. Each servo motor 32 and 42 electrically communicates with, and is thus controlled by, motion controller C. As described more fully hereinbelow, during any given machine (or operating) cycle of inserting apparatus 10, and at any given master cycle speed, the speed at which insert conveyor assembly 30 operates is generally greater than the speed at which envelope conveyor assembly 40 operates. Motion controller C receives the output signal from encoder 20 and, based on this measured master cycle speed, determines the proper operating speeds for insert conveyor assembly 30 and envelope conveyor assembly 40, respectively, as well as start and stop , times (if needed during the machine cycle) in order to maintain synchronization.
It will be understood that other variable-speed assemblies could be provided as part of, or in combination with, inserting apparatus 10 and likewise be controlled by motion conVoller C. A user interface UI of a conventional form, such as a keyboard, can also be provided to enable the programming of motion controller C, the input of commands such as START, STOP and JOG, as well as the input of data such as solenoid timing ,characteristics and desired device activation positions (as described hereinbelow).
Inserting apparatus 10 also includes one or more actuator-operated, peripheral devices or components. Each actuated component is characterized by the fact that the component generally moves between an ON and an OFF
state, or equivalently an operational and non-operational state, and further by the fact that a solenoid, pneumatic cylinder, hydraulic cylinder or other actuator is employed to cycle or reciprocate the actuated component between its ON and OFF states. Each actuator, which hereinafter will be referred to by the term "solenoid" in a non-limiting manner, has a fixed activation time as well as a fixed deactivation time. That is, once a control signal is sent to "fire" or energize the solenoid, the duration of time needed for the solenoid to be fully active (such as the time period required for a plunger arm to be extended fully outwardly in order to switch the actuated component into its ON state) is generally and inherently constant. In the same manner, once a control signal is sent to de-energize the solenoid (or in other equivalent cases, once the ON control signal is removed), the time needed for the solenoid to deactivate is also fixed.

In the present embodiment, three solenoid-actuated peripheral devices are illustrated: an envelope opening device, generally designated 0; an envelope registration device, generally designated R; and a stuffed envelope take-away device, generally designated TA Each solenoid-actuated device O, R
and TA electrically communicates with, and is thus controlled by, motion controller C. In accordance with the present invention, while the activation/deactivation times of the respective solenoids associated with each device O, R and TA are fixed, their respective firing times and thus their respective fully activated times can vary in response to the master cycle speed read and interpreted by motion controller C.
Referring now to Figure 2, the basic process by which motion controller C
controls the operation of actuated devices O, R and TA, as executed by either firmware or software associated with motion controller C, is illustrated. It will be understood that prior to initialization of the process, the timing characteristics of each solenoid involved will have been determined either through vendor information or testing. The basic process, which occurs once every machine cycle, can be represented by the following algorithm:
BEGIN LOOP
CALCULATE Position To Activate = Desired Activation Position - (Time To Activate x Current Speed Of Master) WAIT for Current Position > or = Position to Activate ACTIVATE device CALCULATE Position to Deactivate = Desired Deactivation Position -(Time To Deactivate x Current Speed of Master) WAIT for Current Position > or = Position To Deactivate DEACTIVATE Device WAIT for End Of Cycle END LOOP
The various values used in the above algorithm are defined as follows:
. Position To Activate = the actual cyclical position at which activation (i.e., firing of the solenoid) will begin to occur, .
Desired Activation Position = the cyclical position at which activation should be completed (i.e., when the solenoid is fully active);
Time To Activate = the real time taken for the device to become active (i,e., the generally constant time lag inherent in the device for activation);
Current Speed Of Master = the speed of the master cycle at the time measured;
Current Position = the current position of the master cycle;
Position to Deactivate = the actual cyclical position at which deactivation (e.g., the start of a retraction movement) will begin to occur, Desired Deactivation Position = the cyclical position at which deactivation should be completed (e.g., full retraction);
Time To Deactivate = the real time taken for the device to become deactivated (i.e., the generally constant time lag inherent in the device for deactivation); and End Of Cycle = a flag or counter denoting that one cycle has passed.
It will be.noted that the values for the Desired Activation Position and the . Desired Deactivation Position are predetermined by the operator or the programmer of inserting apparatus 10. These values, like those of the corresponding solenoid time lags (Time To Activate and Time To Deactivate), are "absolute" in the sense that they are independent of the Master Speed Of Cycle. For instance, it might be predetermined that a peripheral device O, R
or TA must be switched to its operative state at 90 degrees during every machine cycle, in order for its operation to be properly synchronized with other operations performed by inserting apparatus 10. For a given mail inserting job and/or a given insert and envelope size, this criterion will not change. However, the rotational position or angle relative to the machine cycle at which the corresponding solenoid must be fired so that peripheral device O, R or TA
becomes fully active at 90 degrees will vary with the speed of the machine cycle.
Thus, the above-described control process is used to make the necessary adjustments in response to a changed cycle speed.
Referring now to the flow diagram of Figure 2, the control process performed by motion controller C for each actuated device O, R and TA is further described. At step 51, inserter apparatus 10 (or master drive assembly 15 thereof) begins to rotate, and motion controller C receives an output signal from encoder 20 (see Figure 1 ). Once inserting apparatus 10 is powered up at starting step 51, at step 53, using the cycle speed (Current Speed Of Master) read by encoder 20 and the time'lag information (Time To Activate) indexed to the particular actuated device 0, R or TA to be controlled, motion controller C
determines the proper point in time during the current machine cycle at which to fire the corresponding solenoid (Position To Activate). At step 55, motion controller C waits for the current rotational position of the master cycle (Current Position) to at least reach the calculated Position to Activate the solenoid.
Motion controller C can do this by counting output pulses from encoder 20 that identify the current rotational position of inserter apparatus 10 along its machine cycle. At step 57, as soon as motion controller C determines that the Current Position equals or exceeds the calculated Position To Activate, motion controller C sends a control signal or takes some other appropriate step to cause the solenoid to fire. In this manner, solenoid will activate its associated device O, R
or TA at the proper rotational position of the machine cycle, in synchronization with the respective operations of insert conveyor assembly 30 and envelope conveyor assembly 40 (see Figure 1 ).
Continuing to step 59, motion controller C then uses the cycle speed (Current Speed Of Master) previously received from encoder 20, as well as the time lag information (Time To Deactivate) indexed to actuated device O, R or TA, to determine the proper point in time during the current machine cycle at which to deactivate the solenoid (Position To Deactivate), At step 61, motion controller C waits for the cun-ent rotational position of the master cycle (Current Position) to at least reach the calculated Position to Deactivate the solenoid. At step 63, as soon as motion controller C determines that the Current Position equals or exceeds the calculated Position To Deactivate, motion controller C
sends a control signal or takes some other appropriate step to cause the solenoid to become de-energized. In this manner, solenoid will de-activate its associated device O, R or TA at the proper rotational position of the machine cycle, in synchronization with the respective operations of insert conveyor assembly 30 and envelope conveyor assembly 40. Moreover, actuated device O, R or TA will remain deactivated until the proper time for re-activation, so as not to interfere with the respective operations of insert conveyor assembly 30 and envelope conveyor assembly 40. Finally, at step 65, motion controller C

waits for the occurrence of the End Of Cycle to be flagged, after which it begins the next control sequence as described above.
It will be noted that, because motion controller C executes its control process once every machine cycle, the frequency by which motion controller C
executes the control process, for any given actuated device, varies directly with the speed of the machine cycle. Hence, motion controller C carries out a true real-time, °on-the-fly' control process that does not lag behind the machine cycle. At the same time, however, one complete machine cycle of inserting apparatus 10 can virtually always be expected to last longer than 100 milliseconds. Accordingly, any CPU or other electronic processor associated with motion controller C, having moderate processing speed, should not be detrimentally affected by execution of this control process. It will be further noted that motion controller C makes its adjustments to the respective activation and deactivation cyclic positions of all peripheral devices O, R and TA involved, without the need for manual adjustments by an operator of inserting apparatus 10.
Referring now to Figures 3 - 8, exemplary embodiments are illustrated for continuous motion inserting apparatus 10. In accordance with the present invention, inserting apparatus 10 is advantageously controlled by motion controller C, which is programmed to implement.the control process described hereinabove. As described previously, inserting apparatus 10 comprises insert conveyor assembly 30 and envelope conveyor assembly 40. Both insert conveyor assembly 30 and envelope conveyor assembly 40 are servo motor-controlled mechanisms and operate to continuously feed their respective products, 1.e., inserts I and envelopes E in a feed direction F without stopping for 25 and envelope any substantial amount of time. During this feeding process, as will be described below, insert conveyor assembly 30 and envelope conveyor assembly 40 cooperate to place an 'insert I within a corresponding envelope E.
As shown in Figures 3 and 4, insert feed conveyor assembly 30 includes side-by-side chain (or, alternatively, belt) conveyors in which each chain 71 and T1' is wrapped around one or more pairs of rotatable sprockets 73A and 73B, respectively. To drive each chain 71 and 71', it is preferred to fixedly mount an adjacent pair of sprockets 73B on common drive shaft 75 and then connect drive shaft 75 to servo motor 32 by a mechanical movement T7, such as a conventional belt and pulley combination. It is also possible to mount each sprocket 73A on its own axle and then connect each axle to its own servo motor 32. In either form, however, servo motors) 32 electrically communicates with, and thus is controlled by, motion controller C as described hereinabove. In addition, tension sprockets 79 take up any slack in chains 71 and 71' and therefore control the tension in chains 71 and T1'. Finally, each chain T1 and T1' has a plurality of insert transport elements such as pusher fingers 81, 81', 83, 83', 85 and 85', attached thereto. These pusher fingers 81, 81', 83, 83', and 85' operate to push insert I downstream in feed direction F and at a continuous and constant speed. As shown in the alternative embodiment of Figures 5A - 5C, additional pusher fingers, such as pusher fingers 82, 82', 84 and 84', can be provided to handle a greater number of inserts I along feed direction F. As also best showy in Figure 5A, additional pairs of sprockets - and 73B and tension sprockets 79 can be provided if desired.
As best shown in Figure 3, envelope conveyor assembly 40 preferably includes a pair of envelope transport conveyor subassemblies, generally designated 110 and 110', which are essentially mirror images of each other and cooperate to transport envelopes E downstream in feed direction F at a constant speed, with only momentary stopping during a registration step. Each envelope transport conveyor subassembly 110 and 110' is also preferably a chain (or belt) mechanism, like those that make up insert conveyor assembly 30. Chains 112 and 112' are wrapped around rotatable sprockets 114, 116 and 114', 116', respectively. Sprockets 116 and 116' of each of envelope transport conveyor subassemblies 110 and 110' are respectively connected to servo motors 42 and 42' through a mechanical movement 118 and 118', such as a conventional belt and pulley system. It is also possible to commonly drive envelope transport conveyor subassemblies 110 and 110' by a common servo motor 42 and associated drive assembly 43, as shown in Figures 5A - 5C. In either case, like servo motor 32, servo motors 42 and 42' are electrically connected to, and thus controlled by, motion controller C.
For transporting envelopes E along feed path F, each envelope transport conveyor chain 112 and 112' is provided with a plurality of envelope control elements or opening fingers 121, 121', 123, 123', 125 and 125' that work together in opposing pairs. Additional pairs of opening fingers can be provided in order to handle a greater number of envelopes E along feed path F, such as the pair of opening fingers 122 and 122' shown in Figures 5A - 5C. Each opening finger 121, 121', 123, 123', 125 and 125' may be similarly constructed from suitably formed sheet metal or plastic in an elongated channel-shaped cross-section having its forward end shaped and constructed, i.e., tapered, to facilitate entry into the mouth of an envelope E. Opening fingers 121,121',123, 123', 125 and 125' continuously travel along the paths defined by chains 112 and 112' in the direction of arrows H aid at a constant speed.
In the embodiment shown in Figure 5C, it can be seen that feed path F is longer between the general areas where an envelope E is presented, opened, filled with an insert I and taken away, as compared with the embodiment shown in Figure 3. The longer feed path F in Figure 5C permits more than one pair of envelopes E and inserts 1 to be processed at the same time during the operation of inserting apparatus 10. For example, one envelope E can be opened at the same time as an insert I is being inserted into another envelope E or as a filled envelope E is being taken away, while another intermediate pair of envelopes E
and inserts I are being transported from the presentation or registration point to the filling point. Hence, in one specific example of the embodiment shown in Figure 5A, just over two complete machine cycles will have transpired from the time that an envelope E is fed tb the transport plane for registration to the time that the same envelope E is filled with an insert I. In other embodiments of inserting apparatus 10 having shorter feed paths F, only one envelope E is transported over the transport plane during any given machine cycle.
Figure 6 is an elevation view depicting the presentation, registration and opening of an envelope E. Envelopes E are fed to envelope transport conveyor subassemblies 110 and 110' from an envelope feed assembly, generally designated 150, a portion of which is illustrated in Figure 6, in the feed direction represented by arrow G. Envelope feed assembly 150 can include, for example, a conventional rotating, vacuum-operated envelope drum 151 having an envelope gripping member 153 thereon and positioned below a table surface T.
Table surface T has a slot therein so that envelopes E can be fed by envelope drum 110 from a position below table surface T to a position above table surface T so that each envelope E can be registered, opened, and stuffed.
To register envelope E in the registration area, registration mechanism generally designated R is used. Registration mechanism R, preferably in the form of a front edge registration system, includes retractable lower portion, generally designated 161, and stationary upper portion, generally designated 163. Stationary upper portion 163 comprises a plurality of spaced apart vertical plates 163A. Retractable lower portion 161 comprises a moveable front stop 165 that is activated by an actuator for rotation along an arcuate direction indicated by arrow J. In the present embodiment, front stop 165 is attached through a suitable mechanical linkage 167 to a motor 169 that serves as the actuator. Mechanical linkage 16T converts the rotary motion of motor 169 into the reciprocating motion of front stop 165. However, any type of motor and any type of linkage may be used so long as stop 165 can be moved above or below table surface T. As in the case of other actuator type components described herein, this motor 169 electrically communicates with, and is thus controlled by, motion controller C.
When in its raised position, stop 165 interacts with vertical plates 163Ato form a gate that prevents envelopes E from passing through. This gate also forms a front registration element. Therefore, as envelope E is fed into the registration by envelope gripping member 153 of envelope drum 151, its leading edge will be brought into contact with registration elements 161 and 163, thereby registering and squaring envelope E. Envelope E is momentarily stopped at this time.

Referring to Figures lA and 7B, an additional embodiment of inserting apparatus 10 is shown to include an alternative form of envelope registration mechanism R. In this embodiment, envelope registration mechanism R is activated by a solenoid-type actuator 180. Again, actuator 180 electrically communicates with, and is thus controlled by, motion controller C.
Because envelope E is momentarily stopped in inserting apparatus 10 according to the invention, inserting apparatus 10 might not be characterized as being a true continuous inserting apparatus. However, this stop time (dwell) is both short in an absolute sense as well as in relation to the overall apparatus cycling time. For example, in one specific embodiment of inserting apparatus 10, inserting apparatus 10 operates between 4,000 envelopes per hour and 25,000 envelopes per hour. In this example, the dwell time corresponding to the lower limit speed of 4,000 envelopes per hour is 106 milliseconds, and the dwell time corresponding to the higher limit speed of 25,000 envelopes per hour is milliseconds. Generally, the dwell time will be less than 1 second.
Furthermore, in inserting apparatus 10 according to the present invention, both envelope E
and insert I are in motion during the entire' inserting step. In a conventional incremental inserter, not only is the stop time (dwell) much longer both in absolute and relative terms, but the envelope is stationary during the entire inserting step. Accordingly, despite the small stop (dwell) time in inserting apparatus 10 according to the invention, inserting apparatus 10 still better approximates the operation of a true continuous motion inserting apparatus and therefore can be labeled as such.
Referring back to Figure 6, after envelope E is stopped, squared and registered, envelope E is opened by envelope opening mechanism, generally designated O. Typically, envelope opening mechanism O includes some type of vertically movable vacuum element that is able to pull apart the walls of envelope E. In addition, envelope opening mechanism O includes a solenoid or other actuator to cause envelope opening mechanism O to reciprocate along the direction indicated by arrow K. Envelope opening mechanism O electrically communicates with, and is thus controlled by, motion controller C. After envelope E is opened, stop 165 is lowered to its position below table surface T
and envelope transport conveyor subassemblies 110 and 110' take over the feeding of envelope E.
Accordingly, referring back to Figure 3, a pair of opposing opening fingers 123 and 123' will swing around sprockets 114 and 114', and begin to enter the gap of the mouth of opened envelope E along the opposite edges of envelope E.
As opening fingers 123 and 123' continue to move in feed direction F, they will continue entering envelope E until fully inside. By that point, opening fingers 123 and 123' will have complete control of envelope E, feeding it downstream again as all opening fingers 121, 121', 123, 123', 125 and 125' move downstream.
Although envelope E was momentarily stopped from being fed, as described above, this time period is small in absolute terms as well as in relation to the inserter cycle speed that it results in a minimal delay, unlike the substantial delays incurred in prior art non-continuous (incremental) motion inserting apparatuses. Within engaged envelope E, opening fingers 123 and 123' provide, in effect, an insert receiving funnel opening rearward. To facilitate reception of inserts I into the funnel thus provided, opening fingers 121, 121', 123,123',125 and 125' are preferably provided on their lower rear portions with _27_ flanges which can extend into close proximity of each other over the envelope flap (to hold the flap open).
As each envelope E is thus readied in the filling or stuffing zone, generally indicated at 200, inserts I are thrust by insert conveyor assembly 30 through opening fingers 121, 121', 123, 123', 125 and 125' and into envelopes E. The speed of insert conveyor assembly 30 is set to a speed faster than that by which envelopes E are fed downstream in direction F by envelope transport conveyor assembly 40. Thus, inserts I will completely be inserted into envelopes E. It thus can be seen that each envelope E is moved in a downstream direction as envelope E is being filled, i.e., during the insertion step. Other than during the short moment taken by the registration step, each envelope E is continuously moving downstream and is not stationary. _ After envelope E has been filled, envelope E is transported away from inserting apparatus 10 to any further downstream stations that might be provided.
' Referring to Figure 8, an exemplary mail piece take-away device, generally designated TA, is illustrated. Take-away device TA is typically disposed above or immediately downstream of filling zone 200 (see Figure 3).
Take-away device TA generally includes a reciprocating element 211 and a roller 213. Reciprocating element 211 has or is attached to a solenoid or equivalent actuator, to enable reciprocating element 211 to travel upwardly and downwardly along the direction indicated by arrow L. Take-away device TA electrically communicates with, and is thus controlled by, motion controller C.
Accordingly, motion controller C causes the actuator of take-away device TA to urge reciprocating element 211 downwardly until roller 213 contacts stuffed envelope E. At this point, envelope E bears down on a take-away conveyor assembly 215, _28_ which could be a moving belt as illustrated or could be a driven roller assembly, and consequently is transported along feed direction F to downstream locations.
It is therefore seen from the above description that the present invention provides an apparatus, and a method for controlling the same, in which peripheral devices exhibiting generally constant time fags during activation are precisely and adaptively timed, during each master cycle, in relation to the various rotational assemblies constituting the apparatus, in resporise to an increase or decrease in the operational speed of the apparatus. As a result, synchronization can be effectively maintained throughout a wide . range of operating speeds, thereby enhancing the functional tlexibility and accuracy of the apparatus.
It will be understood that various details of the invention may be changed without departing from the scope of the invention. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation-the invention being defined by the claims.

Claims (44)

What is claimed is:
1. An inserting apparatus operable over a range of master cycle speeds comprising:
(a) ~a master drive assembly operative over a master cycle and at variable master cycle speeds;
(b) ~an encoder operatively coupled to the master drive assembly and adapted to produce an encoder signal indicative of a current master cycle speed at which the master drive assembly is operating;
(c) ~an insert conveyor assembly driven by a first motor at a variable insert conveyor speed;
(d) ~an envelope conveyor assembly driven by a second motor at a variable envelope conveyor speed;
(e) ~a first actuator having a substantially constant activation time lag and disposed in actuating communication with a first peripheral device; and (f) ~a motion controller for controlling the insert conveyor assembly speed, the envelope conveyor assembly speed and an activation position of the first actuator based on the encoder signal, the motion controller electrically communicating with the encoder, the first motor, the second motor and the first actuator, wherein, at least once during every master cycle, the motion controller~
calculates the first actuator.activation position and causes the first actuator to be activated at the calculated first actuator activation position.
2. ~The apparatus according to claim 1 wherein the insert conveyor assembly includes a plurality of insert pushing elements driven along a feed direction by the first motor.
3. ~The apparatus according to claim 2 wherein the envelope conveyor assembly includes a plurality of envelope controlling elements driven along the feed direction by the second motor.
4. ~The apparatus according to claim 1 wherein the envelope conveyor assembly includes a plurality of envelope controlling elements driven along a feed direction by the second motor.
5. ~The apparatus according to claim 1 wherein, during any master cycle, the insert conveyor assembly speed is greater than the envelope conveyor assembly speed.
6. ~The apparatus according to claim 1 wherein the first peripheral device includes an envelope opening mechanism.
7. ~The apparatus according to claim 6 comprising a second actuator having a substantially constant activation time lag aid a second peripheral device disposed in actuating communication with the second actuator wherein, at least once every master cycle, the motion controller calculates a second actuator activation position based on the encoder signal and activates the second actuator at the calculated second actuator activation position.
8. ~The apparatus according to claim 7 wherein the second peripheral device includes an envelope registration mechanism.
9. ~The apparatus according to claim 8 comprising a third actuator having a substantially constant activation time lag and a third peripheral device disposed in actuating communication with the third actuator wherein, at least once every master cycle, the motion controller calculates a third actuator activation position based on the encoder signal and activates the third actuator at the calculated third actuator activation position.
10. ~The apparatus according to claim 9 wherein the third peripheral device includes a mail piece take-away mechanism.
11. ~The apparatus according to claim 7 wherein the second peripheral device includes a mail piece take-away mechanism.
12. ~The apparatus according to claim 11 comprising a third actuator having a substantially constant activation time lag and a third peripheral device disposed in actuating communication with the third actuator wherein, at least once every master cycle, the motion controller calculates a third actuator activation position based on the encoder signal and activates the third actuator at the calculated third actuator activation position.
13. The apparatus according to claim 12 wherein the third peripheral device includes an envelope registration mechanism.
14. The apparatus according to claim 1 wherein the first peripheral device includes an envelope registration mechanism.
15. The apparatus according to claim 1 wherein the first peripheral device includes a mail piece take-away mechanism.
16. An inserting apparatus operable over a range of master cycle speeds comprising:

(a) ~a master drive assembly operative over a master cycle and at variable master cycle speeds;

(b) ~an encoder operatively coupled to the master drive assembly and adapted to produce an encoder signal indicative of a current master cycle speed at which the master drive assembly is~~
operating;

(c) ~an insert conveyor assembly driven by a first motor at a variable insert conveyor speed;

(d) ~an envelope conveyor assembly driven by a second motor at a variable envelope conveyor speed;

(e) a first actuator having a substantially constant activation time lag and disposed in actuating communication with a first peripheral device; and (f) a motion controller for controlling the insert conveyor assembly speed, the envelope conveyor assembly speed and an activation position of the first actuator based on the encoder signal, the motion controller electrically communicating with the encoder, the first motor, the second motor and the first actuator; and (g) a computer program product comprising computer-executable instructions embodied in a computer readable medium communicating with the motion controller, the computer program product adapted to, at leash once during every master cycle, calculate the first actuator activation position and cause the first actuator to be activated at the calculated first actuator activation position.
17. The apparatus according to claim 16 wherein the insert conveyor assembly includes a plurality of insert pushing elements driven along a feed direction by the first motor.
18. The apparatus according to claim 17 wherein the envelope conveyor assembly includes a plurality of envelope controlling elements driven along the feed direction by the second motor.
19. The apparatus according to claim 16 wherein the envelope conveyor assembly includes a plurality of envelope controlling elements driven along a feed direction by the second motor.
20. The apparatus according to claim 16 wherein, during any master cycle, the insert conveyor assembly speed is greater than the envelope conveyor assembly speed.
21 The apparatus according to claim 16 wherein the first peripheral device includes an envelope opening mechanism.
22. The apparatus according to claim 21 comprising a second actuator having a substantially constant activation time lag and a second peripheral device disposed in actuating communication with the second actuator wherein, at least once every master cycle, the motion controller calculates a second actuator activation position based on the encoder signal and activates the second actuator at the calculated second actuator activation position.
23. The apparatus according to claim 22 wherein the second peripheral device includes an envelope registration mechanism.
24. The apparatus according to claim 23 comprising a third actuator having a substantially constant activation time lag and a third peripheral device disposed in actuating communication with the third actuator wherein, at least once every master cycle, the motion controller calculates a third actuator activation position based on the encoder signal and activates the third actuator at the calculated third actuator activation position.
25. The apparatus according to claim 24 wherein the third peripheral device includes a mail piece take-away mechanism.
26. The apparatus according to claim 22 wherein the second peripheral device includes a mail piece take-away mechanism.
27. The apparatus according to claim 26 comprising a third actuator having a substantially constant activation time lag and a third peripheral device disposed in actuating communication with the third actuator wherein, at least once every master cycle, the motion controller calculates a third actuator activation position based on the encoder signal and activates the third actuator at the calculated third actuator activation position.
28. The apparatus according to claim 27 wherein the third peripheral device includes an envelope registration mechanism.
29. The apparatus according to claim 16 wherein the first peripheral device includes an envelope registration mechanism.
30. The apparatus according to claim 16 wherein the first peripheral device includes a mail piece take-away mechanism.
31. A method for controlling an inserting apparatus over a range of master cycle speeds, the method comprising the steps of:
(a) monitoring a master cycle speed at which an inserting apparatus operates over a plurality of master cycles;
(b) determining when a new master cycle has begun;
(c) at least once during every master cycle of operation of the inserting apparatus, performing a first calculation to determine a first cyclical position of the new master cycle at which an actuated device should begin to be activated, wherein the calculation is based on the master cycle speed measured for the new master cycle, a predetermined time duration required for the actuated device to become fully active, and a predetermined cyclical position of the new master cycle at which the actuated device should be fully active; and (d) at least once during every master cycle of operation of the inserting apparatus, causing the actuated device to begin to be activated when the new master cycle reaches or exceeds the calculated first cyclical position.
32. The method according to claim 31 comprising the steps of:
(a) at least once during every master cycle of operation of the inserting apparatus, performing a second calculation to determine a second cyclical position of the new master cycle at which an actuated device should begin to be deactivated, wherein the calculation is based on the master cycle speed measured for the new master cycle, a predetermined time duration required for the actuated device to become inactive, and a predetermined cyclical position of the new master cycle at which the actuated device should be fully inactive; and (b) at least once during every master cycle of operation of the inserting apparatus, causing the actuated device to become inactive when the new master cycle reaches or exceeds the calculated second cyclical position.
33. The method according to claim 31 wherein the step of causing the actuated device to begin to be activated includes energizing an envelope opening device.
34. The method according to claim 31 wherein the step of causing the actuated device to begin to be activated includes energizing an envelope registration device.
35. The method according to claim 31 wherein the step of causing the actuated device to begin to be activated includes energizing a mail piece take-away device.
36. A computer program product comprising computer-executable instructions embodied in a computer-readable medium, the computer program product adapted to perform the steps of:

(a) monitoring a master cycle speed at which an inserting apparatus operates over a plurality of master cycles;
(b) determining when a new master cycle has begun:
(c) at least once during every master cycle of operation of the inserting apparatus, performing a first calculation to determine a first cyclical position of the new master cycle at why an actuated device should begin to be activated, wherein the calculation is based on the master cycle speed measured for the new master cycle, a predetermined time duration required for the actuated device to become fully active, and a predetermined cyclical position of the new master cycle at which the actuated device should be fully active; and (d) at least once during every master cycle of operation of the inserting apparatus, causing the actuated device to begin to be activated when the new master cycle reaches or exceeds the calculated first cyclical position.
37. The computer program product of claim 36 further adapted to perform the steps of:
(a) at least once during every master cycle of operation of the inserting apparatus, performing a second calculation to determine a second cyclical position of the new master cycle at which an actuated device should begin to be deactivated, wherein the calculation is based on the master cycle speed measured for the new master cycle, a predetermined time duration required for the actuated device to become inactive, and a predetermined cyclical position of the new master cycle at which the actuated device should be fully inactive; and (b) at least once during every master cycle of operation of the inserting apparatus, causing the actuated device to become inactive when the new master cycle reaches or exceeds the calculated second cyclical position.
38. The computer program product of claim 37 wherein the step of causing the actuated device to begin to be activated includes energizing an envelope opening device.
39. The computer program product of claim 36 wherein the step of causing the actuated device to begin to be activated includes energizing an envelope registration device.
40. The computer program product of claim 36 wherein the step of causing the actuated device to begin to be activated includes energizing a mail piece take-away device.
41. A method for continuously inserting inserts into corresponding envelopes in a controlled manner over a range of master cycle speeds at which an Inserting apparatus operates, the method comprising:
(a) monitoring a master cycle speed at which an inserting apparatus operates over a plurality of master cycles;
(b) determining when a new master cycle has begun:

(c) at least once during every master cycle of operation of the inserting apparatus, performing a first calculation to determine a first cyclical position of the new master cycle at which an actuated device should begin to be activated, wherein the calculation is based on the master cycle speed measured for the new master cycle, a predetermined time duration required for the actuated device to become fully active, and a predetermined cyclical position of the new master cycle at which the actuated device should be fully active;
(d) at least once during every master cycle of operation of the inserting apparatus, causing the actuated device to begin to be activated when the new master cycle reaches or exceeds the calculated first cyclical position, wherein activation of the actuated device assists in an inserting process performed by the inserting apparatus;
(e) feeding an insert along a feed path at an insert feed rate in timed relation with the activation of the actuated device;
(f) feeding an envelope along the feed path at an envelope feed rate in timed relation with the activation of the actuated device, wherein the insert feed rate is greater than the envelope feed rate; and (g) causing the insert to be inserted into the envelope in timed relation with the activation of the actuated device.
42. The method according to claim 41 wherein the step of causing the actuated device to begin to be activated includes energizing an envelope opening device.
43. The method according to claim 41 wherein the step of causing the actuated device to begin to be activated includes energizing an envelope registration device.
44. The method according to claim 41 wherein the step of causing the actuated device to begin to be activated includes energizing a mail piece take-away device.
CA002444498A 2001-04-26 2002-04-25 Inserting apparatus and method with controlled, master cycle speed-dependent actuator operations Expired - Fee Related CA2444498C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/843,231 US6718740B2 (en) 1998-09-24 2001-04-26 Inserting apparatus and method with controlled, master cycle speed-dependent actuator operations
US09/843,231 2001-04-26
PCT/US2002/013056 WO2002087973A1 (en) 2001-04-26 2002-04-25 Inserting apparatus and method with controlled, master cycle speed-dependent actuator operations

Publications (2)

Publication Number Publication Date
CA2444498A1 CA2444498A1 (en) 2002-11-07
CA2444498C true CA2444498C (en) 2007-04-03

Family

ID=25289400

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002444498A Expired - Fee Related CA2444498C (en) 2001-04-26 2002-04-25 Inserting apparatus and method with controlled, master cycle speed-dependent actuator operations

Country Status (8)

Country Link
US (2) US6718740B2 (en)
EP (1) EP1395491B1 (en)
JP (1) JP4177117B2 (en)
AT (1) ATE489288T1 (en)
CA (1) CA2444498C (en)
DE (1) DE60238400D1 (en)
IL (1) IL158353A0 (en)
WO (1) WO2002087973A1 (en)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136027B4 (en) * 2001-07-25 2004-05-06 Sartorius Ag dispenser
JP4386732B2 (en) 2002-01-08 2009-12-16 セブン ネットワークス, インコーポレイテッド Mobile network connection architecture
US7917468B2 (en) 2005-08-01 2011-03-29 Seven Networks, Inc. Linking of personal information management data
US8468126B2 (en) 2005-08-01 2013-06-18 Seven Networks, Inc. Publishing data in an information community
US7853563B2 (en) 2005-08-01 2010-12-14 Seven Networks, Inc. Universal data aggregation
EP1468841B1 (en) * 2003-04-14 2011-12-28 Bell and Howell, LLC Envelope transport and insertion machine
FR2859945B1 (en) 2003-09-18 2006-09-22 Kern Ag AUTOMATIC DEVICE FOR FOLDING PIECES OF LOW DIMENSIONS, IN PARTICULAR DOCUMENTS
ITMI20031794A1 (en) 2003-09-19 2005-03-20 Sitma Spa DEVICE FOR AUTOMATIC PACKAGING OF PRODUCTS.
FR2876058B1 (en) * 2004-10-01 2008-04-18 Gianfranco Passoni METHOD FOR AUTOMATICALLY LOADING LOW-DIMENSIONAL PIECES, ESPECIALLY DOCUMENTS, AND DEVICE FOR IMPLEMENTING SAID METHOD
US8010082B2 (en) 2004-10-20 2011-08-30 Seven Networks, Inc. Flexible billing architecture
WO2006045102A2 (en) 2004-10-20 2006-04-27 Seven Networks, Inc. Method and apparatus for intercepting events in a communication system
US7706781B2 (en) 2004-11-22 2010-04-27 Seven Networks International Oy Data security in a mobile e-mail service
FI117152B (en) 2004-12-03 2006-06-30 Seven Networks Internat Oy E-mail service provisioning method for mobile terminal, involves using domain part and further parameters to generate new parameter set in list of setting parameter sets, if provisioning of e-mail service is successful
US7877703B1 (en) 2005-03-14 2011-01-25 Seven Networks, Inc. Intelligent rendering of information in a limited display environment
FR2883828B1 (en) * 2005-04-01 2007-05-25 Conception & Dev Michelin Sa DIRECTION OF VEHICLE STEERING WITHOUT MECHANICAL CONNECTION BETWEEN STEERING WHEEL AND WHEELS
US7796742B1 (en) 2005-04-21 2010-09-14 Seven Networks, Inc. Systems and methods for simplified provisioning
US8438633B1 (en) 2005-04-21 2013-05-07 Seven Networks, Inc. Flexible real-time inbox access
WO2006136660A1 (en) 2005-06-21 2006-12-28 Seven Networks International Oy Maintaining an ip connection in a mobile network
US8069166B2 (en) 2005-08-01 2011-11-29 Seven Networks, Inc. Managing user-to-user contact with inferred presence information
US7769395B2 (en) 2006-06-20 2010-08-03 Seven Networks, Inc. Location-based operations and messaging
US8805425B2 (en) 2007-06-01 2014-08-12 Seven Networks, Inc. Integrated messaging
US8693494B2 (en) 2007-06-01 2014-04-08 Seven Networks, Inc. Polling
US8364181B2 (en) 2007-12-10 2013-01-29 Seven Networks, Inc. Electronic-mail filtering for mobile devices
US9002828B2 (en) 2007-12-13 2015-04-07 Seven Networks, Inc. Predictive content delivery
US7930869B2 (en) * 2007-12-21 2011-04-26 Pitney Bowes Inc. Inserter control method
US8107921B2 (en) 2008-01-11 2012-01-31 Seven Networks, Inc. Mobile virtual network operator
US8862657B2 (en) 2008-01-25 2014-10-14 Seven Networks, Inc. Policy based content service
US20090193338A1 (en) 2008-01-28 2009-07-30 Trevor Fiatal Reducing network and battery consumption during content delivery and playback
US8787947B2 (en) 2008-06-18 2014-07-22 Seven Networks, Inc. Application discovery on mobile devices
US8078158B2 (en) 2008-06-26 2011-12-13 Seven Networks, Inc. Provisioning applications for a mobile device
GB2462294A (en) * 2008-07-31 2010-02-03 Neopost Technologies Apparatus for inserting a contents pack into an envelope
US8909759B2 (en) 2008-10-10 2014-12-09 Seven Networks, Inc. Bandwidth measurement
EP2228233B1 (en) * 2009-03-10 2012-02-22 Neopost Technologies Inserting apparatus and method for inserting postal items into envelopes
US9043731B2 (en) 2010-03-30 2015-05-26 Seven Networks, Inc. 3D mobile user interface with configurable workspace management
EP2566709B1 (en) * 2010-05-07 2018-07-04 BÖWE SYSTEC GmbH Apparatus and method for inserting one or more goods into a moveable cover
US8838783B2 (en) 2010-07-26 2014-09-16 Seven Networks, Inc. Distributed caching for resource and mobile network traffic management
US9077630B2 (en) 2010-07-26 2015-07-07 Seven Networks, Inc. Distributed implementation of dynamic wireless traffic policy
EP2599003B1 (en) 2010-07-26 2018-07-11 Seven Networks, LLC Mobile network traffic coordination across multiple applications
WO2012018556A2 (en) 2010-07-26 2012-02-09 Ari Backholm Mobile application traffic optimization
WO2012060995A2 (en) 2010-11-01 2012-05-10 Michael Luna Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
GB2499534B (en) 2010-11-01 2018-09-19 Seven Networks Llc Caching adapted for mobile application behavior and network conditions
US8843153B2 (en) 2010-11-01 2014-09-23 Seven Networks, Inc. Mobile traffic categorization and policy for network use optimization while preserving user experience
US8204953B2 (en) 2010-11-01 2012-06-19 Seven Networks, Inc. Distributed system for cache defeat detection and caching of content addressed by identifiers intended to defeat cache
US8484314B2 (en) 2010-11-01 2013-07-09 Seven Networks, Inc. Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
US9330196B2 (en) 2010-11-01 2016-05-03 Seven Networks, Llc Wireless traffic management system cache optimization using http headers
WO2012061430A2 (en) 2010-11-01 2012-05-10 Michael Luna Distributed management of keep-alive message signaling for mobile network resource conservation and optimization
US9060032B2 (en) 2010-11-01 2015-06-16 Seven Networks, Inc. Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic
US8166164B1 (en) 2010-11-01 2012-04-24 Seven Networks, Inc. Application and network-based long poll request detection and cacheability assessment therefor
EP3422775A1 (en) 2010-11-22 2019-01-02 Seven Networks, LLC Optimization of resource polling intervals to satisfy mobile device requests
CA2798523C (en) 2010-11-22 2015-02-24 Seven Networks, Inc. Aligning data transfer to optimize connections established for transmission over a wireless network
JP5587169B2 (en) * 2010-12-28 2014-09-10 理想科学工業株式会社 Enclosed sealing device and image forming system
US9325662B2 (en) 2011-01-07 2016-04-26 Seven Networks, Llc System and method for reduction of mobile network traffic used for domain name system (DNS) queries
GB2505103B (en) 2011-04-19 2014-10-22 Seven Networks Inc Social caching for device resource sharing and management cross-reference to related applications
US8621075B2 (en) 2011-04-27 2013-12-31 Seven Metworks, Inc. Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
US8832228B2 (en) 2011-04-27 2014-09-09 Seven Networks, Inc. System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
EP2737742A4 (en) 2011-07-27 2015-01-28 Seven Networks Inc Automatic generation and distribution of policy information regarding malicious mobile traffic in a wireless network
JP5913907B2 (en) * 2011-10-28 2016-04-27 理想科学工業株式会社 Seal letter creation system
US8977755B2 (en) 2011-12-06 2015-03-10 Seven Networks, Inc. Mobile device and method to utilize the failover mechanism for fault tolerance provided for mobile traffic management and network/device resource conservation
US8918503B2 (en) 2011-12-06 2014-12-23 Seven Networks, Inc. Optimization of mobile traffic directed to private networks and operator configurability thereof
US9277443B2 (en) 2011-12-07 2016-03-01 Seven Networks, Llc Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
US9009250B2 (en) 2011-12-07 2015-04-14 Seven Networks, Inc. Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic alleviation
US8861354B2 (en) 2011-12-14 2014-10-14 Seven Networks, Inc. Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization
US9021021B2 (en) 2011-12-14 2015-04-28 Seven Networks, Inc. Mobile network reporting and usage analytics system and method aggregated using a distributed traffic optimization system
US9832095B2 (en) 2011-12-14 2017-11-28 Seven Networks, Llc Operation modes for mobile traffic optimization and concurrent management of optimized and non-optimized traffic
WO2013103988A1 (en) 2012-01-05 2013-07-11 Seven Networks, Inc. Detection and management of user interactions with foreground applications on a mobile device in distributed caching
US9203864B2 (en) 2012-02-02 2015-12-01 Seven Networks, Llc Dynamic categorization of applications for network access in a mobile network
US9326189B2 (en) 2012-02-03 2016-04-26 Seven Networks, Llc User as an end point for profiling and optimizing the delivery of content and data in a wireless network
US8812695B2 (en) 2012-04-09 2014-08-19 Seven Networks, Inc. Method and system for management of a virtual network connection without heartbeat messages
WO2013155208A1 (en) 2012-04-10 2013-10-17 Seven Networks, Inc. Intelligent customer service/call center services enhanced using real-time and historical mobile application and traffic-related statistics collected by a distributed caching system in a mobile network
US8775631B2 (en) 2012-07-13 2014-07-08 Seven Networks, Inc. Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
US9161258B2 (en) 2012-10-24 2015-10-13 Seven Networks, Llc Optimized and selective management of policy deployment to mobile clients in a congested network to prevent further aggravation of network congestion
US20140177497A1 (en) 2012-12-20 2014-06-26 Seven Networks, Inc. Management of mobile device radio state promotion and demotion
US9271238B2 (en) 2013-01-23 2016-02-23 Seven Networks, Llc Application or context aware fast dormancy
US8874761B2 (en) 2013-01-25 2014-10-28 Seven Networks, Inc. Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
US9326185B2 (en) 2013-03-11 2016-04-26 Seven Networks, Llc Mobile network congestion recognition for optimization of mobile traffic
US9065765B2 (en) 2013-07-22 2015-06-23 Seven Networks, Inc. Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network
CH710033A2 (en) * 2014-08-28 2016-02-29 Kern Ag Pannier.
US20160243884A1 (en) * 2015-02-20 2016-08-25 Pitney Bowes Inc. Method of controlling insertion depth of a moving collation into an accelerating envelope
US10532604B2 (en) * 2015-02-20 2020-01-14 Dmt Solutions Global Corporation Pivoting envelope insertion guide
CA3137453A1 (en) 2019-04-29 2020-11-05 Kliklok Llc Carton blank erector and feeding and shuttle machine

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423900A (en) 1965-01-18 1969-01-28 Bell & Howell Co Collating-inserting machine
US4722168A (en) 1987-06-25 1988-02-02 Doboy Packaging Machinery, Inc. Product-out-of-registration control for high speed wrapping machine
GB8905530D0 (en) 1989-03-10 1989-04-19 Kliklok Int Packaging machinery
US5125214A (en) 1989-04-14 1992-06-30 Bell & Howell Company Inserter station for envelope inserting
CA2062602C (en) 1991-03-12 1995-02-14 Peter Kern Enveloping device
CA2091733C (en) 1992-03-30 2005-03-15 Jack Cohen Envelope stuffing device
US5445367A (en) 1993-04-19 1995-08-29 Long; John A. System and method for preparing letters for mailing
DE69402856T2 (en) 1993-05-21 1997-08-28 Longford Equip Int DEVICE FOR FILLING ENVELOPES
JPH0749289A (en) 1993-08-06 1995-02-21 Hitachi Cable Ltd Reflection decay quantity measuring apparatus
JPH0777889A (en) 1993-09-08 1995-03-20 Hitachi Ltd Fixing method and recorder
US5415068A (en) 1993-10-18 1995-05-16 Pitney Bowes Inc. Multi-function envelope feeder
US5706627A (en) * 1994-02-02 1998-01-13 Tetra Laval Holdings & Finance, S.A. Control system for a packaging machine
US5524421A (en) 1994-09-27 1996-06-11 Wallace Computer Services, Inc. One pass system for forming stuffed envelopes
US5555701A (en) * 1994-11-29 1996-09-17 Fehringer; Robert Envelope wetting and sealing apparatus
US5628249A (en) * 1994-12-27 1997-05-13 Pitney Bowes Inc. Apparatus and method for preparing a mail piece
US5485712A (en) 1995-01-27 1996-01-23 Hayssen Manufacturing Company Method of handling film on a vertical form, fill and seal machine
JP2648120B2 (en) 1995-02-08 1997-08-27 山一電機株式会社 Surface contact type connector
JPH08270753A (en) * 1995-03-28 1996-10-15 Tochigi Fuji Ind Co Ltd Differential gear
JP3281895B2 (en) * 1996-02-08 2002-05-13 プリンサーター コーポレイション Mail handling system and control method thereof
NL1003265C2 (en) 1996-06-04 1997-12-10 Hadewe Bv Device and method for processing incoming mail items.
NL1003796C2 (en) 1996-08-13 1998-02-20 Hadewe Bv Device and method for filling and closing envelopes.
US5729954A (en) * 1996-09-04 1998-03-24 International Billing Services Envelope flap opener apparatus
US5823521A (en) 1996-10-03 1998-10-20 Bell & Howell Mail Processing Systems Computer controlled apparatus and method for inserting mail into envelopes
US5809749A (en) 1996-10-21 1998-09-22 Bell & Howell Cope Company High speed envelope packing apparatus
US6230471B1 (en) * 1997-06-06 2001-05-15 Opex Corporation Method and apparatus for processing envelopes containing contents
US5924265A (en) 1997-12-31 1999-07-20 Pitney Bowes Inc. Vacuum deck stopping mechanism
AU5254299A (en) 1998-09-24 2000-04-10 Bell & Howell Mail And Messaging Technologies Company Servo motor controlled continuous motion inserting apparatus and method
US6601364B2 (en) 1999-08-30 2003-08-05 Pitney Bowes Inc. Method and device for synchronizing motion for insert feeders in an insertion system

Also Published As

Publication number Publication date
US7395644B2 (en) 2008-07-08
EP1395491A1 (en) 2004-03-10
US20050246139A1 (en) 2005-11-03
CA2444498A1 (en) 2002-11-07
IL158353A0 (en) 2004-05-12
US6718740B2 (en) 2004-04-13
JP4177117B2 (en) 2008-11-05
US20020112453A1 (en) 2002-08-22
WO2002087973A1 (en) 2002-11-07
EP1395491B1 (en) 2010-11-24
ATE489288T1 (en) 2010-12-15
EP1395491A4 (en) 2008-08-27
JP2004528242A (en) 2004-09-16
DE60238400D1 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
CA2444498C (en) Inserting apparatus and method with controlled, master cycle speed-dependent actuator operations
EP1910171B1 (en) Rotary transfer mechanism
US6164046A (en) High speed machine for inserting sheets into envelopes
US5823521A (en) Computer controlled apparatus and method for inserting mail into envelopes
EP1073585B1 (en) High speed linear bagging machine and method of operation
US6021629A (en) Registration system for sealed tray packaging machine
EP0044820A1 (en) A machine and a process for packaging articles of products
US4683704A (en) Method of and apparatus for wrapping
US7930869B2 (en) Inserter control method
US5630312A (en) Ejection mechanism for envelope inserting machine
US5982129A (en) Asynchronous control of insertion apparatus
JPH02215665A (en) Manufacturing method of cylindrical supporter of edge cutter and its apparatus
US3861115A (en) Box flapper
US5564894A (en) Article selection and delivery method and apparatus
CA2374981C (en) High speed machine for inserting sheets into envelopes
WO2000017052A1 (en) Servo motor controlled continuous motion inserting apparatus and method
WO1981000999A1 (en) An apparatus for advancing a predetermined length of strip-shaped material
JP3232187B2 (en) Tension device of bag mouth in bag feeder
EP0142699B1 (en) Method of and apparatus for wrapping reams of paper or the like
JPH0818716B2 (en) Device for taking out thin plate-shaped members
EP3392030A1 (en) Method of synchronizing conveying units in a packaging machine
US4182207A (en) Food stack loader
CA2595494C (en) Article selection and delivery method and apparatus
JPH04339727A (en) Packaging film pull-out device for packaging machine
ZA200200213B (en) High speed machine for inserting sheets into envelopes.

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed