CA2247955A1 - Flexible cutting tool and methods for its use - Google Patents

Flexible cutting tool and methods for its use Download PDF

Info

Publication number
CA2247955A1
CA2247955A1 CA002247955A CA2247955A CA2247955A1 CA 2247955 A1 CA2247955 A1 CA 2247955A1 CA 002247955 A CA002247955 A CA 002247955A CA 2247955 A CA2247955 A CA 2247955A CA 2247955 A1 CA2247955 A1 CA 2247955A1
Authority
CA
Canada
Prior art keywords
cable
cutting element
distal end
cutting
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002247955A
Other languages
French (fr)
Inventor
Francis C. Peterson
Wesley D. Johnson
Bruce Wayne Stursa
Gregg S. Sutton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orthopaedic Innovations Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2247955A1 publication Critical patent/CA2247955A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1615Drill bits, i.e. rotating tools extending from a handpiece to contact the worked material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1631Special drive shafts, e.g. flexible shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00261Discectomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B2017/320733Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a flexible cutting or scraping element, e.g. with a whip-like distal filament member

Abstract

A cable comprising helically wound superelastic fibers and having a drilling tip provided at its distal end is housed in an elongated holder through which the cable may be advanced, the holder having a distal end for supporting the cable during a drilling operation and through which the distal end of the cable may protrude. The holder includes a cable support shaped to bend the cable through a predetermined angle adjacent its distal end and to support the cable as it is rotated and advanced. A motor is attached to the cable remote from the distal end of the cable to rotate the cable in a direction tending to tighten the cable fibers.

Description

CA 022479~ 1998-08-28 FT F~TRT F CUTTJNG TOC~ ~NI) MFTHODS FOl~ ITS USE
Field of the Invention The invention relates to flexible cutting tools and to surgical drilling and other cutting procedures using such tools.
5 R~ round of the Invention Modern surgical techniques often require holes or channels to be cut into bone, teeth or soft tissue, for various reasons. Holes may be drilled in bone to receive screws, sutures or bone anchors enabling anchorage of implants or re~ft~chm~nt of lig~m~ntq or tendons. Ordinarily, surgical drills can be employed which utilize a motor (often an air 10 motor) and a drill bit of the desired length and ~ m~ter. However, because of the proximity of other tissue or prosthetic materials, it often becomes difficult toa~ iately orient a surgical drill and drill bit so that the desired bore can be formed in tissue. Dental drills are available, of course, but have generally very short bit lengths.
U.S. patent ~,330,468 (Burkhart) proposes a drill mech~ni~m for arthroscopic surgery in which a rotating pin of nitinol is caused to emerge from a gently bent aiming tube, drill through a thicknecs of bone, and then be received in an appropriately positioned receiving tube. The device itself is somewhat bulky. Another device using nitinol pins or probes is shown in U.S. patent 4,926,860 (Stice et al.). Here, a needle 20 or other probe of nitinol may be received in a curved c~nmll~ to deliver the end of the probe to the desired location. The probe is then advanced through the c~nmll~ and exits from the r~nmllz~ end in a straight orientation.
If a nitinol pin, as shown in the previously mentioned U.S. patent 5,330,468, isbent through a sharp angle and rotated at high speed, the pin becomes work hardened at 25 the area of the bend due to its constant flexing during rotation. The superelastic characteristic of the pin in that area is re-lllt~ecl, and the pin can readily break. Nitinol wire drills in which a nitinol pin is rapidly rotated in a sharp bend, hence, have not become commercially successful.

CA 022479~ 1998-08-28 WO 97/31'777 PCT/US97/03211 S~ . y of the Invention We have found that an a~ e flexible cutting instrument can be obtained through the use of an elongated, flexible cutting element having a longih--lin~l axis about which the cutting element may be rotated, the cutting element comprising a cable or 5 bundle of parallel cables each comprising an outer layer of helically wound fibers.
Cutting means is disposed at the distal end of the cutting element to perform a cutting function when the cutting element is rotated. The cables preferably are of metal and most pler.,Lal~ly are of nitinol or other superelastic alloy. Cables of this type can withstand rapid rotation while procee~ling about tight bends, without sllhst~nti~l work 10 hardening. A single helically wound 1 cable can be employed, or a bundle of generally parallel cables can be used to obtain a larger diameter hole.
Because cables are far more flexible than solid pins of the same diameter, it would be expected that the distal free end (that is, the cutting end) of a cable or bundle of cables, being relatively unsupported, would tend to whip around in an uncontrolled 15 fashion when rotated rapidly. That is, a trade-off to using a much more flexible superelastic alloy cable or cable bundle would be expected to be lack of control of its drilling end. We have found that the cutting end of a flexible cutting element that is fo~ned as cable or bundle of cables and that is slidingly supported in a stationary tubular support from which the cutting end may protrude, when used as a drill, produces a bore 20 that remains relatively straight and true as the cutting element is advanced, even though the length of the cutting element that protrudes from the tube is supported only by the tissue being drilled. As long as the stationary tubular support remains in closeproximity to the tissue being drilled, the tissue itself appears to provide suf~lcient support and gn~ nre to the otherwise unsupported cutting end to keep it in a 2~ substantially straight path.
As used herein, "tissue" refers to both soft tissue and to hard tissue such as bones and teeth.

CA 022479~ l998-08-28 Thus, in one embodiment, the invention relates to a cutting hl~.ll ument such as a drill, the instrument comprising an elongated, flexible cutting element having alongi~lflinz~l axis about which the cutting element may be rotated and comprising a cable or bundle of parallel cables. Each cable comprises an outer layer of helically wound 5 fibers. Cutting means are provided at the distal end of the cutting element to perform a cutting function when the cutting element is rotated. A motor is attached to the cutting element remote from its distal end for rotating the cutting element about its longihl-1in~l axis. The ill~LIument includes an elongated holder having an opening for supporting the cutting element and through which the cutting element may be advanced axially, the 10 holder having a distal end for supporting the cutting element during a drilling operation and through which the distal end of the cutting element protrudes. The holder inchl(les a cutting element support shaped to orient the longit~ in~1 axis of the cutting element adjacent its distal end and to m~int~in such orientation as the cutting element is rotated and advanced in a cutting operation. The fibers of the cables are preferably of a 15 superelastic metal such as nitinol.
In one embodiment, the holder includes a cutting element support shaped to bend the cutting e}ement through a predetermined angle adjacent its distal end and to m~int~in that bend as the cutting element is rotated and advanced in a drilling operation. In a preferred embodiment, the helically wound fibers themselves are cut at the distal end so 20 as to themselves form said cuKing means.
When the flexible cutting element is formed of a single helically-wound cable, the cable is preferably so formed as to enable fibers at the distal end of the cable to separate from each other slightly under centrifugal force or axial colllplession or both as the cable is advanced through the holder and rotated. As a result, the ~1i,.mPt~r of the 25 drilled hole is slightly greater than the ~ m~t~or of the cable adjacent but spaced from its distal end. Axial compression of the cable end against the floor of the bore causes the individual fibers of the cable to bow outwardly and thus increase the ~ m~ter of the cable at that point. A similar result is obtained when the flexible cutting element CA 022479~ 1998-08-28 WO 97131~i77 PCT/US97/03211 comprises a plurality of cables arranged parallel to each other in a bundle. Here, the distal ends of the cables may separate from each other slightly under centrifugal force or under axial compression or both as the cable bundle is advanced through the holder and rotated. The f~i~m~ter of tne resulting hole is slightly greater than the diameter of the 5 cable bundle ~lj?cent but spaced from its distal end.
The invention includes a method of drilling straight holes through tissue which comprises providing the drill referred to above, rotating tne flexible, elong~te-l cutting element about its longit~flin~l axis while continuously m~in~zlining the cutting means at least partially within the hole being drilled and advancing the cutting element through 10 the holder, whereby the wall of the hole being drilled serves to support the cutting means so that the latter advances in a ,ub.,~ lly straight path through the tissue.
A particularly ~rer~ d procedure involves a method for f~t~ning a hollow intr~m~-lull~ry rod to a bone, such as the femur, within which the rod is received. Rods of this type may be employed to internally stabilize fractures of long bones such as the 1~ femur, the tibia and the humerus. The method includes the steps of providing a drill including an elongated, flexible length of superelastic alloy bearing cutting means at its distal end and an elongated holder receivable in the hollow intr~m~ ry rod. In this embo~1iment, tne length of superelastic alloy preferably is in the for~n of a cable or cable bundle as described above. The holder has a distal end for supporting the length of 20 superelastic alloy during a drilling operation and an opening through which the distal end of the length of superelastic alloy protrudes. The holder includes a support shaped to bend the length of superelastic alloy through approximately a right angle adjacent its distal end and to mzlint~in the bend during a drilling operation. In this procedure, the holder is positioned in the intr~mPcl~ ry rod, the hole through which the distal end of 25 the superelastic alloy cable length protrudes being aligned with and referencing a ~ ,rolllled hole in the intramedullary rod. The length of superelastic alloy is then rotated in a drilling operation and is advanced radially outwardly from the holder through the aligned holes in the holder and rod, against and through the bone and CA 022479~ 1998-08-28 WO 97/31~;77 PCT/US97/03211 against and through the overlying mll.scul~r tissue and skin while continuously m~intz~ining the cutting means at least partially within the hole being drilled. The point of exit of the drill from the skin is located, and a c~nnnl~ is inserted over the cable to engage the hole through the bone. The c~nm~1~ is stabilized with respect to the bone, the cable is retracted, and a drill is employed to enlarge the hole, the drill extending through the opposed wall of the bone. A screw fastener is inserted through the lateral hole thus drilled in the bone and through the preformed hole in the intr~merl--ll~ry rod to - hold these elements together.
Other surgical uses of the instruments of the invention include dental procedures such as root canal surgery, the cleaning of osteolytic lesions resulting in bone cavities adjacent a prosthesis, the repair of anterior cruciate lig:lm~nt damage, drilling holes in spinal pedicles in pl~aldLion for placing pedicle screws for spinal fusion and the like.
nescription of the l~rawi~
Figure 1 is a broken-away, perspective view of a drill of the invention;
Figure lA is a detailed view of the distal end of the drill of Figure l;
Figure 2 iS a broken-away, schematic view of a cutting tip of a drill of the invention shown forming a bore in bone;
Figure 3 is a schemz2tic, broken away diagram of a leg with a broken femur, the latter being internally stabilized by placement of an intr~me~ ry rod; and Figure 4 is a broken-away, srhem~tic view of a device of the invention as the same is used in connection with the h,Ll~2~f;cl--11:~ry rod shown in Figure 3.
Figure 5 iS a broken away, cross-sectional view of a device similar to that of Figures 1 and 2, suitable for use in connection with the intr~me~ ry rod shown in Figure 3;
Figures 6A and 6B are broken away, cross-sectional views of a portion of the device shown in Figure 5;
Figure 7 is an exploded view, in partial cross-section, of a device for inserting a connector in an intrz2m~ ry rod of the type shown in Figure 3;

CA 022479~ 1998-08-28 WO 97/3lS77 PCT/US97/03Z11 Figure 8 is a broken away, cross-sectional view of a simplified device of the invention showing particular details, and Figure 8A shows a specific cutting end;
Figures 9A, 9B and 9C are broken away, cross-sectional views of an end portion of a device of the invention showing a method of orienting the longitll-lin~l axis of the 5 cutting element;
Figure lOA, Figure lOB and Figure lOC are broken away, cross-sectional view showing a modified embodiment of the invention;
Figure 11 is an end view of a device of the invention of the type shown in Figures lOA, IOB and lOC, illu~ Lillg a modification of the device;
Figure 12 is a side view of a drilling device sirnilar to that of Figures 1 and lA
and suitable for use in connection with boring holes in spinal pedicles;
Figure 13 is a schem~ic view of the device of Figure 12 and showing the preparation of a drill hole in a spinal pedicle for reception of a pedicle screw;
Figure 14 is an enlarged, broken-away, cross-sectional view of a portion of the lS device circled in Figure 12;
Pigure lS is a cross-sectional view taken along line lS - 15 of Figure 14; and Figure 16 is an enlarged, broken-away cross-sectional view of the portion of Figure 13 circled in that figure.
D~t~iled nescrirtion The flexible cutting tool of the invention makes use of fibers, preferably of metal and most preferably of a superelastic metal alloy, in the form of a cable of helically wound fibers or a bundle of such cables arranged parallel to each other. With reference to Figure 1, a flexible cutting tool of the invention, exemplified as a drill, is shown as 10. A flexible, helically wound cable is shown generally at 12, the cable exten-ling through the interior of an elongated tubular support 13 that itself is supported by an elongated tubular holder 14. Support 13 closely receives the cable and supports the cable against undue lateral movement or buckling even when the cable is rotated rapidly or is under torsional or axial load. The inner diameter of the tubular support 13 CA 022479~ 1998-08-28 preferably is no more than twice the ~liz3m~ter of the cable, and in general, the inner rli~m~ter of the tubular support need be omy about 0.001 to 0.005 inches larger than the mt~ter of the cable. At its distal end 16, the tubular support 13 is bent through an angle so that its inner surface 18 serves as a supporting surface to support the cable as it S is oriented in a predetermined direction to exit from the side of the holder 14. In Fig.
1, the cable 12 is oriented at about 90~ to the axis of the cable. Distal end 20 of the cable protrudes from the distal end 22 of the tubular support 13. It will be understood that the cable exemplified in Figure 1 may be replaced with a bundle of parallel cables, of which more will be said below.
A motor 26 is shown in Figure 1 for rotating the cable 12 about its axis. The motor can be any rotating driver, and may take the form of an electric motor or an air motor, the latter being driven by co~ Lessed air entering the motor through supply tube 28. Although the motor may be rotated at whatever speed is desired, speeds of about 50,000 rpm are appl-op,iate. For certain uses, slower speeds are required. Rotational speeds can be varied from a few revolutions per minute up to 150,000 revolutions per minute or more. The motor 26 may be mounted to the proximal end of the cable 12 (or cable bundle, as the case may be~ using commonly available chucking equipment, g techniques, or adhesive bonding. It is contemplated that the cable 12 may run through the motor 26 with the rotating portion of tne motor eng~ging the outer walls of 20 the cable in a manner enabling the rotating cable to be advanced axially with respect to tne motor. Preferably, however, a chllckin~ arrangement is employed in which theproximal end of the cable 12 is received in the chuck of the motor in known fashion, that is, using the chucking m~orh~ni~m that is common to power drills and drill bits.
Witn this ~l~rc~ d embofliment, the motor 26 is fastened to the cable 12 so that axial 25 movement of the motor and cable distally toward the distal end of the holder will cause the end 2û of the cable to advance outwardly of the hole 22 for at least a distance equal to the depth of tne desired hole. In one embodiment, the motor 26 may be mounted to CA 022479~ 1998-08-28 WO 97/31!;77 PCTIUS97/03211 the proximal end 30 of the holder, and the holder itself, rather than being formed from a single tubular member as shown in Figure 1, may be formed of two or more tubularncllllJels that telescope together such that the length of the holder 14 can be lengthened or shortened. In this embodiment, shortening the length of the holder 14 causes the 5 cable 12 to advance distally out of the hole 22. ~he telescoping portions of the handle 14 may, in fact, have mating circumferential threads such that rotation of one portion of the handle with respect to the other through a given angle ~ill result in a predetermined advancement of the distal end 20 of the cable ~u~w~ldly of the hole 22.
The distal end 20 of the flexible, elongated cutting element, depicted as a single 10 cable in Figures 1 through 11, is shown best in Figure 2. The single cable, preferably of nitinol or other superelastic alloy, desirably is formed about a central core wire 32 about which are twisted a plurality of strands as shown in the drawing. Any twisted cable of the type depicted will operate, such as cables having successive layers of oppositely twisted fibers, as long as the outer layer of fibers is twisted in a direction 15 c~ ing the fibers to wrap more tightly as the cable is rotated. Preferably, the cable contain only a single layer of twisted fibers, the twist direction being the same for each fiber. As noted previously, the flexible, elongated cutting guide may comprise aplurality of parallel cables in a bundle, as explained in greater detail below.
From Figure 2, it will be seen that if the cable is rotated in the direction shown 20 by the arrow A, the helically wound strands will tend to tighten upon one another, torque thus being readily ~ 1 from the motor to the distal end 20 of the cable. It will also be understood that if the cable is rotated by the motor 26 in the opposite direction, the cable will tend to untwist and become quite loose. Rotation in the direction of the arrow A in connection with the twist direction shown in Figure 2 thus is 25 important to proper operation of the drill. It should also be understood that in Figure 2, the distal end portion of the tubular support has been omitted to enable the twisted nature of the cable to be better illustrated. In practice, the cable is supported by the tubular support throughout substantially the entire length of the cable except for the CA 022479~ 1998-08-28 WO 97/31S77 ~CT/US971~3211 distal end portion that is received and supported in the tissue being drilled. In a similar fashion, when using a bundle of cables, it is desired that the cables each have the sarne twist direction, and that the bundle be rotated in a cutting operation so as to tighten the fibers in the bundles. That is, if the fibers of each bundle twist counterclockwise toward 5 the distal end of the bundle, then the motor should provide clockwise torque as viewed from the proximal end.
At its distal end, the twisted fibers forming the cable may tend to separate from each other slightly under the substantial centrifugal forces generated by the motor 26 or from axial compression of the fibers against the floor of the hole or both. Figure 2 10 shows the twisted strands sepal~Lillg slightly as the drill is used to form a bore 34 in a bone mass B. Note that the di~mPtf~r of the bore 34 is somewhat larger than the diameter of the cable 12 spaced away from the end 20 of the cable. Here, the cable strands 33 have separated and have spread ouL~ldly slightly so that the bore 34 is slightly larger than the cable ~ mPter. Some clearance thus is provided between the 15 inner surface of the bore and the cable itself, and this is believed to help in preventing binding of the cable within the bore and to permit debris from the drilling operation to escape. As the rotational speed of the cable is increased, the separation of strands at the distal end of the cable increases under centrifugal force; hence, one may control the meter of the bore through adjustment in rotational speed of the cable. The same 20 concept is applicable to the use of cable bundles: rotation of a cable bundle about the longitu~lin~l axis of the bundle produces centrifugal force sufficient to slightly separate the individual cables of the bundle and thus to produce a bore that is slightly larger than the cable bundle spaced from its distal end.
At the distal cutting edge of the twisted fibers, it should be noted that the fibers 25 are m~int~ined within the previous fli:~m~ter of the hole and are supported by that mPter as they cut. In this manner, the hole or bore 34 itself serves as a support or guide that ~ s the distal end of the cable or cable bundle from moving in anuncontrolled manner and which causes the bore 34 to remain straight. Soft tissue, such CA 022479~ 1998-08-28 WO 97131~;77 PCTIUS97/03211 as muscle, provides similar support.
The support 13 in the embodiment shown in Figure 1 is tubular with a central lumen 15 housing the cable and being only slightly larger than the cable 12, as discussed above, so as to permit the cable to rotate substantially freely in the holder while S ~ vt~llLillg the cable as it rotates from kinking or doubling back on itself. The distal end of the holder of Figure 1 is itself oriented at predetermined angle, exemplified as an angle of 90 degrees, the surface of the lumen at the bend furnishing the support that serves to m~int~in the 90 degree bend of the cable as the latter rotates and advances through the holder. Various other configurations supporting the cable at its bend can be 10 employed. For example, the holder may simply be provided with an orifice at or adjacent its distal end through which the cable may be advanced, and the inner surface of the holder may be smoothly curved to support and ~ .li.ii. the bend in the cable.
The holder may include an elongated groove, formed in an insert in the holder ifdesired, that houses and supports the cable for at least a portion of its length. If desired, 15 the lumen 15 may be provided with constrictions spaced along its length, the constrictions providing supporting surfaces positioned to contact and support the cable at one or more points along its length.
In the drawings, the tubular support 13 and holder 14 are shown as defining a mt?t~h~nir~lly separate device which can be received within a hollow intr~mP~nll~ry rod 20 or the like. In an alternative embodiment, an intr~mP~l-ll~ry rod or the like may itself define the ~u~po.l. For example, generally solid intr~me~lllll~ry rods are known in the art. Such an otherwise solid rod can be provided with an internal passage which is sized and shaped much as is the support 13 described above. In such an embodirnent (not illustrated in the drawings), the intr~m~rlnll~ry rod performs the functions of the holder 25 14 of the invention and the passage in the rod performs substantially the same function as the support detailed above.
Any suitable cutting tip can be used at the end of the cable or cable bundle. Inone emboflim~nt, one or more fibers of the cable or cable bundle may be formed as a CA 022479~ l998-08-28 WO 97/31577 PCT/US97tO3211 loop as shown at 190 in Figure 8A. When the elongated cutting element is rotated, the loop expands to thus form a bore larger than the (li~m~ter of the cable or cable bundle adJacent the loop. Also, if a loop cutting end is used, the loop may be used to pull a suture through the formed bore when the cable is withdrawn from the bore, thus 5 simplifying surgical procedures involving f~tPning lig~mPnts or tendons or cartilage to bone.
As noted above, the end of the cable or cable bundle can simply be cut straight across perpendicular to its length, or may be cut so as to present cone-shaped, rounded, diagonal or oblique shapes or other configurations. The resulting sharp ends of the 10 individual fibers thus cooperate to form the drilling tip. ~f desired, the fibers at the distal end of the cable may be welded together to prevent them from sepa~ g under centrifugal force. Also, a s~aldle drill bit similar to drill bits currently in use for surgical procedures can be used, the drill bit being welded, crimped, glued or otherwise fastened to the distal end of the cable. In one embodiment, the drill bit may have 15 cutting edges at its distal end but may include an axial bore formed in its proximal end sized to receive the distal end of the cable which can then be welded into the drill bit bore. Of course, whenever a separate drill bit is ~tt~rhPd to the end of a cable, there is some risk that the drill bit may come loose during a drilling operation. As a result, it is ~lef~lled that the drill bit be formed by the ends of the strands forming the cable or 20 cable bundle, as shown in Figure 2.
The use of a highly flexible cable of the type described above in a drilling procedure also offers the advantage that the cable will follow, in a drilling operation, the softer part of material being cut. For example, root canal ~ y commonly requires~ that a hole be drilled through the root of a tooth following the nerve canal. The nerve 25 canal of a tooth is slightly curved. Dental drills currently in use are colll~araLively rigid and carmot, accordingly, easily follow the deviations from strzl;~htn~s~e that are common to root canals. However, the cutting tool of the present invention, which makes use of a very flexible cable or bundle of cables, is capable of being inserted into the root canal of CA 022479~ 1998-08-28 a tooth and, by being gently advanced, can pe. ~O~ the desired cleaning and nerve removal by following the normal canal curvature, guided by hard enamel surrounding the canal. Moreover, since the depth of the hole that is drilled is dependent upon the t~nre through which the cable or cable bundle is advanced tnrough the opening in the S handle, the end of the handle can be rested upon the surface of the tooth being drilled, and the depth of the bore in the tooth can be controlled with great accuracy. Further, since the fibers at the end of the cutting element can be caused to flare outwardly (see Figure 2), the flared fibers can be employed in a procedure to cut, dislodge and displace material beyond the ends of the roots, a procedure that is difficult when using present 10 day dental in~L~ lellL~..
The ability of the flexible cutting element to follow the normal curvature of a curved bone, guided by contact with cortical bone near the bone surface, can be adapted to a variety of surgical procedures. In procedures involving posterior fusion of the spine, pedicle screws combined with internal rods and clamps are an option in providing 15 stability to the spine. Placement of pedicle screws presents a .~ip;nifir~nt hazard resulting from drilling screw holes tnrough tne wall of the pedicle, thereby risking damage to the spinal cord or nerve bundles extending from the spinal cord and resultant temporary or p~ lallellL paralysis. Pedicle screws are inserted into the medullary canal of the pedicle from a posterior surgical approach. The posterior lateral aspect of the pedicle may be 20 exposed for direct vi~n~li7~ti~n.
The current invention allows for a percutaneous approach to the pedicle under direct vis-l~li7zlti-ln reslllting in reduced exposure and trauma to soft tissues. The poste~ior aspect of the spine is exposed in a standard surgical approach. The pedicle drill is positioned over the pedicle, lateral to the spinous process, and the rotating cable 25 bundle is adlvanced into the mr~lllll~ry canal of the pedicle. The medullary canal of the pedicle is made up of cancellous bone which is signi~lr~ntly softer than the cortical bone m~king up the outer surface of the vertebra and pedicle. The flexible nature of the cable group enables the cable group to follow the path of the softer cancellous bone. The CA 022479~ 1998-08-28 cable group will follow this path even if the ~ulgeon angles the cable guide tube of the pedicle drill away from the axis of the m~ ry canal of the pedicle, whereas a standard twist drill will create a linear hole in the direction set by the surgeon.
The present invention provides, in a prer~,led embodiment, a method enabling 5 accurate intramedullary rod placement and securement to a bone. With reference to Figure 3, the femur F of a patient is schem~ticzllly shown as having several fractures, the bone segments being internally stabilized by means of an inserted intr~mt?-lllll~ry rod 40 having a hollow interior 42 and a series of ~lcÇ Jlllled holes 44, 46 formed through its walls. The purpose of these holes is to receive bone screws that are driven from the 10 exterior of the leg inwardly through the bone wall to secure the bone to the rod.
Proper location of the holes in the intramedullary rod has been a problem. One method involves using a fluoroscope to locate the holes in the rod, and then place ~timen pins or the like pel~;u~lleously through the femur and the corresponding holes in the rod, using the pins as guides in the subsequent placement of screws. An inherent 15 hazard of this procedure is exposure of the patient and m~flic zll staff to gamma radiation.
External LargeLillg of the rod holes without use of fluoroscopy but using instead knowledge of the hole locations with reference to the proximal (exposed) end of the rod is difficult because the rod often must bend and twist as it is impacted into the intr~m~ ry canal of the bone. ~crews that are not properly placed need to be 20 removed and replaced, leaving an additional hole in the bone and requiring additional operating time.
According to one embodiment of the invention, this problem is approached from a different direction. Once the hollow intr~mf~-lnll,.ry rod has been impacte-l into place in the bone, as shown in Figure 4, a drill 50 of the invention having an a~plopliately 25 slender shape is inserted into the rod from its proximal end and is advanced until the distal end 52 of the cable, bent through 90 degrees as shown in the drawing, can be extended through a hole 44 in the rod. The motor is activated and the cable is advanced axially to cause a hole to be drilled radially outwardly through the femur. The drilling CA 022479~ 1998-08-28 operation can be continued through soft tissue exterior to the femur and can, if desired, be brought outwardly of the skin, all as is described in greater detail below inconnection with Figures 5 - 7.
The invention has been described above primarily with respect to the superelastic 5 alloy nitinol, but other superelastic materials may also be used, as well as such other materials and metals such as st~inless steel. Nitinol is a superelastic (som~tim~?s referred to as pseudoelastic) material, that is, a material that can be processed or treated to exhibit superelasticity at a desired temperature such as body temperature. A number of shape memory alloys are known to exhibit the superelastic/pseudoelastic recovery10 characteristic, and these are generally characterized by their ability, at room or body le.l~c~Lu-e, to be deformed from an ~u~LeniLic crystal structure to a stressed-infll1ced martensitic structure, returning to the austenitic state when the stress is removed. The alternate crystal structures give the alloy superelastic or pseudoelastic properties.
A modified device of the invention is shown in Figures S and 6 as 60. A handle 15 grip 62 is provided with a bore 64 within which is telescopically received a tubular housing 66. An elastically compressible helical spring 68 is positioned between opposing shoulders of the handle grip and tubular housing as shown in the drawing.
Finger grip 70 is provided to enable the device to be conveniently grasped in the hand such that when the ~mger grip 70 and handle grip 62 are squeezed towards one another, 20 the tubular housing 66 extends more deeply into the bore 64 to cause a cable to protrude from the instrument. At its proximal end, the tubular housing has an çxp~n~lçd portion 74 which houses the impeller 76 of a simple air motor which is driven from an air source ~not shown) and which is capable of developing substantial rotational speeds.
Speeds on the order of 40,000 - 50,000 RPM are a~pl~liate for many drilling 25 functions, although speeds of rotation can be varied as desired.
Ext~?n-lin~ within the bore of the tubular housing 66 is an elongated tubular support 78 having a curved distal end 80. F.xten~in~ through the tubular support is a cable 82 of the type described above sheathed and clamped in a drive tube 79, the CA 022479~ 1998-08-28 proximal end of which is axially received in and clamped in the impeller 76 as shown in the drawing. The distal end of the cable extends beyond the distal end of the drive tube and through the bend 80 of the tubular support. It will be understood that as the finger hole 70 and handle grip 62 are squeezed together, the drive tube 79 is telescopically S received distally in the tubular support, causing the cable 82 to protrude further from the curved section 80. Preferably, however, the drive tube 79 is of larger inner (li~mPt~r and telescopically receives within it the tubular support 78. In this mannert the tubular support 78 more closely receives and supports the cable 82 The handle grip 62, and its distal end, includes an elongated tube 84 termin~ting 10 in opposite, outwardly extending bosses 86, 88, the bosses being so shaped as to enter the holes 44 formed in an intr~mf (lnTl~ry rod of the type shown in Figures 3 and 4.
Boss 88 has a hole formed through it as shown best in Figure 6B to receive the curved end 80 of the tubular support 78. The bosses 86 are formed on distally extending, generally parallel arms having up~t~n-ling pins 90 formed on them. A c~mming block 92 is provided with angled slots 94 within which the pins 90 are received, the slots being configured such that when the c~mming block is moved distally, the pins 90 and hence the bosses 86, 88 are moved togethe} to enable the device to be removed from an intr~m~ ry rod. On the other hand, when the c~mming block 92 is moved in the proximal direction, the bosses are forced away from each other and into opposing holes 20 formed in the intr~m~ ry rod to anchor the end of the tool applu~liately in the rod.
A wire 91 extends from the c~.l..lli.,g block to a finger grip 72 slidably mounted at 93 to the handle grip. As the finger grip 72 is moved toward the handle grip 70, the bosses 86, 88 are caused to separate to the position shown in Figure 5. Movement of the finger grip 72 in the opposite direction causes the bosses to retract toward each other.
Referring again to Figure S, the handle grip 62 includes an oblique channel 96 for fluid delivery for lubrication, irrigation or cooling, the channel having ana~l,ropliate external fitting such as a Luer fitting 98.

CA 022479~ 1998-08-28 With lere,cnce, then, to the procedure described above in connection with Figures 3 and 4, it will be understood that the tube 84 of the handle grip 62 issufficiently long as to extend the length of an intr~mf~ ry rod. The tube 84, with the bosses held in their retracted position by the cam block 92, is inserted into the S intramedullary rod until the bosses 86, 88 are ~ ent to the holes 44 in the rod Once the bosses have entered the holes (as can readily be sensed by the surgeon), the cam block 92 is moved proximally to lock the bosses in the opposing holes in the illLl~ cc~ ry rod. The air motor is energized, and the cable is advanced in a drilling operation as has been described earlier.
Figure 7 depicts apparatus which can be used to place a bone screw or other connector through the bone and intr~m~ ry rod shown in Figure 3. As noted above,the cable 82, after drilling through the wall of the femur, will continue to drill in a sub~"~ lly straight path through soft tissues of the thigh and will emerge from the skin. Shown in Figure 7 is a hollow introducer rod 100 within which is received a cable clamp, the latter comprising a rod 102 received within a tubular housing 104. At its bottom end, the tubular housing 104 includes an internal rubber seal 108 to receive the end of the cable and to clarnp onto the cable as the rod 102 is moved axially within the tube 104. The end of the cable protruding from the patient's skin is ca~lulcd within the rubber seal 108 so that the cable rnay be firrnly supported. The introducer rod 100 is 2{) then slid axially downwardly along the cable clamp and the cable while holding the cable in tension until the conical end 106 of the introducer rod is received in the rim of the hole in the femur through which the cable protrudes. The introducer rod is held firrnly against the rim of the hole, and the cable clamp is then removed. The cable itself can be withdrawn from within the introducer rod, and the entire ~)paldLUS shown in 25 Figure 5 can be set aside. Over the introducer rod is then advanced a guide tube 110 carrying within it a drill sleeve 109. The guide tube 110 has a convenient handle 112 to aid the surgeon in supporting the instrument. At its distal end, the drill sleeve 108 has bone seating spikes 114 which are driven into the surface of the femur around the hole CA 022479~ l998-08-28 WO 97/31~;77 PCT/US97/03211 that had been drilled, following which the introducer rod is removed. At this point, a long surgical drill is inserted through the hollow center of the drill sleeve, and a hole of greater diameter is drilled through the femur, the drill bit passing through theink~m~lnll~ry rod and thence through the opposite side of the femur. The drill and S supporting drill sleeve are t_en removed, and a fixation screw (not shown) can be advanced through the guide tube 110 and fastened through the holes drilled in the femur and through the prer~ ed holes in the intr~mP~ ry rod to firmly attach together the femur and the intr~m~ ry rod.
Figure 8 is a broken away, largely sch~m~tic view showing details of the distal end of a device of the invention. A length of cable as described above is shown at 120, the cable and drive tube 125 (described below) slidingly being received in a tubular support 122. The tubular support is in turn axially coll~Llahled within a tubular housing 124. As shown, the cable is .~he~thPrl in a drive tube 125 which extends from a point 127 spaced from the distal end of the cable proximally into mounting engagement with the impeller. The drive tube is secured to the cable by crimping at either or both ends, by the use of an adhesive, or by other similar means. If the tubular support is received within the drive tube, then the drive tube and elongated cutting element are attached at their proximal ends. As the air motor is moved distally, that is, to the left in Figure 8 the cable 120 is advanced outwardly of the tubular support 122.
Note that the distal end of the tubular housing 124 includes a supporting element 130 having a proxirnal portion 132 that is received within the end of the tubular housing 124 and a nose 134 extending approximately at right angles to the housing 124.
Supporting element 130 is formed with a curved bore within which is seated the distal end 136 of the tubular support 122, the supporting element 130 holding the tubular ~iU~olL 122 and distal end 136 rigidly so as to properly orient the cable 120 as it emerges from the tubular support. The nose 134 may be made as narrow and tapered as desired to enable it to fit, for example, accurately against the surface of a tooth above the root, the instrument being al~r~ Liale for use now in pelfu~ g a root canal CA 022479~ 1998-08-28 surgical procedure.
The axis of the cable or cable bundle may be oriented adjacent to its distal endthrough any predeL~,l,~i,led angle ranging from 0 degrees to 180 degrees. Moreover, the elongated tubular support holder through which the cable is passed and trained about the S predetermined angle may itself be adjusted before or during use. Figures 9A, 9B and 9C show a cable 140 carried by tubular support 142 within an el~tir~lly bendabletubular housing 144, the latter, if desired, being made from nitinol or other superelastic alloy. The tubular support 142 is provided with a series of spaced notches 146 cut into one side wall adjacent the distal end of the support. A control wire 148 extends within the tubular housing 144 adjacent the tubular support 142, the wire being ~ çh~-l to the tubular support at 150 on the same side of the tubular support as are forrned the notches 146. As will now be noted from Figures 9A, 9B and 9C, as the wire 148 is pulled proximally, the walls of the notches 146 tend to pinch together and permit the tubular support 142 to bend. This, in turn, also tends to bend the distal end of the tubular 15 housing 144, all as illustrated in the drawing.
Figures lOA, 10B and lOC illustrate another way in which the cable or cable bundle may be oriented at a predetermined angle at the distal end of a device of the invention. In Figures lOA, lOB and IOC, an elongated tubular support holder 160 is shown emerging from a tubular housing 162. The tubular support may be bent as 20 desired as shown in lOB, and the cable 164, which is slidably received in the tubular support 160, can then be extended from the end of the tubular support. The tu~ular support 160 may, if desired, be bent m~nll~lly by the surgeon so as to enable the distal end 166 of the support to be a~plv~liately placed adjacent a bone or other tissue to bc drilled. Alternatively, the tubular support may be of superelastic alloy having the ,rc ,llled shape shown in Figure lOC, the flexible nature of the support 160 enabling it to be housed in a generally straight configuration within the tubular housing 162 as shown in Figure lOA and to protrude in a curved fashion when advanced distally within the housing 162, the curved nature of the support 160 enabIing it to be steered as CA 022479~ 1998-08-28 desired.
As will be appreciated from the foregoing description, the ~,ald~uses of the invention may be employed for a variety of purposes. One application involves anterior cruciate ligament reconstruction. In this procedure, a ligament graft, either a separate graft or a section of the patellar ligament, is passed through a hole ~rcl)aled in the tibial plateau. Proper placement of the exit site of the hole in the tibial plateau is critical to long term functioning of the graft and of the knee. If the hole is placed too far anteriorly, the graft will impinge in the femoral notch, resulting in early failure. If the hole is placed too far posteriorly, the graft will not provide the needed stability to the knee.
Using conventional techniques, the distal hole in the tibia to accept the graft is drilled from an exterior anteriodistal approach. With the present invention, however, a surgeon is able to start the drilling process from within the joint space, directly laLg~Ling the desired bore location with the drill. The cable is advanced distally and emerges from the tibial anterior cortex distal to the joint. A c~nmll~tPd drill is then advanced over the cable and into the joint space, exiting at the ~lo~liat~ point on the tibial plateau. The same techni~ may be used to p~ are the femoral drill hole from the intracondylar notch. Thus, by starting the drilling operation from inside the joint space, accurate location of the bore is made possible.
Osteolysis, the formation of a lesion in bone around an implant, may lead to substantial damage to the bone. Osteolytic lesions are commonly progressive, leading to loose and painful implants, fracture of supporting bones, or failure of the implant.
Revision surgery is often the only available option to treat such lesions. However, the flexibility of operation that is afforded by cutting instruments of the invention may enable lesions to be cleaned and filled without extensive surgery. Once a portal is drilled through the cortical bone surrounding the lesion, a cutting hl~Llulllent of the type shown in Figures 10A, 10B and 10C may be advanced into the lesion cavity. As thecable is advanced into the lesion, it may be carefully controlled so as to drill away small CA 022479~ l99X-08-28 WO 97/31~i77 PCT/US97/03211 portions of the commonly much softer lesion material. However, if a substantial length of cable is pçrmi~te-l to protrude from the el~-n~ted cable holder tubular support, the end of the cable may be permitted to randomly tumble about the lesion cavity, selectively cleaning away the soft lesion material.
Referring now to Figure 11, a cutting instrument of the invention, as typified in ~igures 10A, 10B and 10C, can be equipped with various other elongated hl~Llulllents for pel rolll~. .g ~ifrc~ functions . Figure 11 shows the end of an instrument of the invention. Here7 an outer tubular housing is shown at 170, the housing carrying within it a cable 172 and tubular cable support 174. Also carried within the housing 170 may be an optical fiber bundle 176, and small tubes 178, 180 which may be employed to flush the cutting site with water or other cleaning liquid. This construction lends itself to the cle~n.cing of osteolytic lesions as described above. The optical fiber bundle 176 permits the position of the cable to be continuously vi~ li7P(I as cle~ning of the cavity occurs, and the tubes 178, 180 may be employed to flush away the liberated lesion lllatelial. Particularly when the end of the cable is perrnitted to move randornly, the strands at the end of the cable may be unwound slightly to permit the strands to open up, or the wires of which serve to cut away the lesion material. Once the lesion is cleaned out, the lesion cavity may be filled with bone cement or with bone graftmaterial. The use of bone graft material supports lel~ a~ion of the bone in the lesion cavity, whereas bone cement would inhibit debris from infilkating the space and triggering another osteolytic lesion. In connection with the osteolysis procedure described above, since the end of the cable may be pe~ d to whip about randomly in the bony cavity that is being cleaned, the speed of rotation should, of course, be far less thatl the speed of rotation when the i~ lent is being used as a drill.
Although the invention has been described prirnarily in connection with the use of a single cable as the elongated fiexible cutting element, the latter element may also take the form of a bundle of cables arranged parallel and contiguous to each other. In general, a single cable cutting element is ~3lef~ d for use in forming a hole through CA 022479~ 1998-08-28 soft tissue, whereas a cable bundle is prefelled for forming a hole in hard tissue such as bone or teeth.
A cutting element formed of a bundle of cables is de~i~n~ted as 200 in Figures 12 - 16. One arrangement of the cables in a bundle is shown in Figure 15, in which six cables 202 surround a central cable 204. It will be understood that the number of cables will depend upon their individual rli~m~ters and the diameter of the desired bundle. A
cable bundle generally will not employ fewer than 3 nor more than about 17. A bundle of seven cables, arranged with six cables ~ull~unding a central seventh cable, each cable comprising six fibers ~u~ unding a central seventh fiber, has given good results. Each cable consists of a plurality of fibers, that is, metal wires in the ~ref~ d embodiment, twisted in a helical fashion as described above. A bundle of seven cables, arranged with six cables ~ulloullding a central seventh cable, with each cable comprising six fibers surrounding a central seventh fiber, all as shown in Figure 15, has given good results.
The cables generally will fit next to each other in a manner dictated by the number of cables, the twist i~all~d to the ~Ibers in each cable, the applied torque, the applied thrust, the number of fibers in each cable, etc.
Since the individual cables of a cable bundle are flexible, they will tend to twist about one another in rope-like fashion as shown best in Figures 14 and 16 when torque is applied by a motor, and in fact the bundle of cables can be supplied in this twisted configuration so that this configuration is m~intslined when no torque load is applied.
Preferably, however, the individual cables of a cable bundle, at rest, are generally straight and exhibit no significant twist around each other. In this manner, the cable bundle may be rotated in either direction, and the applied torque will irnpose a twisted configuration as exemplified in Figures 14 and 16 upon the bundle. This configuration causes the cables to tighten upon each other under a torque load so as to readily transmit torque from the motor to the cutting element.
Figures 12-16 depict the use of an hlsll~ l of the invention in connection with a surgical procedure involving the boring of holes for the placement of pedicle screws in -CA 022479~ l998-08-28 WO 97/31577 PCT/lJS97/03211 vertebrae. The h~L~ ent is depicted in Figure 12 as 210 and comprises an air motor 212 driven by a source of compressed air ~not shown) and housed in a housing 213, the air motor being attached to and driving the cable bundle 200 in the manner described above in connection with Figure 1. The cable bundle extends through a tube 214 carried by the air motor housing, the latter tube being telescopically movable within an outer tube 216 which has a distal guide tube portion 218 of reduced diameter and through which the cable bundle slidably travels. Guide tube 218 ~ llillaL~s distally in a guide bushing 220 that encircles the cable bundle so as to orient and direct it in a given direction. Under centrifugal force, the cable bundle will expand in ~ mf~tt?r into contact with the bushing 220, and the clearance, at rest, between the bushing and the cable bundle may be controlled to vary the ~ m~ter of the hole to be drilled. Guide tube 218 can be bent, as noted above in connection with Figure 1, or may be straight as shown in Figures 12-16, the cable bundle issuing from the tube 218 along the longihl-lin~l axis 219 of the cable bundle as the tube 214 iS telescopically received within the outer tube 216. Finger grips 222 may be provided on the outer surface of the outer tube 216 to facilitate easy manipulation of the instrument. During a ~lerelled drilling operation, the outer tube 216 iS ~ stationary with the guide bushing 220 adjacent to or touching the surface of the bone in which a hole is to be drilled. The cable bundle is rapidly rotated by the air motor 212, and the tube 214 and the cable bundle are advanced distally through the outer tube 216 and the guide tube 218, the cable bundle issuing distally from the end of tube 218.
Figure 13 illustrates how a bore can be drilled in a vertebra "V" to receive a pedicle screw. The body of the vertebra is shown at 230 and has an outer layer of cortical bone 232 surrounding an inner cancellous - that is, spongy - bone mass 234.
The vertebral foramen is shown at 236, and the pedicle at 238. The tip of the guide tube 218 is placed against the pedicle, and the cable bundle 220, being rotated rapidly by the air motor, penetrates through the cortical bone of the pedicle and enters the cancellous area 234. The spinning cable bundle 200 then passes through a canal of CA 022479~ l998-08-28 cancellous bone bounded by cortical bone. This canal is made up of softer cancellous bone, and the flexible nature of the cable bundle enables the bundle to follow the path of the softer cancellous bone. This path will be followed even if the surgeon errs by ~ngling the cable guide tube 218 slightly away from the desired axis of the pedicle S m~ ry canal.
The bore that is formed by the advancing cable bundle 200 may be slightly largerthan the diameter of the cable bundle spaced from its distal end. This is shown in Figure 16 in which the individual cables 202 at their ends 242 may expand slightly under centrifugal force or due to bottoming out of the cable ends against the floor of the 10 hole being drilled, or both. As a result, the ~ mt?ter of the bore hole 244 may be slightly larger than the diameter of the cable bundle 200 spaced proximally from the end 242 to provide clearance for debris to escape from the hole. As mentioned above in c~ nn~ction with single cable cutting elements, the tii~ml~ter of the bore 244 may thus be controlled by adjusting a number of variables incl~-lin~ the rotational speed of the 15 bundle, the axial force hlll~alied to the bundle end in a drilling operation, the flexibility, number and ~ m~ter of the individual cables, the clearance between the bushing and the cable bundle, etc.
While a ~re~led embodiment of the present invention has been described, it should be understood that various changes, adaptations and modifications may be made 20 without departing from the spirit of the invention and the scope of the appended claims.

Claims (25)

Claims
1. A cutting tool comprising an elongated, flexible cutting element having a longitudinal axis about which the cutting element may be rotated and comprising a cable or bundle of parallel cables, each cable comprising an outer layer of helically wound fibers, and cutting means disposed at the distal end of the cutting element to perform a cutting function when the cutting element is rotated, a motor attached to said cutting element remote from its distal end for rotatingthe cutting element about its longitudinal axis, and an elongated holder having an opening for supporting the cutting element and through which the cutting element may be advanced axially, the holder having a distal end for supporting the cutting element during a drilling operation and through which the distal end of the cutting element protrudes, the holder including a cutting element support shaped to orient the longitudinal axis of the cutting element adjacent its distal end and to maintain such orientation as the cutting element is rotated and advanced in a cutting operation.
2. The cutting tool of claim 1 wherein said cables are made of superelastic alloy fibers.
3. The cutting tool of claim 1 wherein the cutting element comprises a single cable and wherein the fibers are helically wound in a clockwise or counterclockwise direction toward said distal end and wherein said motor rotates the cable in the other direction.
4. The cutting tool of claim 1 wherein said fibers are formed at the distal end of the cutting element so as to themselves form said cutting means.
5. The cutting tool of claim 3 wherein one or more of said fibers define a loop adjacent the distal end of the cable, the loop tending to enlarge under centrifugal force and axial compression.
6. The cutting tool of claim 3 wherein the distal end of the cable is woven to define an open basket configuration.

BLANK PAGE
7. The cutting tool of claim 4 wherein said fibers are cut across their widths at an angle perpendicular to the longitudinal axis of the cutting element.
8. The cutting tool of claim 3 wherein said cable is so formed as to enable fibers adjacent the distal end of the cable to separate from each other slightly, whereby, in a drilling operation, the diameter of the hole that is drilled is slightly larger than the diameter of the cable adjacent but spaced from its distal end.
9. The invention of claim 8 wherein the cable and motor are selected so that fibers at the distal end of the cable are enabled to separate from each other under centrifugal force as the motor rotates the cable.
10. The invention of claim 8 wherein the cable is so formed as to enable the fibers adjacent the distal end of the cable to bow outwardly as the cable is axially compressed against a floor of a bore.
11. The cutting tool of claim 1 wherein said elongated holder includes a supporting surface positioned to contact and support said cable at one or more points along its length.
12. The cutting tool of claim 11 wherein said elongated holder has a hollow interior with interior walls thereof forming said supporting surface.
13. The cutting tool of claim 11 wherein said elongated holder comprises a tubular support housing and supporting said cable throughout substantially its entire length.
14. The cutting tool of claim 1 including a separate drill bit secured to the distal end of the cable.
15. The cutting tool of claim 4 wherein said flexible cutting element comprises a bundle of cables so formed as to enable individual cables adjacent the distal end of the cutting element to separate from each other slightly, whereby, in a drilling operation, the diameter of the hole that is drilled is slightly larger than the diameter of the cable bundle adjacent but spaced from its distal end.
16. The cutting tool of claim 15 wherein the flexible cutting element and motor are selected so that cables at the distal end of the cutting element are enabled to separate from each other under centrifugal force as the motor rotates the cutting element.
17. The cutting tool of claim 15 wherein the cutting element is so formed as to enable cables adjacent their distal ends to bow outwardly as the cable bundle is axially compressed against a floor of a bore.
18. The cutting tool of claim 1 including a drive tube gripping said cutting element and rotationally driven by said motor, said drive tube being telescopically moveable with respect to said elongated holder so that movement of the drive tube distally with respect to the elongated holder causes said cutting element to protrude from the cutting element support.
19. Method for drilling a hole through animal tissue comprising providing a drill including an elongated, flexible cutting element having a longitudinal axis about which the cutting element may be rotated and comprising a cable or bundle of parallel cables, each cable comprising an outer layer of helically wound fibers, cutting means disposed at the distal end of the cutting element to perform a cutting function when the cutting element is rotated about its longitudinal axis, and an elongated holder having an opening through which the cutting element may be advanced axially, the holder having a distal end for supporting the cutting element during a drilling operation and through which the distal end of the cutting element protrudes, the holder including a cutting element support shaped to orient the longitudinal axis of the cutting element adjacent its distal end and to maintain such orientation as the cutting element is rotated and advanced distally, rotating said cutting element about its longitudinal axis while continuously maintaining the cutting means at least partially within the hole being drilled, whereby the wall of the hole being drilled serves to support the cutting means so that the latter advances through the tissue.
20. The method of claim 19 wherein the tissue is bone.
21. the method of claim 19 wherein the tissue is soft tissue.
22. The method of claim 20 wherein said fibers are formed at the distal end of the cutting element so as to themselves form said cutting means, and wherein said cutting element is rotated so that fibers at the distal end of the cutting element separate from each other so as to drill a hole in said bone of a diameter larger than the diameter of the cutting element adjacent but spaced from its distal end.
23. In a surgical procedure, a method for fastening an intramedullary rod to the bone within which the rod is received, comprising providing a drill including an elongated, flexible cutting element having a longitudinal axis about which the cutting element may be rotated and comprising a cable or bundle of parallel cables, each cable comprising an outer layer of helically wound fibers, and cutting means disposed at the distal end of the cutting element to perform a cutting function when the cutting element is rotated, a motor attached to said cutting element remote from its distal end for rotatingthe cutting element about its longitudinal axis, and an elongated holder receivable in the intramedullary rod, the holder having a distal end for supporting the cutting element during a drilling operation and having an opening through which the distal end of the cutting element protrudes, the holder including a cutting element support shaped to orient the cutting element through substantially a right angle adjacent its distal end and to maintain such orientation as the cutting element is rotated and advanced distally, positioning the holder in the intramedullary rod and aligning the hole in the holder with a preformed hole in the rod, advancing said cutting means distally through the aligned holes in the holder and rod and against and through said bone while rotating said cutting element and continuously maintaining the cutting means at least partially withinthe hole being drilled, locating the point of exit of the drill from the bone, and inserting a screw fastener inwardly through the bone and intramedullary rod.
24 The method of claim 23 including the step of advancing said cutting element through soft tissues overlying said bone and through the skin.
25. The method of claim 23 wherein said fibers are formed at the distal end of the cutting element so as to themselves form said cutting means, and wherein said cutting element is rotated so that fibers at the distal end of the cutting element separate from each other so as to drill a hole in said bone of a diameter larger than the diameter of the cutting element adjacent but spaced from its distal end.
CA002247955A 1996-03-01 1997-02-28 Flexible cutting tool and methods for its use Abandoned CA2247955A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/609,363(CIP) 1996-03-01
US08/609,363 US5695513A (en) 1996-03-01 1996-03-01 Flexible cutting tool and methods for its use

Publications (1)

Publication Number Publication Date
CA2247955A1 true CA2247955A1 (en) 1997-09-04

Family

ID=24440485

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002247955A Abandoned CA2247955A1 (en) 1996-03-01 1997-02-28 Flexible cutting tool and methods for its use

Country Status (7)

Country Link
US (2) US5695513A (en)
EP (1) EP0886492A1 (en)
JP (1) JP2000505665A (en)
CN (1) CN1215317A (en)
AU (1) AU735363B2 (en)
CA (1) CA2247955A1 (en)
WO (1) WO1997031577A1 (en)

Families Citing this family (242)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695513A (en) * 1996-03-01 1997-12-09 Metagen, Llc Flexible cutting tool and methods for its use
US6215073B1 (en) * 1997-05-02 2001-04-10 General Science And Technology Corp Multifilament nickel-titanium alloy drawn superelastic wire
WO1999012485A1 (en) * 1997-09-05 1999-03-18 The Board Of Regents, The University Of Texas System Creating holes in bone via the medullary cavity
DE19744856B4 (en) * 1997-10-10 2006-07-06 POLYDIAGNOST Entwicklungs-, Produktions-, Vertriebs- und Servicegesellschaft für medizinelektronische Diagnostik- und Therapiegeräte mbH Device for microprobe surgery
US6824550B1 (en) 2000-04-06 2004-11-30 Norbon Medical, Inc. Guidewire for crossing occlusions or stenosis
US20060074442A1 (en) * 2000-04-06 2006-04-06 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses
AU3093999A (en) * 1998-03-17 1999-10-11 General Science & Technology Corporation Multifilament nickel-titanium alloy drawn superelastic wire
US6440138B1 (en) * 1998-04-06 2002-08-27 Kyphon Inc. Structures and methods for creating cavities in interior body regions
US6363938B2 (en) 1998-12-22 2002-04-02 Angiotrax, Inc. Methods and apparatus for perfusing tissue and/or stimulating revascularization and tissue growth
EP1191889B1 (en) * 1999-05-07 2011-07-13 University Of Virginia Patent Foundation System for fusing a spinal region
US7114501B2 (en) * 2000-08-14 2006-10-03 Spine Wave, Inc. Transverse cavity device and method
JP2004526467A (en) 2000-09-12 2004-09-02 アナメッド インク. Systems and methods for packaging and handling implants
US8668735B2 (en) 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices
US6746451B2 (en) 2001-06-01 2004-06-08 Lance M. Middleton Tissue cavitation device and method
US20070276352A1 (en) * 2002-06-04 2007-11-29 Stemcor Systems, Inc. Removable device and method for tissue disruption
US8613744B2 (en) 2002-09-30 2013-12-24 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US7258690B2 (en) 2003-03-28 2007-08-21 Relievant Medsystems, Inc. Windowed thermal ablation probe
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US6907884B2 (en) 2002-09-30 2005-06-21 Depay Acromed, Inc. Method of straddling an intraosseous nerve
JP4468179B2 (en) * 2002-11-08 2010-05-26 メドトロニック・ヴァーテリンク・インコーポレーテッド Method and apparatus for access to transcarpal intervertebral disc
HU225838B1 (en) * 2003-02-03 2007-10-29 Sanatmetal Ortopediai Es Traum An appliance for the determination of the position of medullary cavity nail bores
WO2004073563A2 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
JP2007503225A (en) * 2003-08-21 2007-02-22 レビジョン オプティクス, インコーポレイテッド Method for keratofacia surgery
US8221424B2 (en) 2004-12-20 2012-07-17 Spinascope, Inc. Surgical instrument for orthopedic surgery
US20060161176A1 (en) * 2004-01-12 2006-07-20 Heegaard Eric G Medical device for perforating a biological membrane
US20050165487A1 (en) 2004-01-28 2005-07-28 Muhanna Nabil L. Artificial intervertebral disc
US7488322B2 (en) * 2004-02-11 2009-02-10 Medtronic, Inc. High speed surgical cutting instrument
WO2005089370A2 (en) 2004-03-16 2005-09-29 Goodis Charles J Endodontic files and obturator devices and methods of manufacturing same
US7959634B2 (en) * 2004-03-29 2011-06-14 Soteira Inc. Orthopedic surgery access devices
US8057541B2 (en) 2006-02-24 2011-11-15 Revision Optics, Inc. Method of using small diameter intracorneal inlays to treat visual impairment
US10835371B2 (en) 2004-04-30 2020-11-17 Rvo 2.0, Inc. Small diameter corneal inlay methods
US8142462B2 (en) 2004-05-28 2012-03-27 Cavitech, Llc Instruments and methods for reducing and stabilizing bone fractures
US8236029B2 (en) * 2004-08-11 2012-08-07 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to for a predefined curved configuration, and methods employing such devices
US7503920B2 (en) * 2004-08-11 2009-03-17 Tzony Siegal Spinal surgery system and method
US7682393B2 (en) * 2004-10-14 2010-03-23 Warsaw Orthopedic, Inc. Implant system, method, and instrument for augmentation or reconstruction of intervertebral disc
US20070213734A1 (en) * 2006-03-13 2007-09-13 Bleich Jeffery L Tissue modification barrier devices and methods
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US8221397B2 (en) 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US7738969B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US7887538B2 (en) * 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US8192435B2 (en) * 2004-10-15 2012-06-05 Baxano, Inc. Devices and methods for tissue modification
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US7963915B2 (en) 2004-10-15 2011-06-21 Baxano, Inc. Devices and methods for tissue access
US20110190772A1 (en) 2004-10-15 2011-08-04 Vahid Saadat Powered tissue modification devices and methods
US7578819B2 (en) 2005-05-16 2009-08-25 Baxano, Inc. Spinal access and neural localization
US8613745B2 (en) 2004-10-15 2013-12-24 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
EP2623056B1 (en) * 2005-01-05 2016-04-20 NLT Spine Ltd. Device for introduction into a body
EP1741394A1 (en) * 2005-07-08 2007-01-10 Technische Universiteit Delft Surgical drill system and surgical drill bit to be used therein
WO2008103781A2 (en) 2007-02-21 2008-08-28 Benvenue Medical, Inc. Devices for treating the spine
US7666226B2 (en) 2005-08-16 2010-02-23 Benvenue Medical, Inc. Spinal tissue distraction devices
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
US20070055259A1 (en) * 2005-08-17 2007-03-08 Norton Britt K Apparatus and methods for removal of intervertebral disc tissues
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US20080086034A1 (en) 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US20080051812A1 (en) * 2006-08-01 2008-02-28 Baxano, Inc. Multi-Wire Tissue Cutter
US20070162062A1 (en) * 2005-12-08 2007-07-12 Norton Britt K Reciprocating apparatus and methods for removal of intervertebral disc tissues
US10555805B2 (en) 2006-02-24 2020-02-11 Rvo 2.0, Inc. Anterior corneal shapes and methods of providing the shapes
CN100455269C (en) * 2006-06-27 2009-01-28 胡文广 Multi-core flexible-shaft drill for plastic surgery
DE102006000399A1 (en) * 2006-08-10 2008-02-14 Novineon Healthcare Technology Partners Gmbh Medical instrument
CN101534731B (en) * 2006-10-30 2011-05-11 迪基米德奥索公司 Surgical cutting devices
WO2008070863A2 (en) 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
EP2120734B1 (en) 2006-12-15 2015-12-02 Gmedelaware 2 LLC Drills for vertebrostenting
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US7947078B2 (en) * 2007-01-09 2011-05-24 Nonlinear Technologies Ltd. Devices for forming curved or closed-loop structures
US20080183192A1 (en) * 2007-01-26 2008-07-31 Laurimed Llc Contralateral insertion method to treat herniation with device using visualization components
US8088119B2 (en) * 2007-02-01 2012-01-03 Laurimed, Llc Methods and devices for treating tissue
US8828000B2 (en) * 2007-02-13 2014-09-09 The Board Of Regents Of The University Of Texas System Apparatus to trace and cut a tendon or other laterally extended anatomical structure
ES2757819T3 (en) * 2007-02-21 2020-04-30 Benvenue Medical Inc Devices to treat the spine
WO2008109844A2 (en) * 2007-03-08 2008-09-12 D & S Dental, Llc Endodontic instrument for performing root canal therapy
US9271828B2 (en) 2007-03-28 2016-03-01 Revision Optics, Inc. Corneal implant retaining devices and methods of use
US8162953B2 (en) * 2007-03-28 2012-04-24 Revision Optics, Inc. Insertion system for corneal implants
US9549848B2 (en) 2007-03-28 2017-01-24 Revision Optics, Inc. Corneal implant inserters and methods of use
US20080262535A1 (en) * 2007-04-06 2008-10-23 Ohk Medical Devices Ltd. Method and an apparatus for adjusting Blood circulation in a limb
JP2010527705A (en) 2007-05-21 2010-08-19 エーオーアイ メディカル インコーポレイテッド Bending type cavity forming device
US20080319463A1 (en) * 2007-06-19 2008-12-25 Dyson William Hickingbotham Apparatus, system and method for illuminated membrane manipulator
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
WO2009032363A1 (en) 2007-09-06 2009-03-12 Baxano, Inc. Method, system and apparatus for neural localization
US8192436B2 (en) 2007-12-07 2012-06-05 Baxano, Inc. Tissue modification devices
US20090171147A1 (en) * 2007-12-31 2009-07-02 Woojin Lee Surgical instrument
CN102626338B (en) 2008-01-14 2014-11-26 康文图斯整形外科公司 Apparatus and methods for fracture repair
US8437938B2 (en) * 2008-01-15 2013-05-07 GM Global Technology Operations LLC Axle torque based cruise control
JP5441922B2 (en) 2008-01-17 2014-03-12 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Inflatable intervertebral implant and related manufacturing method
US8206445B2 (en) * 2008-01-21 2012-06-26 Ion Surgical Technologies, Inc. Method of arthroscopically assisted ligament reconstruction
US9131944B2 (en) * 2008-01-29 2015-09-15 Ohk Medical Devices Ltd. Mobile torus devices
US8366739B2 (en) * 2008-01-30 2013-02-05 Ohk Medical Devices Ltd. Motion control devices
US20090209891A1 (en) * 2008-02-14 2009-08-20 Ohk Medical Devices Ltd. Pressure controlling devices
WO2009124192A1 (en) * 2008-04-02 2009-10-08 Laurimed, Llc Methods and devices for delivering injections
EP2265217A4 (en) 2008-04-04 2018-04-04 Revision Optics, Inc. Corneal inlay design and methods of correcting vision
US9539143B2 (en) 2008-04-04 2017-01-10 Revision Optics, Inc. Methods of correcting vision
EP2262449B1 (en) 2008-04-05 2020-03-11 Synthes GmbH Expandable intervertebral implant
US8394116B2 (en) * 2008-04-15 2013-03-12 The Regents Of The University Of Michigan Surgical tools and components thereof
WO2009129272A2 (en) 2008-04-15 2009-10-22 Lonnie Paulos Tissue microfracture apparatus and methods of use
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
CA2730732A1 (en) 2008-07-14 2010-01-21 Baxano, Inc. Tissue modification devices
WO2010011956A1 (en) 2008-07-25 2010-01-28 Spine View, Inc. Systems and methods for cable-based debriders
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
EP3406210A1 (en) * 2008-09-26 2018-11-28 Relievant Medsystems, Inc. Systems and for navigating an instrument through bone
US8758349B2 (en) 2008-10-13 2014-06-24 Dfine, Inc. Systems for treating a vertebral body
EP2364128A4 (en) 2008-09-30 2013-07-24 Dfine Inc System for use in treatment of vertebral fractures
US8343214B2 (en) * 2008-10-20 2013-01-01 Cateract Innovations LLC Apparatus for the treatment of cataract
US20100121142A1 (en) * 2008-11-12 2010-05-13 Ouyang Xiaolong Minimally Invasive Imaging Device
US20100121139A1 (en) 2008-11-12 2010-05-13 Ouyang Xiaolong Minimally Invasive Imaging Systems
US20100121155A1 (en) * 2008-11-12 2010-05-13 Ouyang Xiaolong Minimally Invasive Tissue Modification Systems With Integrated Visualization
CA2646110A1 (en) * 2008-11-21 2010-05-21 Ramon B. Gustilo Bone drill devices, systems and methods
US8221420B2 (en) 2009-02-16 2012-07-17 Aoi Medical, Inc. Trauma nail accumulator
EP2405823A4 (en) 2009-03-13 2012-07-04 Baxano Inc Flexible neural localization devices and methods
US8535327B2 (en) 2009-03-17 2013-09-17 Benvenue Medical, Inc. Delivery apparatus for use with implantable medical devices
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US8852201B2 (en) * 2009-03-30 2014-10-07 Arthrex, Inc. Microfracture instrument
US9168047B2 (en) 2009-04-02 2015-10-27 John T. To Minimally invasive discectomy
US8801739B2 (en) 2009-04-17 2014-08-12 Spine View, Inc. Devices and methods for arched roof cutters
EP2429430A4 (en) * 2009-04-27 2015-02-25 Univ Keio Medical wire
JP2010260139A (en) * 2009-05-08 2010-11-18 Ntn Corp Remote-controlled work robot
US20100298832A1 (en) 2009-05-20 2010-11-25 Osseon Therapeutics, Inc. Steerable curvable vertebroplasty drill
DE102009042491A1 (en) * 2009-05-29 2010-12-02 Aesculap Ag Surgical instrument for use as shaver, has zone arranged in area of distal section, and drive element rotatably supported in shaft, where flexible section of element exhibits length in axial direction, which corresponds to length of zone
DE102009042150A1 (en) 2009-05-29 2010-12-02 Aesculap Ag Surgical instrument to be used in combination with a trocar or something similar has proximal and distal ends as well as an end section with an articulated zone
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
EP4279032A3 (en) * 2009-07-10 2024-01-17 Implantica Patent Ltd. Hip joint instrument
EP2451365B1 (en) * 2009-07-10 2015-07-01 Kirk Promotion LTD. Hip joint instrument
US8911474B2 (en) * 2009-07-16 2014-12-16 Howmedica Osteonics Corp. Suture anchor implantation instrumentation system
US8568142B2 (en) * 2009-08-05 2013-10-29 Evgueniy A. Rzhanov Rotatable endodontic instruments and methods for their manufacture
US20110039229A1 (en) * 2009-08-11 2011-02-17 Discus Dental, Llc Computer aided canal instrumentation system and a unique endodontic instrument design
AU2010212441B2 (en) 2009-08-20 2013-08-01 Howmedica Osteonics Corp. Flexible ACL instrumentation, kit and method
JP5465787B2 (en) 2009-11-19 2014-04-09 ディージーアイメド オーソ, インコーポレイテッド Intramedullary systems and methods
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
JP5557522B2 (en) * 2009-12-24 2014-07-23 Ntn株式会社 Remote control type actuator
US8348950B2 (en) * 2010-01-04 2013-01-08 Zyga Technology, Inc. Sacroiliac fusion system
EP2523614A4 (en) 2010-01-15 2017-02-15 Conventus Orthopaedics, Inc. Rotary-rigid orthopaedic rod
AU2011207550B2 (en) 2010-01-20 2016-03-10 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
EP2544608A4 (en) * 2010-03-08 2017-02-22 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
US8343045B2 (en) 2010-04-05 2013-01-01 Intuitive Surgical Operations, Inc. Curved cannula
US10058336B2 (en) 2010-04-08 2018-08-28 Dfine, Inc. System for use in treatment of vertebral fractures
US9526507B2 (en) 2010-04-29 2016-12-27 Dfine, Inc. System for use in treatment of vertebral fractures
EP2563233B1 (en) 2010-04-29 2020-04-01 Dfine, Inc. System for use in treatment of vertebral fractures
CN106108972B (en) 2010-04-29 2019-08-02 Dfine有限公司 System for treating vertebral fracture
US8845733B2 (en) 2010-06-24 2014-09-30 DePuy Synthes Products, LLC Lateral spondylolisthesis reduction cage
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
TW201215379A (en) 2010-06-29 2012-04-16 Synthes Gmbh Distractible intervertebral implant
US8685052B2 (en) 2010-06-30 2014-04-01 Laurimed, Llc Devices and methods for cutting tissue
WO2012003383A1 (en) 2010-06-30 2012-01-05 Laurimed, Llc Devices and methods for cutting and evacuating tissue
US8641717B2 (en) 2010-07-01 2014-02-04 DePuy Synthes Products, LLC Guidewire insertion methods and devices
TWI579007B (en) 2010-07-02 2017-04-21 艾格諾福斯保健公司 Use of bone regenerative material
US8469948B2 (en) 2010-08-23 2013-06-25 Revision Optics, Inc. Methods and devices for forming corneal channels
US8801716B2 (en) * 2010-08-24 2014-08-12 Biomet Manufacturing, Llc Cartilage repair system with flexible trephine
US9562419B2 (en) 2010-10-06 2017-02-07 Colorado School Of Mines Downhole tools and methods for selectively accessing a tubular annulus of a wellbore
US8991505B2 (en) 2010-10-06 2015-03-31 Colorado School Of Mines Downhole tools and methods for selectively accessing a tubular annulus of a wellbore
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
WO2012064817A1 (en) 2010-11-09 2012-05-18 Benvenue Medical, Inc. Devices and methods for treatment of a bone fracture
DK2642931T3 (en) 2010-11-22 2017-06-06 Dfine Inc SYSTEM FOR USE IN TREATMENT OF VERTEBRA FRACTURES
CN102079093A (en) * 2010-12-27 2011-06-01 上海大学 Novel flexible body feeding method
FI9329U1 (en) * 2011-03-21 2011-08-16 Oulun Yliopisto Benborr
DE102011001973A1 (en) 2011-04-12 2012-10-18 Aesculap Ag control device
US9795398B2 (en) 2011-04-13 2017-10-24 Howmedica Osteonics Corp. Flexible ACL instrumentation, kit and method
KR20140028063A (en) 2011-05-05 2014-03-07 지가 테크놀로지 인코포레이티드 Sacroiliac fusion system
US8814873B2 (en) 2011-06-24 2014-08-26 Benvenue Medical, Inc. Devices and methods for treating bone tissue
WO2013009986A1 (en) * 2011-07-14 2013-01-17 Dgimed Ortho, Inc. Flexible guide tube and methods of use thereof
JP5944005B2 (en) 2011-10-21 2016-07-05 リヴィジョン・オプティックス・インコーポレーテッド Corneal graft storage and delivery device
US9445803B2 (en) 2011-11-23 2016-09-20 Howmedica Osteonics Corp. Filamentary suture anchor
US9119659B2 (en) 2011-12-03 2015-09-01 Ouroboros Medical, Inc. Safe cutting heads and systems for fast removal of a target tissue
AU2012362524B2 (en) 2011-12-30 2018-12-13 Relievant Medsystems, Inc. Systems and methods for treating back pain
US9770289B2 (en) 2012-02-10 2017-09-26 Myromed, Llc Vacuum powered rotary devices and methods
DK2822483T3 (en) * 2012-03-09 2016-01-04 George J Sikora Microfracture equipment
CA2868869C (en) 2012-03-27 2021-01-12 Dfine, Inc. Methods and systems for use in controlling tissue ablation volume by temperature monitoring
US8821494B2 (en) 2012-08-03 2014-09-02 Howmedica Osteonics Corp. Surgical instruments and methods of use
US10179009B2 (en) 2012-08-07 2019-01-15 Ahmad Abdul-Karim Needleless transseptal access device and methods
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
EP2914186B1 (en) 2012-11-05 2019-03-13 Relievant Medsystems, Inc. Systems for creating curved paths through bone and modulating nerves within the bone
US10653535B2 (en) 2012-12-07 2020-05-19 Providence Medical Technology, Inc. Apparatus and method for bone screw deployment
US9918766B2 (en) 2012-12-12 2018-03-20 Dfine, Inc. Devices, methods and systems for affixing an access device to a vertebral body for the insertion of bone cement
US9078740B2 (en) 2013-01-21 2015-07-14 Howmedica Osteonics Corp. Instrumentation and method for positioning and securing a graft
US9402620B2 (en) 2013-03-04 2016-08-02 Howmedica Osteonics Corp. Knotless filamentary fixation devices, assemblies and systems and methods of assembly and use
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9788826B2 (en) 2013-03-11 2017-10-17 Howmedica Osteonics Corp. Filamentary fixation device and assembly and method of assembly, manufacture and use
US9463013B2 (en) 2013-03-13 2016-10-11 Stryker Corporation Adjustable continuous filament structure and method of manufacture and use
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
WO2014159225A2 (en) 2013-03-14 2014-10-02 Baxano Surgical, Inc. Spinal implants and implantation system
US10292694B2 (en) 2013-04-22 2019-05-21 Pivot Medical, Inc. Method and apparatus for attaching tissue to bone
US10342563B2 (en) 2013-07-19 2019-07-09 DePuy Synthes Products, Inc. Anti-clogging device for a vacuum-assisted, tissue removal system
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US10238401B2 (en) 2013-09-23 2019-03-26 Arthrosurface, Inc. Microfracture apparatuses and methods
US10610211B2 (en) 2013-12-12 2020-04-07 Howmedica Osteonics Corp. Filament engagement system and methods of use
CA2969316A1 (en) 2013-12-12 2015-06-18 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
US9351739B2 (en) 2013-12-31 2016-05-31 Amendia, Inc. Tunneling device
US9861375B2 (en) 2014-01-09 2018-01-09 Zyga Technology, Inc. Undercutting system for use in conjunction with sacroiliac fusion
US11547446B2 (en) 2014-01-13 2023-01-10 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10342579B2 (en) 2014-01-13 2019-07-09 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US9370295B2 (en) 2014-01-13 2016-06-21 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US8815099B1 (en) 2014-01-21 2014-08-26 Laurimed, Llc Devices and methods for filtering and/or collecting tissue
CA2941938C (en) 2014-06-27 2019-03-26 Halliburton Energy Services, Inc. Measuring micro stalls and stick slips in mud motors using fiber optic sensors
US10702395B2 (en) 2014-10-01 2020-07-07 Arthrosurface, Inc. Microfracture apparatuses and methods
US9986992B2 (en) 2014-10-28 2018-06-05 Stryker Corporation Suture anchor and associated methods of use
US10568616B2 (en) 2014-12-17 2020-02-25 Howmedica Osteonics Corp. Instruments and methods of soft tissue fixation
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US10080571B2 (en) 2015-03-06 2018-09-25 Warsaw Orthopedic, Inc. Surgical instrument and method
WO2016144404A1 (en) 2015-03-12 2016-09-15 Revision Optics, Inc. Methods of correcting vision
US10149710B2 (en) 2015-05-11 2018-12-11 Providence Medical Technology, Inc. Bone screw and implant delivery device
US9901392B2 (en) 2015-05-11 2018-02-27 Dfine, Inc. System for use in treatment of vertebral fractures
KR20180028407A (en) 2015-05-11 2018-03-16 프로비던스 메디컬 테크놀로지, 아이엔씨. Bone screw and implant delivery device
AU2016280071B2 (en) * 2015-06-17 2021-04-01 Stryker European Operations Holdings Llc Surgical instrument with ultrasonic tip for fibrous tissue removal
EP3334322A1 (en) 2015-08-11 2018-06-20 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
WO2017104846A1 (en) * 2015-12-16 2017-06-22 株式会社日本未来医療研究所 Object suction device
WO2018002711A2 (en) 2016-06-28 2018-01-04 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
WO2018002715A2 (en) 2016-06-28 2018-01-04 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
JP2019534130A (en) 2016-10-27 2019-11-28 ディーファイン,インコーポレイティド Articulated osteotome with cement delivery channel
US11052237B2 (en) 2016-11-22 2021-07-06 Dfine, Inc. Swivel hub
KR20190082300A (en) 2016-11-28 2019-07-09 디파인 인코포레이티드 Tumor ablation device and related method
CN106725822A (en) * 2016-12-04 2017-05-31 崔光豪 Orthopaedics minimally invasive surgery device
US10470781B2 (en) 2016-12-09 2019-11-12 Dfine, Inc. Medical devices for treating hard tissues and related methods
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
IT201600132039A1 (en) 2016-12-29 2018-06-29 Medacta Int Sa GUIDE FOR FLEXIBLE BONE CUTTER AND BONE RESECTION TOOL
EP3565486B1 (en) 2017-01-06 2021-11-10 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
CN106821452B (en) * 2017-02-22 2020-08-07 四川大学华西医院 Bone arc hole puncher
US10631881B2 (en) 2017-03-09 2020-04-28 Flower Orthopedics Corporation Plating depth gauge and countersink instrument
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
CN110709019B (en) * 2017-06-22 2023-12-26 史密夫和内修有限公司 Surgical drill guide and system
WO2019010252A2 (en) 2017-07-04 2019-01-10 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
USD902405S1 (en) 2018-02-22 2020-11-17 Stryker Corporation Self-punching bone anchor inserter
WO2019191705A1 (en) 2018-03-29 2019-10-03 Trice Medical, Inc. Fully integrated endoscope with biopsy capabilities and methods of use
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
WO2020097334A1 (en) 2018-11-08 2020-05-14 Dfine, Inc. Ablation systems with parameter-based modulation and related devices and methods
JP6639710B1 (en) * 2019-01-25 2020-02-05 藤栄電気株式会社 Dental practice guidance device
WO2021050767A1 (en) 2019-09-12 2021-03-18 Relievant Medsystems, Inc. Systems and methods for tissue modulation
CN110779587B (en) * 2019-10-31 2021-03-16 青岛金中联科技发展有限公司 Flow meter
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
WO2023028336A1 (en) 2021-08-26 2023-03-02 Colorado School Of Mines System and method for harvesting geothermal energy from a subterranean formation
CN114454349B (en) * 2022-01-19 2023-06-13 重庆臻宝科技股份有限公司 Horizontal separating device for quartz ring plates
CN116269662B (en) * 2023-05-15 2023-08-04 杭州锐健马斯汀医疗器材有限公司 Surgical tool

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7607981U1 (en) * 1976-03-16 1977-11-10 Ulrich, Max Bernhard, 7900 Ulm Drill for bone surgery purposes
US4549538A (en) * 1982-11-12 1985-10-29 Zimmer, Inc. Pin inserter sheath
US4926860A (en) * 1988-02-05 1990-05-22 Flexmedics Corporation ARthroscopic instrumentation and method
US4867155A (en) * 1988-06-21 1989-09-19 Nu-Tech Industries, Inc. Arthroscopic cutting device
US4998527A (en) * 1989-07-27 1991-03-12 Percutaneous Technologies Inc. Endoscopic abdominal, urological, and gynecological tissue removing device
US5152744A (en) * 1990-02-07 1992-10-06 Smith & Nephew Dyonics Surgical instrument
DK0481760T3 (en) * 1990-10-19 1999-03-22 Smith & Nephew Inc Surgical device
FR2685190B1 (en) * 1991-12-23 1998-08-07 Jean Marie Lefebvre ROTARY ATHERECTOMY OR THROMBECTOMY DEVICE WITH CENTRIFUGAL TRANSVERSE DEVELOPMENT.
US5330468A (en) * 1993-10-12 1994-07-19 Burkhart Stephen S Drill guide device for arthroscopic surgery
US5690660A (en) * 1993-10-27 1997-11-25 Stryker Corporation Arthroscopic cutter having curved rotatable drive
US5695513A (en) * 1996-03-01 1997-12-09 Metagen, Llc Flexible cutting tool and methods for its use

Also Published As

Publication number Publication date
AU735363B2 (en) 2001-07-05
EP0886492A1 (en) 1998-12-30
JP2000505665A (en) 2000-05-16
US6068642A (en) 2000-05-30
WO1997031577A1 (en) 1997-09-04
CN1215317A (en) 1999-04-28
AU2061597A (en) 1997-09-16
US5695513A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
CA2247955A1 (en) Flexible cutting tool and methods for its use
US11202662B2 (en) Percutaneous fixator and method of insertion
US4237875A (en) Dynamic intramedullary compression nailing
US6149654A (en) Intra-articular drill
EP2389880B1 (en) Device for ligament repair
US5234435A (en) Surgical method and apparatus
JP4762575B2 (en) Tunnel notch and guidewire delivery device and method for preparing a bone tunnel
US5658289A (en) Ligament graft protection apparatus and method
US5257996A (en) Surgical pin passer
US7238189B2 (en) ACL reconstruction technique using retrodrill
EP0478949B1 (en) Implant assist apparatus
US5766174A (en) Intramedullary bone fixation device
EP0440991A1 (en) Method and instruments for the reconstruction of the anterior cruciate ligament
GB2376416A (en) Surgical instrument and apparatus
US8403943B2 (en) Insertion system for implanting a medical device and surgical methods

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued