CA2301792A1 - Hands-free signal level meter - Google Patents

Hands-free signal level meter Download PDF

Info

Publication number
CA2301792A1
CA2301792A1 CA002301792A CA2301792A CA2301792A1 CA 2301792 A1 CA2301792 A1 CA 2301792A1 CA 002301792 A CA002301792 A CA 002301792A CA 2301792 A CA2301792 A CA 2301792A CA 2301792 A1 CA2301792 A1 CA 2301792A1
Authority
CA
Canada
Prior art keywords
electrical signal
display
signal measurement
cpu
technician
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002301792A
Other languages
French (fr)
Inventor
Randall S. Estep
Dennis A. Zimmerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comsonics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2301792A1 publication Critical patent/CA2301792A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/025General constructional details concerning dedicated user interfaces, e.g. GUI, or dedicated keyboards
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/26Speech to text systems

Abstract

An electrical signal measurement device comprises sections which are carried by an operator in a belt, jacket, vest, harness (or the like) and a headpiece (10) with a headphone and a visual display (13). The thus wearable system includes speech recognition as well as speech synthesis so the operator may control and communicate with the instrument while his/her hands are left free to perform any necessary function.

Description

HANDS-FREE SIGNAL LEVEL METER
DESCRIPTION
BACKGROUND OF THE INVENTION
Field of the Invention The present invention generally relates to electrical measurement equipment used to measure or monitor the characteristics of electrical signals and, more particularly, to electrical measurement equipment integrated as a body mounted or attachable display and voice recognition system for use in "hands free" measurement of electrical signals in a telecommunications system.
The invention has particular application to radio frequency (RF) signal level meters used in the measurement of RF signals in a cable television plant but is equally applicable to other telecommunications measurement applications.
Background Description Signal level meters for field use in cable television systems have been available in various forms for many years. However, state-of the-art in signal level meters typically require the use of a display or meter movement, and the device is operated by some form of mechanical switching ;
e.g., keyboards, buttons, knobs, or the like. Additionally, conventional devices are typically carried by hand and operated by hand. When used in adverse conditions, usually in aerial situations (e.g., poles, platforms, bucket truck, etc.), the user must use his or her hands to situate and operate the device while also protecting against an accidental fall.
It is therefore an object of the present invention to provide an electrical signal measurement device which can be worn by or attached to a technician so that the device can be operated in a "hands-free" manner.
According to one preferred embodiment of the invention, there is provided electrical 2 5 measurement equipment integrated as a body mounted or attachable display and speech recognition system for use in "hands free" measurement of electrical signals in a telecommunications system. The electrical measurement equipment typically includes a system unit which is carried on or attached to the person of a technician by attachment to a belt, harness or the like and, in a first embodiment, a headpiece incorporating a display, microphone and head phone. The display, microphone and head phone are linked to the system unit and supported by software, including a speech recognition system, running on a central processing unit (CPU) which is part of the system unit.
In a second alternative embodiment, the headpiece is replaced with a chest mounted unit which folds down to provide convenient viewing of a display. In this embodiment, the microphone and a miniature speaker are integrated into a bezel surrounding the display.
In both the first and second embodiments, a separate battery pack may be mounted like the system unit to a belt, harness or the like worn by the technician.
In a third embodiment, the three elements of the second embodiment, that is, the display, the system unit and the battery pack, are packaged in a compartmented fabric case which may be easily worn by a technician by means of a shoulder or neck strap.
In operation, the technician connects a probe to a test point in the cable or telecommunication system, and the technician operates the device by speaking into the microphone. The speech recognition system responds to the technician's spoken words to direct and navigate through a displayed user interface screen in order to operate the electrical signal 2 0 measurement functions. Synthesized speech signals are generated to provide the user with audible feedback and messages. A signal introduced at the probe is sampled and digitized by the CPU and associated circuitry and then formatted for display by the display screen. The digitized signal is stored in memory, and may be later downloaded to a centralized data storage system for analysis.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
Figure I is a pictorial view of a first embodiment of the invention comprising a hard hat worn by a technician and fitted with a display and microphone and connected by an electrical 3 o cable to a system unit for attachment to the technician's belt;
Figure 2 is a pictorial view of a modification of the first embodiment of the invention showing an integrated head mounted piece;
Figures 3A and 3B are pictorial views of a second embodiment of the invention comprising a chest mounted display, and Figure 3C is a plan view showing the display with an integrated microphone and miniature speaker;
Figures 4A, 4B and 4C are, respectively, top, side and plan views of a third embodiment of the invention in which the three components of the second embodiment are packaged in a compartmented fabric case which may be easily worn by a technician;
Figure 5 is a block diagram of the circuitry for the hands free electrical signal measuring device according to the invention;
Figures 6A and 6B are flow diagrams of the speech recognition command control process implemented on the electrical signal measuring device of the invention;
Figure 7 is an illustration of the main measurement screen displayed in the operation of the preferred embodiment of the invention; and Figures 8A to 8P show the relationships of the various icons, activities, displays and spoken commands of the main measurement screen of Figure 7.
DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS OF THE INVENTION
Referring now to the drawings, and more particularly to Figure 1, there is shown a pictorial view of an implementation of a first preferred embodiment of the invention. A hard hat 2 0 10, of the type generally wom by technicians in the field, is fitted with a headset microphone 11 and head phone (or alternatively an earphone) 12 of conventional design. In addition, a display device 13 manufactured, for example, using liquid crystal display (LCD), phosphor on gate array or other suitable display technology is mounted to the hard hat 10. The technician looks at the display device 13 and sees an image of a computer display screen, shown in Figure 7. The 2 5 technician can activate various commands to perform a measurement by spoken words which are converted to electrical signals by the microphone 11 and transmitted by cable 14 to the system unit 15.
The system unit 15 is provided with a clip 16 for attachment to the technician's belt.
Alternatively, a holster or pouch attached to the technician's belt can be used to secure the system 3 0 unit 15. The system unit 15 includes a minimum of controls, typically an onloff power switch 17 and, optionally, a cursor control 18 for manually controlling a displayed pointing cursor which WO 99113698 PCTIUS98/1783b may be used as backup to the speech commands. A test probe 19 is connected to the system unit 1 S by means of a cable 20. In addition, there is a serial connector 21 providing an interface to a desk top computer or other data collection system to allow down loading of data from the signal level meter to a central database and up loading of software upgrades. As described in more detail hereinafter, the system unit 15 includes a CPU and supporting chip set and other chips specific to the signal level meter speech recognition and synthesis functions. Power for the device may be a battery internal to the system unit 15, but in one modification, a separate battery unit (not shown) can be similarly provided for attachment to the technician's belt and connected to the system unit by a power cable.
1 o Figure 2 shows a fi~rther modification of the device shown in Figure 1 in which the display 13, microphone 1 I and ear phone 12 are integrated into a headpiece 21 rather than being attached to a hard hat. This modification would be used in those applications where hard hats are not required, such as in telecommunications closets or the like.
Figures 3A and 3B are pictorial views of a second embodiment of the invention showing a 15 chest mounted display which uses the same system unit and battery pack (if a separate battery pack is used) as in the first embodiment. In this embodiment, the display 31 is held in a fabric case 32 attached to a harness worn by the technician. The harness comprises shoulder straps 33 and 34 and a belt strap 35. The case 32 is attached to the shoulder straps 33 and 34 by sewing, for example, and to one end of the belt strap 35, also by sewing, for example. The ends of the belt strap 35 are provided with buckle 36, allowing the technician to easily put on and remove the harness and display. The case 32 is provided with a fabric accordian 37 which allows the display 31 to be dropped to a comfortable viewing position. When not in use, the display is folded against the technician's chest and held by hook-and-loop fasteners (not shown) or similar such fasteners.
Figure 3C is a plan view of the display 31 showing a microphone 38 and miniature speaker 2 5 39 integrated into the bezel surround of the display. Thus, the chest mounted display of this second embodiment provides the same functionality of the head mounted system of the first embodiment.
The components of the second embodiment may be conveniently packaged in a compartmented fabric case, as shown in Figures 4A, 4B and 4C. As shown in Figure 4A, the case 3 0 41 is provided with three compartments, which receive respectively the battery pack 42, the system unit 43 and the display 44. The system unit compartment includes a subcompartment to receive and store the probe 49 and its cord (not shown).
As shown in Figure 4B, the case has a cover flap 45 which, when not in use, covers the WO 99/13698 PCT/US98/17$36 display 44 and attaches to the case by means of a hook-and-loop fastener 46 or similar fastener.
As shown in Figure 4C, the case is provided with a shoulder or neck strap 47 which allows the technician to easily carry and, when making measurements, wear the device. In use, the technician simply places the strap 47 around his or her neck, allowing the device to hang freely down their 5 front. A hook 48 at the bottom of the case 41 may be attached to the technician's belt or other harness and, by adjusting the length of the strap 47, a convenient viewing angle may be established. When the cover flap 45 is folded back, the display is revealed for viewing, as shown in Figure 4C.
Figure 5 is a block diagram of the circuitry of the electrical signal measuring device 1 o according to a preferred embodiment of the invention. The components which provide the direct user interface are shown in dotted line block 51, and the system unit mounted components are shown in dotted line block 52 with the two blocks interconnected by wires in cable 53, corresponding to cable 14 in Figure 1, for example. The power for the components of both blocks 51 and 52 can be provided by a single battery (not shown) either in the system unit with power supplied over a wire in cable 53 or a separate battery pack connected to the system unit.
Within block 51 are the microphone 511, the ear phone 512 and the display device 513.
The microphone 511 is connected to an amplifier 514 which amplifies the electrical signals generated by the microphone in response to spoken words of the technician.
Amplifier S 14 is connected by wire 531 to the system unit 52. The ear phone 512 is connected to the system unit 2 o 52 via wire 532 and amplifier 515 which amplifies synthesized speech signals from the system unit. The display device 513 is connected to the system unit 52 via wire 533 and display controller 516 which drives the display device under the control of the CPU in the system unit.
Within in block 52 are the CPU 521, including a supporting chip set (not shown), read only memory (ROM) 522, random access memory (RAM) 523, direct memory access (DMA) 2 5 controller 524, speech recognition and speech synthesis chip 525, and user interface 526, all connected to a system bus 527. Interface to the system bus 527 is by means of an inputloutput (1/0} controller 528 to which the wires in cable 53 are attached. Also attached to the system bus 527 via the I/O controller 528 is a test probe 54 and its connecting cable 55.
The user interface 526 receives signals from a cursor control device, corresponding to the 3 0 cursor control 18 shown in Figure 1, for example. A serial port 529 is also connected to the system bus 527. The ROM 522 may be, for example, a flash memory or programmable ROM
(PROM, e.g., EPROM, E2PROM, etc.) and contains the operating system and software interface to the application programs run on the CPU 521. The RAM 523 may be, for example, a static RAM (SRAM) or other non-volatile memory to retain measurement data for display and later downloading. Downloading is via serial port 529, and this port is also used to upload changes to the software as may be required from time to time.
It will be appreciated that the architecture of the system unit 52 is quite similar to that of a personal computer, either a desk top or a lap top personal computer. This allows the use of industry standard components and, therefore, economies of manufacture.
While it is known, for example, to provide attachments to lap top personal computers via the PCMCIA (Personal Computer Memory Card International Association) slot that implement digital multimeter and other functions, such a "hybrid" instrument is neither convenient to use nor 1 o well adapted to a specific application. In addition, the speech recognition and speech synthesis chip 525 is a component not normally included in such computers. An example of this chip is the Interactive Speech model RSC-164 general purpose microcontroller incorporating speech recognition and speech synthesis manufactured by Sensory, Inc., of Sunnyvale, California.
The on-chip speech recognition algorithms implemented in this chip reach an accuracy of greater than 96% for speaker-independent recognition and greater than 99% for speaker-dependent recognition. Speaker-independent recognition requires on-chip or off chip ROM to store the words to be recognized. The RSC-164 chip has both continuous listening and consecutive entry modes of operation. Continuous listening allows the chip to continuously listen for a specific word. In this mode, the electrical signal measurement device "activates" when a 2 0 specific word, preceded by quite, is spoken. In continuous entry mode, the chip handles several speech inputs in succession as long as each input is surrounded by one-half second of quiet.
The electrical signal measuring device according to this invention is controlled by means of spoken words using speech recognition system software running on the CPU
521 supported by the speech recognition speech synthesis chip 525. The speech recognition and speech synthesis 2 5 chip 525 used in the system unit according to a preferred embodiment of the invention support three speakers, with provision for adding an additional speaker after first deleting a current speaker. In use, there are a few speaker independent commands and several speaker dependent commands which are recognized by the speech recognition software. The software is activated by the speaker's speech and responds to the spoken words "one", "two" and "three"
to activate the 3 0 speaker dependent recognition routines for the first, second and third speakers, respectively. The actual spoken words, menu structure and training routines are custom written and compiled for the specific application. Additionally, user feedback/enunciation in the form of speech synthesis are provided by the speech recognition and speech synthesis chip 525.

WO 99/13698 PCT/US9$/17836 The basic flow diagram for the speech recognition control is shown in Figure 6A. In this diagram, the user's spoken words are shown in dotted line boxes and computer implemented software functions are shown in solid line boxes. The software implemented actions taken in response to spoken words are set out in tables below.
On power on in function block 601, a test is made in decision block 602 to determine if the speech recognition is allowed. If not, the system is enabled for manual operation only in function block 603. However, assuming that speech recognition is allowed, a further test is made in decision block 604 to determine if speech recognition was active at power off. If not, the system is enabled for manual operation in function block 605 and, in function block 606, the 1 o speaker independent speech command function is enabled. The system then awaits the detection of the user's speech.
When the user speaks, the system prompts the user in function block 607 to identify him or herself as one of a predetermined number of speakers this particular instrument will recognize.
In a specific implementation, the speech recognition system has the capability to recognize the speech of three different users. These three users may identify themselves by, for example, speaking the words "one", "two" or "three". After prompting the user, the system then awaits identification of the user by the spoken words "one", "two" or "three". Once the user has identified him or herself, a test is made in decision block 608 to determine if there is a word match. If not, the process loops back to function block 605 where the system remains enabled in 2 0 the manual operation mode. Assuming that this is a word match, a further test is made in decision block 609 to determine if there is user confirmation; that is, does the spoken word "one", "two"
or "three" match the user speaking that word. If not, the process loops back to function block 605 where the system remains enabled in the manual operation mode. Assuming that there is user confirmation, the system enables the speech recognition routines for the selected user in function 2 5 block 610. At this point, the speech recognition mode as well as the manual mode of operation is enabled for the selected user in function block 611, and the system enters the operational level word line generally denoted by the heavy line 612.
Returning to decision block 604, if speech recognition was active at power off, a further test is made in decision block 613 to determine if the system was set for a default user. If not, the 3 o process goes to function block 605 in order to identify the current user.
If the system had been set for a default user, the speech recognition mode for the default user is enabled in function block 614, and the system enters the operational level word line 612, thus avoiding the need to identify the user with each power on.
As mentioned earlier, manual operation is basically a back up to the speech recognition mode of operation. Generally, manual operation is conventional using the cursor control 18 (Figure 1 ) to move a displayed cursor and select a command or function by depressing the cursor control. In a specific implementation of the invention, there may be the same or more commands and functions which are selected manually as selected in speech recognition operation, but the important novel features of the invention are in the speech recognition mode of operation. Since the manual operation is conventional, no further description is necessary for those skilled in the art to practice that aspect of the invention.
There are several commands or functions controlled by speaker dependent commands.
These are shown in Figure 6A and in Figures 6B and 6C and set out in more detail in tabular form below. The first of these that will be discussed is the TUNE function which is activated by the spoken word "tune". As seen in Table 1 below and with reference to Figure 6A, the tune command is laid out in a manner analogous to a pull down or fly out menu on a display screen, except that activation of the various functions and selections of operations in the "menu" is done by spoken command rather than selection by a pointing cursor controlled by the cursor control 18 (similarly to a mouse or track ball). It will be appreciated, however, that each of these commands can be selected using the pointing cursor.
In the command menu for the TUNE function as shown in Figure 6A and Table 1, the system recognizes the spoken commands "up" and "down" to control the direction of cursor 2 0 movement and increase or decrease the frequency being tuned. These spoken commands are augmented by the spoken commands "step", "jump" and "scan". The scan operation is stopped by the spoken word "stop". Other commands recognized are "low", "center" and "high" for cursor movement. There is also a "help" command that results in the display of a help screen about the TUNE function. Clearing of the help screen is accomplished by the spoken command "back".
Note that a return to the top level word line 612 is made in response the spoken command "back".
TABLE 1, TUNE FUNCTION COMMANDS
TUNE Activate tune mode LOW Move cursor to first channel of channel plan, scroll if needed CENTER Move cursor to mid channel of channel plan, scroll if needed 3 0 ~ HIGH Move cursor to last channel of channel plan, scroll if needed UP Set direction of cursor movement, increase frequency TUNE Activate tune mode DOWN Set direction of cursor movement, decrease frequency JUMP Move cursor in set direction by 10 channels, refresh STEP Move cursor in set direction by 1 channel, referesh SCAN Enable scan mode in set direction, scroll if needed STOP Disable scan mode, cursor at stop location BACK Deactivate tune mode HELP On screen help about tune mode, BACK
to clear The next function is ZOOM. The spoken command hierarchy for this function is shown in Figure 6A and set out in Table 2 below. The spoken commands recognized in support of this l0 function include "in" and "out" for respectively expanding and compressing the direction of zoom.
These commands are augmented by the commands "step", "jump" and "full". A
further command, "hyper", causes the system to enter a sweep mode in function block 615 and, in response to the spoken command "sweep", the hyper mode is disabled and sweep is replaced by the zoom mode in function block 616. A "help" command results in the display of a help screen about the ZOOM
function. Clearing of the help screen is accomplished by the spoken command "back". A return to the top level word Iine 612 is made in response the spoken command "back".
TABLE 2, ZOOM FUNCTION COMMANDS
ZOOM Active zoom mode IN Set direction of zoom, expand 2 0 OUT Set direction of zoom, compress FULL Display max channels when "out", single channel when "in"
STEP Zoom inlout by 1 zoom increment, refresh display JUMP Zoom in/out by 5 zoom increments, refresh display HYPER Enable hyper, return to top level, replace "zoom" with "sweep"
2 5 BACK Deactivate zoom mode HELP On screen help about mom mode, BACK to clear SWEEP Disable hyper mode, replace "sv~reep" with "zoom", return to top level The next function is SCALE as shown in Figure 6A and in the following Table 3.
The "manual" scale range is enabled by the spoken command "scale" in function block 617, and in this mode, the user may speak the words "up" and "down" to navigate the scale. In response to the spoken command "auto", the manual scale range is deactivated in function block 618. A "help"
5 command results in the display of a help screen about the SCALE function.
Clearing of the help screen is accomplished by the spoken command "back". A return to the top level word line 612 is made in response the spoken command "back".
TABLE 3. SCALE FUNCTION COMMANDS
SCALE Activate manual scale mode 1 UP Increment amplitude display up 1 division, o refresh display DOWN Increment amplitude display down 1 division, refresh display AUTO Deactivate manual range, activate auto range, return to top level BACK Hold manual setting, deactivate range mode, return to top level HELP On screen help about range mode, BACK to clear The next function is RANGE as shown in Figure 6A and in the following Table 4.
The system responds to spoken range increments of "one", "two", "five", and "ten".
A "help"
command results in the display of a help screen about the RANGE function.
Clearing of the help screen is accomplished by the spoken command "back". Again, a return to the top level word line 612 is made in response the spoken command "back".
2 TABLE 4. RANGE FUNCTION COMMANDS

RANGE Activate range mode ONE Set amplitude scale to 1 dB/div, refresh display TWO Set amplitude scale to 2 dB/div, refresh display FIVE Set amplitude scale to 5 dB/div, refresh display 2 TEN Set amplitude scale to 10 dB/div, refresh 5 display BACK Hold scale setting, deactivate scale mode, return to top level HELP On screen help about scale mode, BACK to clear The next function is TEST POINT as shown in Figure 6A and in the following Table S.
The system responds to spoken navigation commands of "up", "down" and "next".
A "help"
command results in the display of a help screen about the TEST POINT function.
Clearing of the help screen is accomplished by the spoken command "back". Again, a return to the top level word line 612 is made in response the spoken command "back".
TABLE 5. TEST POINT FUNCTION COMMANDS
TEST POINT Active test point mode UP Increment selected digit up DOWN Increment selected digit down ~ NEXT Select next digit to right, wrap around BACK Set test point offset, deactivate test point mode, return to top level HELP On screen help about test point mode, BACK to clear The next function is the comparative analysis display or CAD as shown in Figure 6A and the following Table 6. The system then responds to spoken commands of "tilt", "hi-to", and "max-min". Again, a return to the top level word line is made in response the spoken command "back".
The spoken command "PV" branches to allow further navigation, in which case the system responds to the spoken commands of "high", "low", "up", "down", "jump", and "step". A "help"
command, which can be invoked in either branch, results in the display of a help screen about the CAD function. Clearing of the help screen is accomplished by the spoken command "back" and, 2 o again, the spoken command "back" to return to the top level word line 612.
TABLE 6. CAD FUNCTION COMMANDS
CAD Activate comparative analysis display mode HI-LO Enable hi-to display, disable tilt, max-min, p/v TILT Enable tilt display, disable hi-lo, max-min, p/v 2 5 ~ MAX-MIN Enable max-min display, disable tilt, hi-lo, p/v P/V Enable p/v display, disable tilt, hi-lo, max-min HIGH Select upper horizontal cursor LOW Select lower horizontal cursor CAD Activate comparative analysis display mode UP Set direction of selected cursor to up DOWN Set direction of selected cursor to down STEP Move selected cursor in set direction by 1 pixel JtlMP Move selected cursor in set direction by 10 pixels BACK Hold cursor positions, disable control, return to top level HELP On screen help about p/v mode, BACK to clear BACK Return to top level, selected mode enabled HELP On screen help about cad mode, BACK to clear The next function is CNR (Carrier to Noise Ratio) as shown in Figure 6A and in the 1 o following Table 7. The system then responds to the commands "show" and "hide", and in response to the spoken commands "show" and "hide", a bandwidth measurement is made in function block 619. A "help" command results in the display of a help screen about the CNR
function. Clearing of the help screen is accomplished by the spoken command "back". Again, a return to the top level word line b12 is made in response the spoken command "back".
Alternatively, branch is made in response to the spoken word "convert", in which case the system responds to the spoken words "up", "down" and "next" to navigate and, as in the first branch, a "help" command results in the display of a help screen about the CNR function.
Clearing of the help screen is accomplished by the spoken command "back". To return to the top level word line 612, the user speaks the command "back".
2 TABLE 7. CNR FUNCTION COMMANDS

CNR Activate CNR mode, initiate measurement SHOW Enable display of bandwidth used in measurement H>DE Disable display of bandwidth used in measurement CONVERT Activate convert function 2 UP Increment selected digit up, update converted 5 figure DOWN Increment selected digit down, update converted figure NEXT Select next digit to right, wrap around BACK Deactivate convert fimction, return to top level CNR Activate CNR mode, initiate measurement HELP On screen help about convert function, BACK to clear BACK Deactivate cnr mode, return to top level HELP On screen help about cnr mode, BACK to clear The next function is HUM as shown in Figure 6A and in the following Table 8.
In response to the spoken command "hum", the system automatically switches between 50 Hz mode in function block 620 or 60 Hz mode in function block 621, depending on the detected power line frequency. In either mode, the system responds to the spoken commands of "50"
(or "60"), "100"
(or "I20") and "all". A "help" command results in the display of a help screen about the HUM
function. Clearing of the help screen is accomplished by the spoken command "back". Again, a return to the top level word line 612 is made in response the spoken command "back".
TABLE 8. HUM FUNCTION COMMANDS
HUM Activate hum mode, initiate measurement 50 Enable 50 Hz measurement (if sync is 50 Hz) disable 100, all 100 Enable 100 Hz measurement (if sync is 50 Hz) disable 50, all 60 Enable 60 Hz measurement (if sync is 60 Hz) disable 120, all 120 Enable 120 Hz measurement (if sync is 60 Hz) disable 60, all ALL Enable all frequency measurement, disable 50/100, 60/120 BACK Enable all frequency, deactivate hum mode, return to top level HELP On screen help about hum mode, BACK to clear 2 o The next function is SPEAKER as shown in Figure 6A and in the following Table 9. The system then responds to the commands to select either "audio" or "video", and thereafter to the commands "up" and "down" to navigate and to "off' to deactivate speaker mode and enable sweep before returning to top level word line. A "help" command results in the display of a help screen about the SPEAKER function. Clearing of the help screen is accomplished by the spoken command "back". Again, a return to the top level word line is made in response the spoken command "back".

TABLE 9. SPEAKER FUNCTION COMMANDS
SPEAKER Activate speaker mode, disable sweep, loudness at 2 (1-15) AUDIO Select TV audio carrier, not available on digi, data, or fm VIDEO Select TV video carrier, not available on digi, data, or fm UP Increase loudness 1 increment DOWN Decrease loudness 1 increment OFF Deactivate speaker mode, enable sweep, return to top level BACK Speaker mode active, disable sweep, return to top level HELP On screen help about speaker mode, BACK
to clear There are three other functions shown in Figure 6A to which the speech recognition system responds from the top level word line 612. These functions are invoked by the spoken commands "level", "help" and "store". In response to the spoken command "level", a readout is toggled in function block 622, and a return is made to the operational level word line 612. The "help" command results in the display of a help screen about the operational level; that is, a description of the various functions which may be accessed from the operational level word line 612. Clearing of the help screen is accomplished by the spoken command "back".
The other function invoked by a spoken command is the STORE function, which is illustrated in Figure 6B and summarized in Table 10 below. This command is used for storing measured data which can later be downloaded to a central data storage for analysis. In response 2 0 to the "store" command, the system first checks the sweep mode in function block 623 to determine if in the hyperzoom mode. If so, the data to be stored is the full sweep and all increments of the hyperzoom display in block 624; otherwise, the data to be stored is the full sweep mode of the current channel plan in block 625. In either case, the system then enters the auto-store measurement to the clipboard in function block 626. Next, the system prompts the user 2 5 to select from several displayed icons a name for the measurement to be stored. The user navigates among the several icons with the spoken commands "up" and "down".
When the desired icon is highlighted, the user then speaks the command "store" again and, in response, the system appends a sequence file identifier to the measured data in function block 627 and names the current clipboard file in function block 628 according to the selected icon.
Then, the system clears 3 0 the store display in function block 629 and returns to the previous display mode in function block 630. If during the store command routine and before speaking the command "store" for the second time the user were to decide not to store the data in the current clipboard file, the user need only to speak the command "back" and a return is made in function block 631 to the previous display mode. The "help" command is available from any point in the store mode and results in the display of a help screen 632 about the STORE function. Clearing of the help screen 5 in fimction block 633 is accomplished by the spoken command "back".
TABLE 10. STORE FUNCTION COMMANDS
STORE Activate store mode UP Increment file type selection up one line in list DOWN Decrement file type selection down one Iine in list 10 STORE Store data as selected file type with auto extension, return to main display BACK Exit store mode, no data saved HELP On screen help about store mode, BACK to clear Speech synthesized responses/messages from the system to the user include the following:
~ PLEASE SPEAK LOUDER (below speech recognition threshold) 15 ~ PLEASE REPEAT (confidence level below a predetermined level) ~ PLEASE MAKE SELECTION (when a selection is needed to continue) ~ PLEASE VERIFY USER (after a predetermined number of recognition errors) ~ WARNING, LOW BATTERY
~ WARNING; DISPLAY TIME OUT (power management active) 2 0 ~ WARNING, POWER SHUT DOWN IN ONE MINUTE (power management active) ~ WELCOME (power on message) ~ CALIBRATION NOW DUE (on power up after recalibration date) ~ FREE MEMORY IS LOW (during file operations) These messages are synthesized by the speech recognition and speech synthesis chip 525 under 2 5 the control of the CPU 521 shown in Figure 5. These messages are transmitted to the head phone 512 (or speaker).
A key feature of the invention is the display screen displayed to the technician on the display device 513. This screen use a graphical user interface (GUI) which, under speech command, allows the user to navigate and select functions. In addition, digitized signal 3 o measurements are displayed in a window on the display screen for viewing by the technician. Each startup operation results in an optional "Welcome" screen (not shown). This is followed by a single measurement screen, an example of which is shown in Figure 7. This screen is specifically designed for use in a signal level meter for measurement of RF signals in a cable television plant.
At the top of the screen shown in Figure 7 is a header comprising several displaylactivator buttons. In the top center of this screen, a select channeUfrequency display/activator button 701 is displayed. This displays, and allows the selection of, the channel number or frequency. The channel number is displayed as an alpha numeric indicia, while the frequency is displayed as a numeric indicia.
Below and to the left of display/activator button 701 is a video display/activator button 702 which displays video level of the selected channel/frequency. This is a screen component with both activator and speech recognition functions. Figure 8A shows the relation of the video level display and the spoken command word "level".
Below and to the right of the display/activator button 701 is an audio level display/activator button 703 which displays the audio level of the selected channeUfrequency. This is a screen component with display only function. Figure 8B shows the audio level display and its content.
The right audio speaker icon 704 provides activation of frequency modulated (FIVI) detected primary audio of the selected channel/frequency through the speaker.
This is a screen component with both activator and speech recognition functions. Figure 8C
shows the relation of 2 o the right audio horn icon and the spoken command word "speaker".
The left audio speaker icon 705 provides activation for a secondary carrier (i.e., synch buzz, dig noise). This is a screen component with both activator and speech recognition functions.
Figure 8D shows the relation of the left audio horn icon and the spoken command word "speaker".
2 5 To the left of the left audio speaker icon 705 is a time and date display/activator button 706. This display/activator button displays and allows adjustment of the time and date. This is a screen component with an activator function but no speech recognition function. Figure 8E shows the relation of the time and date activator button to its function.
Opposite the time and date activator button 706, and to the right of the right audio 3 0 speaker icon 705, is a temperature display/activator button 707 which also incorporates an indication of the power remaining, i.e., battery level. This display/activator button displays temperature (default is degrees Fahrenheit) and allows adjustment of the temperature unit of measure. This again is a screen component with an activator function but no speech recognition function. Figure 8F shows the relation of the temperature activator button to its function. In addition, the display/activator button 707 displays power remaining as a percentage of a full battery charge.
Just above the temperature display/activator button 707 is a HUM
display/activator button 708 which displays the calculated HUM measurement. This is a screen component with both activator and speech recognition functions. Figure 8G shows the relation of the hum display and the spoken command word "hum".
Just above the hum button 708 is a Carrier to Noise Ratio (CNR) display/activator button 709 which displays the current measurement value. Again, this is a screen component with both 1 o activator and speech recognition functions. Figure 8H shows the relation of the carrier to noise ration display and the spoken command word "CNR".
Opposite the CNR button 709, on the left side of the display is a Test Point (TP) offset displaylactivator button 710 which displays a measurement compensation value.
This is a screen component with both activator and speech recognition functions. Figure 8I
shows the relation of the test point offset display and the spoken command word "test point".
Just below the test point button 710 is a comparative analysis display/activator (CAD) button 711 which displays the following measurements:
(a) HI-LO - the level difference between the high "pilot" carrier and the low "pilot" carrier.
(b) TILT - a graphic representation of the level difference between the high "pilot" carrier and 2 0 the low "pilot" carrier.
(c) P/V (Peak to Valley) - the difference between the highest carrier and the lowest carrier.
(d) MAX-MIN - the difference between the highest level carrier and the lowest level carrier.
This also is a screen component with both activator and speech recognition functions. Figure 8J
shows the relation of the comparative analysis display and the spoken command word "CAD".
2 5 Completing this header display is a video minus audio (V-A) display 712.
This is a screen component with a display only function. Figure 8K shows the content of the display.
Referring back to Figure 7, the main measurement display 715 provides a graphic interpretation of the measurement spectrum, in this case a sampled spectrum as described in more detail in U.S. Patent No. 4,685,065 to Warren Braun et al. and assigned to the assignee of this 3 o application. Below the main measurement display window 715 are a tune slider 716 and a zoom slider 717. These are both screen components with activator and speech recognition functions.
Figures 8K and 8L respectively show the relation of the tune slider and the zoom slider and the spoken command words "tune" and "zoom".

To the left of the main measurement display window 7 t 5 are a scaling slider 718 and a range slider 719. These are both screen components with activator and speech recognition functions. Figures 8M and 8N respectively show the relation of the scale slider and the range slider and the spoken command words "scale" and "range".
To the right of the main measurement display window 715 are several icons. The first of these is a logo icon 721 which incorporates a facsimile of a globe which is displayed as spinning with the unit is powered on and serves as a gateway to (a) user help, (b) user manual, (c) guided tour, (d) cable calculator, and (d) "get info". This is a screen component with only an activator function. Figure 80 shows the relation of the logo icon to the activities which can be accessed.
1 o Next is the store icon 722 which serves as a gateway to the store measurement fi~nction.
This is a screen component with activator and speech recognition functions.
Figure 8P shows the relation of the store icon the spoken command word "store".
Below the store icon is the toolbox icon 723 and, finally, the delta icon 724.
These are both screen components with only activator function. The toolbox icon provides access to configuration, file manager and display functions. The delta icon provides access to a delta measurement function.
While the invention has been described in terms of a single preferred embodiment, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims. Specifically, the preferred embodiment has been 2 0 described in terms of a specific implementation designed for cable television RF measurements.
However, there are many other measurements of electrical signals which must be routinely made in the telecommunications industry that would benefit from the hands-free speech recognition operation provided by the general principles of the invention.

Claims (16)

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:
1. A hands free electrical signal measurement device comprising:
a system unit which is attachable to or worn on the person of a technician, the system unit including a central processing unit (CPU) and associated circuitry running speech recognition software;
a test probe connected to said system unit and connectable to an electrical test point for making an electrical signal measurement, the CPU digitizing a measured electrical signal and formatting the digitized signal for display; and an integrated display, microphone and audio output device linked to the system unit, the microphone generating electrical signals in response to spoken commands by the technician, which spoken commands are recognized by the speech recognition software running on the CPU
and associated circuitry to direct and navigate through a displayed user interface in order to operate electrical signal measurement device functions, and the CPU and associated circuitry synthesizing speech signals to provide user feedback and messages through the audio output device.
2. The hands free electrical signal measurement device recited in claim 1 wherein said system unit includes a system bus to which the CPU is connected and further comprises:
a speech recognizer and synthesizer connected to the system bus and communicating with the CPU to operate electrical signal measurement functions in response to spoken commands; and a memory connected to the system bus and communicating with the CPU to store digitized measurements.
3. The hands free electrical signal measurement device recited in claim 2 further comprising a port connected to the system bus to allow downloading of digitized measurements stored in the memory.
4. The hands free electrical signal measurement device recited in claim 2 further comprising a user interface connected to the system bus to receive manual controls entered by a user to direct and navigate through a displayed user interface in order to operate electrical signal measurement device functions.
5. The hands free electrical signal measurement device recited in claim 4 further comprising a cursor control on said system unit and wherein the user interface is responsive to the cursor control.
6. The hands free electrical signal measurement device recited in claim 1 wherein the integrated display, microphone and audio output device comprise a headpiece incorporating the display, microphone and the audio output device and wherein the audio output device is a head phone.
7. The hands free electrical signal measurement device recited in claim 1 wherein the integrated display, microphone and audio output device comprise the display, microphone and the audio output device attached to a hard hat worn by the technician and wherein the audio output device is an head phone attached to the hard hat.
8. The hands free electrical signal measurement device recited in claim 1 wherein the integrated display, microphone and audio output device comprise a chest mounted display, microphone and the audio output device and wherein the audio output device is a miniature speaker.
9. The hands free electrical signal measurement device recited in claim 1 wherein the integrated display, microphone and audio output device comprise an integrated display, microphone and a miniature speaker as said audio output device and wherein the system unit and integrated display, microphone and audio output device are carried in a compartmentalized carrying case having a neck strap and a flap which, when lifted, reveals the integrated display, microphone and miniature speaker.
10. The hands free electrical signal measurement device recited in claim 1 wherein the spoken commands recognized by the speech recognition software running on the CPU
include speaker independent words and speaker dependent words, the speech recognition software running on the CPU and associated circuitry having a training function for sneaker dependent words.
11. The hands free electrical signal measurement device recited in claim 10 wherein speaker independent words are recognized by the speech recognition software running on the CPU to select among a predetermined number of designated users.
12. The hands free electrical signal measurement device recited in claim 11 wherein in the speaker dependent words recognized by the speech recognition software running on the CPU for a selected one of the predetermined number of designated users include the words "tune" and "range", the software responding to the word "tune" to activate a tune mode in which the technician can navigate tuning the device for a measurement by a predetermined script of spoken commands and the software responding to the word "range" to activate a range mode in which the technician can navigate selecting a range for a measurement by a predetermined script of spoken commands.
13. The hands free electrical signal measurement device recited in claim 12 wherein in the speaker dependent words recognized by the speech recognition software running on the CPU for a selected one of the predetermined number of designated users include the words "scale" and "zoom", the software responding to the word "scale" to activate a scale mode in which the technician can navigate scaling the display of a measurement by a predetermined script of spoken commands and the software responding to the word "zoom" to activate a zoom mode in which the technician can navigate selecting an expansion or compression the display of a measurement by a predetermined script of spoken commands.
14. The hands free electrical signal measurement device recited in claim 13 wherein in the speaker dependent words recognized by the speech recognition software running on the CPU for a selected one of the predetermined number of designated users include the words "hum" and "CNR", the software responding to the word "hum" to activate a hum mode in which the technician can navigate a hum measurement by a predetermined script of spoken commands and the software responding to the word "CNR" to activate a range mode in which the technician can navigate selecting a carrier to noise measurement by a predetermined script of spoken commands.
15. The hands free electrical signal measurement device recited in claim 11 wherein in the speaker dependent words recognized by the speech recognition software running on the CPU for a selected one of the predetermined number of designated users include the words "CAD" and "TP", the software responding to the word "CAD" to activate a comparative analysis test mode in which the technician can navigate a comparative analysis measurement by a predetermined script of spoken commands and the software responding to the word "TP" to activate a test point mode in which the technician can navigate selecting a test point offset measurement by a predetermined script of spoken commands.
16. The hands free electrical signal measurement device recited in claim 11 wherein in the speaker dependent words recognized by the speech recognition software running on the CPU for a selected one of the predetermined number of designated users include the word "store", the software responding to the word "store" to activate a store mode in which the technician can navigate storing digitized measurement data by a predetermined script of spoken commands.
CA002301792A 1997-09-11 1998-08-28 Hands-free signal level meter Abandoned CA2301792A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/927,465 1997-09-11
US08/927,465 US6384591B1 (en) 1997-09-11 1997-09-11 Hands-free signal level meter
PCT/US1998/017836 WO1999013698A1 (en) 1997-09-11 1998-08-28 Hands-free signal level meter

Publications (1)

Publication Number Publication Date
CA2301792A1 true CA2301792A1 (en) 1999-03-18

Family

ID=25454771

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002301792A Abandoned CA2301792A1 (en) 1997-09-11 1998-08-28 Hands-free signal level meter

Country Status (4)

Country Link
US (1) US6384591B1 (en)
EP (1) EP1013157A4 (en)
CA (1) CA2301792A1 (en)
WO (1) WO1999013698A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027991B2 (en) * 1999-08-30 2006-04-11 Agilent Technologies, Inc. Voice-responsive command and control system and methodology for use in a signal measurement system
US20020108031A1 (en) * 2001-02-05 2002-08-08 Edin Kljako Klyako computer
US20020120834A1 (en) * 2001-02-26 2002-08-29 Edin Kljako Klyako computer
US20020133696A1 (en) * 2001-03-19 2002-09-19 Kljako Edin Dino Klyako computer
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6910911B2 (en) 2002-06-27 2005-06-28 Vocollect, Inc. Break-away electrical connector
WO2004066014A1 (en) * 2003-01-21 2004-08-05 Andreas Obrebski Visualization device for a surgical microscope having a display unit that is supported by a support frame on the body of the viewer
US7304618B2 (en) * 2003-02-14 2007-12-04 Plathe Henry J Remote display for portable meter
US7249023B2 (en) * 2003-03-11 2007-07-24 Square D Company Navigated menuing for industrial human machine interface via speech recognition
US20060100866A1 (en) * 2004-10-28 2006-05-11 International Business Machines Corporation Influencing automatic speech recognition signal-to-noise levels
US7376469B2 (en) * 2005-04-15 2008-05-20 International Business Machines Corporation Methods and apparatus for implementing manual and hybrid control modes in automated graphical indicators and controls
US8417185B2 (en) 2005-12-16 2013-04-09 Vocollect, Inc. Wireless headset and method for robust voice data communication
US7773767B2 (en) 2006-02-06 2010-08-10 Vocollect, Inc. Headset terminal with rear stability strap
US7885419B2 (en) * 2006-02-06 2011-02-08 Vocollect, Inc. Headset terminal with speech functionality
US7562310B2 (en) * 2006-04-04 2009-07-14 International Business Machines Corporation Slider control movable in a two-dimensional region for simultaneously adjusting values of multiple variables
US7893685B2 (en) 2006-08-28 2011-02-22 Acterna Llc RF meter with input noise suppression
USD626949S1 (en) 2008-02-20 2010-11-09 Vocollect Healthcare Systems, Inc. Body-worn mobile device
USD605629S1 (en) 2008-09-29 2009-12-08 Vocollect, Inc. Headset
US8386261B2 (en) 2008-11-14 2013-02-26 Vocollect Healthcare Systems, Inc. Training/coaching system for a voice-enabled work environment
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US9218454B2 (en) 2009-03-04 2015-12-22 Masimo Corporation Medical monitoring system
US8160287B2 (en) 2009-05-22 2012-04-17 Vocollect, Inc. Headset with adjustable headband
US8438659B2 (en) 2009-11-05 2013-05-07 Vocollect, Inc. Portable computing device and headset interface
DE112011100761T5 (en) 2010-03-01 2013-01-03 Masimo Corporation Adaptive alarm system
US8659397B2 (en) 2010-07-22 2014-02-25 Vocollect, Inc. Method and system for correctly identifying specific RFID tags
USD643400S1 (en) 2010-08-19 2011-08-16 Vocollect Healthcare Systems, Inc. Body-worn mobile device
USD643013S1 (en) 2010-08-20 2011-08-09 Vocollect Healthcare Systems, Inc. Body-worn mobile device
CN102650528A (en) * 2011-02-25 2012-08-29 鸿富锦精密工业(深圳)有限公司 Security processing system and method
US8893037B2 (en) * 2012-12-19 2014-11-18 Orca Health, Inc. Interactive and dynamic medical visualization interface tools
US9256962B2 (en) 2013-01-23 2016-02-09 Orca Health Inc. Personalizing medical conditions with augmented reality
CN103792496B (en) * 2014-02-21 2020-01-31 福禄克精密测量有限公司 Voice counting of a battery under test
CN106125922B (en) * 2016-06-22 2023-11-07 齐齐哈尔大学 Dumb speech and spoken speech image information communication system
US10802065B2 (en) * 2017-04-18 2020-10-13 Greenlee Tools, Inc. Wearable electric field detector
US10877081B2 (en) 2017-04-28 2020-12-29 Greenlee Tools, Inc. System and method for voltage detection for equipment
US10891848B2 (en) 2017-04-28 2021-01-12 Greenlee Tools, Inc. System and method for voltage detection and communication between electric field detectors

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3103118C2 (en) 1981-01-30 1984-04-05 Standard Elektrik Lorenz Ag, 7000 Stuttgart Device for monitoring the level of a high frequency signal
CH645501GA3 (en) 1981-07-24 1984-10-15
JPS58195957A (en) 1982-05-11 1983-11-15 Casio Comput Co Ltd Program starting system by voice
US4757525A (en) * 1982-09-29 1988-07-12 Vmx, Inc. Electronic audio communications system with voice command features
US5281957A (en) 1984-11-14 1994-01-25 Schoolman Scientific Corp. Portable computer and head mounted display
US4685065A (en) * 1985-05-23 1987-08-04 Comsonics, Inc. Portable sampling spectrum analyzer
US4931950A (en) 1988-07-25 1990-06-05 Electric Power Research Institute Multimedia interface and method for computer system
EP0532496B1 (en) 1990-05-01 1995-01-25 Wang Laboratories Inc. Hands-free hardware keyboard
JP2985231B2 (en) 1990-05-17 1999-11-29 ソニー株式会社 Video display device
JPH04235630A (en) * 1990-07-30 1992-08-24 Ronald L Colier Method and device for conducting programming of computer by audible command
JP3098279B2 (en) 1991-05-31 2000-10-16 リーダー電子株式会社 TV level meter
US5450596A (en) 1991-07-18 1995-09-12 Redwear Interactive Inc. CD-ROM data retrieval system using a hands-free command controller and headwear monitor
JPH05157578A (en) 1991-12-06 1993-06-22 Rohm Co Ltd Display control device and level meter
US5305244B2 (en) * 1992-04-06 1997-09-23 Computer Products & Services I Hands-free user-supported portable computer
US5285398A (en) * 1992-05-15 1994-02-08 Mobila Technology Inc. Flexible wearable computer
US5491651A (en) * 1992-05-15 1996-02-13 Key, Idea Development Flexible wearable computer
US5321416A (en) 1992-07-27 1994-06-14 Virtual Research Systems Head-mounted visual display apparatus
US5671158A (en) * 1995-09-18 1997-09-23 Envirotest Systems Corp. Apparatus and method for effecting wireless discourse between computer and technician in testing motor vehicle emission control systems

Also Published As

Publication number Publication date
EP1013157A4 (en) 2003-08-13
WO1999013698A1 (en) 1999-03-18
EP1013157A1 (en) 2000-06-28
WO1999013698B1 (en) 1999-05-27
US6384591B1 (en) 2002-05-07

Similar Documents

Publication Publication Date Title
US6384591B1 (en) Hands-free signal level meter
US6353313B1 (en) Remote, wireless electrical signal measurement device
US5659611A (en) Wrist telephone
CA1294079C (en) Voice controlled dialer having memories for full-digit dialing for any users and abbreviated dialing for authorized users
KR100804855B1 (en) Method and apparatus for a voice controlled foreign language translation device
US5541516A (en) Locator equipment with self-integrity test capability
US20070113203A1 (en) Method for searching menu in mobile communication terminal
US20020186180A1 (en) Hands free solar powered cap/visor integrated wireless multi-media apparatus
US20130142366A1 (en) Personalized hearing profile generation with real-time feedback
US20130297319A1 (en) Mobile device having at least one microphone sensor and method for controlling the same
CN109147757B (en) Singing voice synthesis method and device
CN110688082B (en) Method, device, equipment and storage medium for determining adjustment proportion information of volume
US5603101A (en) Method of and apparatus for displaying temperature on a radio telephone
US7090076B2 (en) Cell phone/personal digital assistant built into handbag
EP1145533A2 (en) Modular communication device interface
US7047038B1 (en) Computer and mobile communication system
CN106060268A (en) Voice output method for mobile terminal and mobile terminal
US6314184B1 (en) Bracelet telephone device
US20100119100A1 (en) Electronic voice pad and utility ear device
US6477497B1 (en) Control device and control method as well as storage medium which stores program which executes operational processing of the control device and the control method
KR20050030098A (en) Mobile telephone having a vital sign measuring capability
US10921911B2 (en) Methods, apparatus and systems for controlling the operation of a smart watch
US4692117A (en) Acoustic energy, real-time spectrum analyzer
ES2109889A2 (en) Menu system for mobile radio telephone
JP3309348B2 (en) equalizer

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued