CA2213091A1 - Alignment system and method for intra-operative radiation therapy - Google Patents

Alignment system and method for intra-operative radiation therapy

Info

Publication number
CA2213091A1
CA2213091A1 CA002213091A CA2213091A CA2213091A1 CA 2213091 A1 CA2213091 A1 CA 2213091A1 CA 002213091 A CA002213091 A CA 002213091A CA 2213091 A CA2213091 A CA 2213091A CA 2213091 A1 CA2213091 A1 CA 2213091A1
Authority
CA
Canada
Prior art keywords
applicator
radiation
targets
patient
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002213091A
Other languages
French (fr)
Inventor
John H. Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Medical Solutions USA Inc
Original Assignee
Siemens Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Medical Systems Inc filed Critical Siemens Medical Systems Inc
Publication of CA2213091A1 publication Critical patent/CA2213091A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1059Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using cameras imaging the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1089Electrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A system and method for applying radiation therapy include utilizing a radiation applicator that is spaced apart from and mechanically independent of a radiation source. An array of targets is affixed to the radiation applicator and cameras image the targets to determine coordinates that are compared to desired target coordinates. If there is a correlation between actual target coordinates and desired coordinates, radiation source-to-applicator alignment is achieved. Consequently, the patient is properly positioned relative to a radiation beam, such as an electron beam. On the other hand, if the actual and desired coordinates are different, the relative position of the radiation source and the gantry is adjusted. Preferably, the adjustment is automated.

Description

,~' CA 02213091 1997-08-14 ALIGNMENT SYSTEM AND METHOD
FOR INTRA-OPERATIVE RADIATION THERAPY

BACKGROUND OF THE INVENTION
The invention relates generally to aligning elements for applying radiation to a patient and more particularly to systems and methods for properly aligning a source of radiation with an applicator for intra-operative radiation therapy.

DESCRIPTION OF THE RELATED ART
Radiation-emitting devices are generally known and used, for instance, as radiation therapy devices for the treatment of patients.
A radiation therapy device typically includes a gantry which can be swiveled about a horizontal axis of rotation in the course of a therapeutic session. A linear accelerator is located in the gantry for generating a high-energy radiation beam. The high-radiation beam can be electron radiation or photon (X-ray) radiation. During treatment, the radiation beam is trained on a treatment site of a patient Iying in the isocenter of the gantry rotation. Typically, the patient is supported on a rotatable table. The combination of movements of the gantry and the table permits movement of the patient about mutually perpendicular X, Y and Z axes. These rotations are sometimes referred to by the terms "tilt,"
"roll" and "yaw," respectively.
Prior to the application of radiation, a treatment setup process is followed. This process includes setting beam parameters such as radiation energy, field size, exposure times, dose and distance.
Moreover, the process includes aligning the gantry, a collimator and the patient. The radiation beam is directed at diseased material, but with a goal of minimizing any adverse effect upon adjacent healthy tissue.
For intra-operative treatments, the alignment process also includes aligning an applicator relative to the patient and the source of radiation. Intra-operative treatment typically includes forming an incision through which an electron beam is directed to a treatment site. The applicator is both mechanically and electrically isolated from the source, i.e. the gantry. Mechanical independence is desirable, since the mass of the gantry operates against the ability to manipulate the radiation beam to enter a relatively small operative incision without significant risk to the patient. The applicator is fixed relative to the patient, typically by ~ CA 02213091 1997-08-14 attachment to the table. The applicator provides beam collimation close to the patient by establishing a radiation field-defining aperture. Thus, the mechanical isolation reliably limits exposure to the desired treatment site.
Electrical isolation is a factor, since any leakage currents from the gantry to the patient place the patient at risk. U.S. Pat. No.
4,638,814 to Spanswick, which is assigned to the assignee of the present invention, asserts that a patient cannot be subjected to ground leakage currents which exceed five micro amperes because blood and 0 body fluids are good electrolytes and because any electrical devices that are in contact with the patient may be disturbed. Spanswick describes a method of aligning an electron applicator with an electron beam source.
A number of laser units project beams of light toward a support ring of the electron applicator. The beams are arranged in a mutual orientation, such as four iaser units arranged at 90~ intervals. Each of the four laser units includes a beam splitter, so that eight beams are formed. The eight beams form four beam pairs, with the two beams of a pair overlapping at a predetermined point from the electron beam source. Consequently, when the support ring is along the plane through the points of intersec-tion, the eight beams form only four areas of illumination. The electron applicator is attached to the operating table, so that the operating table is moved until there are only the four illuminated regions. In addition to aligning the electron applicator and the electron beam source, the use of the intersecting beams determines the spacing between the applicator and the source.
While the system described in Spanswick provided an improvement over the prior art, further improvements are available.
Since the positioning of the electron applicator based upon overlapping beams is performed visually, the process is subject to human error.
Moreover, the patent points out that the beams must be "exceedingly sharp" in order to achieve precise positioning. As a result, the accuracy of the method depends upon the selection of the sources of the light beams. Another concern relates to the ability to change the spacing between the electron applicator and the electron beam source. This spacing will partially determine the intensity of the electron beam at the treatment site of the patient. If the intersection of beams is to be used to determine the spacing between the electron applicator and the elec-tron beam source, the light beam axes must be adjusted from session to ~ CA 02213091 1997-08-14 .

session when the electron beam intensities vary among sessions. This increases the setup time for equipment which is in demand.
What is needed is a system and method for accurately and efficiently positioning a beam applicator without requiring the beam 5 applicator to be connected to a source of the beam.

SUMMARY OF THE INVENTION
A system for applying radiation therapy includes a radiation source that emits a radiation beam into an applicator that is spaced apart 0 from and mechanically independent of the radiation source. An array of targets is affixed to the applicator and at least one imaging device is affixed to the radiation source to form image data representative of the targets. The image data is processed to determine the positions of the targets. In one embodiment, the determination of the target positions is used to automatically adjust either the applicator positioning or the radiation source positioning until the target positions match predefined coordinates. Preferably, the target positioning is determined in three dimensions.
A method of applying the therapeutic radiation includes 20 attaching the applicator so that it has an orientation that is substantially fixed relative to a patient. The applicator is imaged by the imaging devices that are affixed to the radiation source. Based upon the image data, the system determirses whether a desired source-to-applicator alignment has been achieved. The relative positioning of the radiation 25 source and the applicator is adjusted until the desired source-to-applicator alignment is achieved. A radiation beam is then directed into the appli-cator for applying localized radiation to a treatment site. In the preferred embodiment, the method is used for intra-operative radiation therapy.

Fig. 1 is a schematical view of a system for applying localized radiation for intra-operative radiation therapy in accordance with the prior art.
Fig. 2 is a schematical view of a system of applying 35 localized radiation in accordance with the invention.
Fig. 3 is a top view of a radiation applicator having targets in accordance with the invention.

.

Fig. 4 is a process flow view of a method for utilizing the system of Fig. 2.
Fig. 5 is a front view of a display screen for the applicator of Fig. 3.

DETAILED DESCRIPTION
With reference to Fig. 1, a patient 10 is shown as resting on a table 12 under a gantry 14 of a radiation therapy machine. A radiation beam is directed from a collimator 16 of the gantry toward the patient.
10 The radiation beam is generated by a linear accelerator within the gantry and is emitted from the collimator. The radiation beam may be electron radiation or photon radiation, i.e. X-ray radiation. The gantry is known in the art.
Typically, the collimator 16 determines the final beam 15 geometry. The beam is directed at a treatment site, such as diseased brain tissue of the patient 10. The table 12 and the gantry 14 are maneuvered to provide the desired alignment of the patient 10 to the radiation beam, and the beam is then generated. However, there are circumstances in which it is undesirable to use the collimator 16 as the 20 component for final direction of the radiation beam at the patient. For example, within an intra-operative treatment an incision is formed for passage of an electron beam to a treatment site. An electron beam tends to expand more ~uickly than an X-ray beam, so that there is greater concern that hea!thy tissue will be exposed. To reduce the risk, a 25 radiation applicator 18 is utilized. The radiation applicator is spaced apart from the collimator 16 and may have an output end inserted into the incision of the patient 10. The radiation applicator is formed of a material that is opaque to the electron beam, but includes a passageway to the treatment site. The radiation applicator localizes the therapy to 30 the desired treatment site.
Referring now to Figs. 2 and 3, a radiation applicator 20 in accordance with the preferred embodiment of the invention is shown as including four targets 22, 24, 26 and 28. The targets may be recesses within the surface of the applicator, but preferably are separate members 35 that are formed of a material that facilitates imaging of the targets. As will be explained more fully below, the targets are imaged in order to calculate the spacing and the alignment of the radiation applicator relative to a collimator 30 of the gantry 32 shown in Fig. 2.

.

While not critical, the targets 22, 24, 26 and 28 are preferably fabricated in the manner described in U.S. Pat. No. 5,446,548 to Gerig et al., which is assigned to the assignee of the present inven-tion. The Gerig et al. patent describes a patient positioning and monitor-5 ing system that can be utilized in combination with the invention to bedescribed below.
The targets 22, 24, 26 and 28 preferably include retroreflec-tive material. The arrangement of the targets on the surface of the applicator 20 is not critical. The targets are imaged by a pair of cameras 0 34 and 36. The Gameras may be charge coupled device (CCD) cameras, but other imaging devices may be utilized. The image signals from the cameras 34 and 36 are input to an image processing circuit 38. The image processing circuit cooperates with a position calculation circuit 40 to determine position data for the radiation applicator 20. The image and 15 position processing may include a visual-based coordinate measurement (VCM) system to determine target positioning in three-dimensional space.
In the preferred embodimentf the VCM system is a software package which can be integrated with commercially available solid-state cameras, image acquisition and processing boards, and computer hardware. The 20 VCM system combines principles of stereo vision, photogrammetry and knowledge-based techniques to provide precise coordinate and dimension measurement of objects. The two cameras 34 and 36 and the three-dimensional image and position processing of circuits 38 and 40 are calibrated such that the frame of reference is coincident with the system, 25 with an isocenter defined as 0,0,0. The coordinate system is defined such that the X axis lies on a horizontal plane perpendicular to a gantry axis 42 of rotation and passes through the system isocenter, the Y axis is parallel to the gantry axis of rotation and passes through the isocenter, and the Z axis is mutually perpendicular to the other two axes and 30 defines patient height.
Light sources 44 and 46 may be used to enhance per-formance of the target imaging. In the preferred embodiment, the light sources provide infrared radiation, and each of the cameras 34 and 36 includes an infrared filter. The infrared radiation enables the system to 35 more reliably distinguish light reflected from the targets 22-28, as opposed to background radiation that may be present in the therapy room under ambient light conditions. The light sources may be infrared lasers, with the infrared radiation being spread by lenses, not shown. The use -of laser light sources provides the advantage that the spectral bandwidth of the radiation is narrow, providing a further reduction in background interference. Equipping the cameras 34 and 36 with infrared filters reduces the susceptibility of the cameras to background radiation.
The radiation applicator 20 of Figs. 2 and 3 is shown as being attached to a displaceable table 48 by an L-shaped support device 50. The mechanism for suspending the radiation applicator is not critical.
In fact, the applicator may be fixed to the patient, rather than to the table 48. For example, headgear may be fitted to the patient to attach the radiation applicator to the patient.
The radiation applicator 20 is shown as having a truncated cone-shaped beam outlet end 52. The configuration of the inlet and outlet ends of the applicator will depend upon the gantry 32 and the treatment plan of the patient. In the view of Fig. 3, the sloping interior surface 54 is shown as terminating in a circular outlet 56. However, other geometries are contemplated.
The determination of the positions of the targets 22-28 by the image and position processing circuitry 38 and 40 is input to a session manager 58. Based upon inputted data and/or stored data in memory 6C), the session manager controls the variable components of the system. !n the preferred embodiment, the session managing is completely automated. However, manual adjustments may be required.
The session manager 58 may therefore include an operator console and input devices, such as a keyboard.
The session manager 58 compares the positions of the targets 22-28 to preselected coordinates. If the positions of the targets are different than the desired positions, either or both of the gantry 32 and the table 48 are manipulated to reposition the targets. The session manager is housed within a stationary portion 62 of the system that supports the rotatable portion of the gantry 32. The rotatable portion rotates about the gantry axis 42. The table 48 accommodates reposi-tioning along the X axis and the Z axis. Preferably, the circuitry within the stationary portion 62 of the system utilizes a servo approach, so that periodic image captures via the cameras 34 and 36 are utilized to estab-lish the desired target coordinates. Since the table 48 supports the patient, repositioning the radiation applicator 20 relative to the gantry 32 also repositions the patient. As a consequence, manipulation of the gantry 32 or the table 48 does not affect the position of the applicator 20 relative to the patient.
The operation of the system of Fig. 2 is described with reference to Figs. 2-4. In step 64, the alignment of the applicator 20 to the patient is established. In one embodiment, the applicator-support device 50 is attached to the table 48. While not shown, the device 50 preferably includes an adjustment mechanism. For example, the device may include slide mechanisms that permit vertical and horizontal reposi-tioning of the applicator 20. In another embodiment, the applicator 20 is 0 supported directly by the patient.
The applicator is secured to provide the desired angular alignment relative to a treatment site of the patient. This reduces the risk that healthy tissue will be unnecessarily exposed to radiation. The alignment of the applicator also includes setting the distance between the treatment site and the beam outlet end 52 of the applicator 20.
At step 66, the cameras 34 and 36 of Fig. 2 acquire an image of the targets 22-28. Each camera detects the reflected radiation from the targets. As previously noted, the preferred embodiment includes infrared lasers 44 and 46 and infrared filters in order to reduce the effects of background radiation on the image processing at circuit 38.
At least two cameras 34 and 36 are employed in order to permit position calculation 68 in three dimensions. Stereo vision tech-niques of a video-based coordinate measurement system are executed within the position calculation circuit 40 to determine coordinates within a coordinate system defined such that the X axis lies in a horizontal plane perpendicular to the gantry axis 42, the Y axis is parallel to the gantry axis, and the Z axis is perpendicular to the other two axes and defines patient height. Each of the three axes of the coordinate system passes through the isocenter of the radiation system.
In step 70, a determination is made as to whether the calculated coordinates of the targets 22-28 match desired coordinates.
The position data related to the desired coordinates may be stored in memory 60 of Fig. 2. The determination of whether a correlation exists preferably takes place in software. However, referring briefly to Fig. 5, the determination may be made by an operator using a display 72 that shows both the desired positions 74, 76, 78 and 80 of the targets and the actual positions 82, 84, 86 and 88. If the desired positions and the actual positions are aligned, the applicator 20 is properly aligned with the -. CA 02213091 1997-08-14 gantry 32. Consequently, the treatment site of the patient is properly aligned with the radiation beam that will be emitted from the gantry. In such case, the source of radiation can be activated, as shown at step 90 in Fig. 4. If at step 70 no correlation is determined between the coordi-5 nates calculated in step 68 and the desired target coordinates, the ~ gantry-to applicator alignment is adjusted at step 92. The realignment may be executed in alternative manners. The stationary portion 62 of the gantry 32 may rotate the displaceable portion about gantry axis 42.
Alternatively, the table may be manipulated to correct for tilt and roll.
10 The collimator 30 of the gantry 32 is also adjustable, as is well known in the art. Of course, the gantry-to-applicator alignment may be a combina-tion of these adjustments.
Following the realignment at step 92, the process returns to step 66 in order to acquire an updated image for calculation of updated 1~ position data in step 68. Preferably, the steps 66, 68, 70 and 92 utilize servo techniques to automatically and efficiently obtain the desired gantry-to-applicator alignment. When the alignment is achieved, the radiation therapy is initiated at step 90. The arrangement of targets 22-28 is not critical. Preferably, there are three or four targets, but 20 performance may be enhanced in some applications by providing a different number. As previously noted, the targets may be merely recessed or raised areas of the applicator servo, but retroreflective targets enhance the image processing by reducing the effect of background radiation. Fluorescent and phosphorescent materials may 25 also be utilized with the appropriate camera filters to enhance selectivity of reception.
In another embodiment, the targets 22-28 are fixed within the sloping interior surface 54 of the applicator 20 of Fig. 3. This allows the targets to be at different distances from the collimator 30 of Fig. 2, 30 even when the applicator is in the desired position relative to the collimator. The variations in distance facilitate distinguishing actual positions of targets from desired target positions.

Claims (20)

1. A system for applying radiation therapy comprising:
a radiation source for emitting a radiation beam having a beam axis;
an applicator spaced apart from said radiation source, said applicator being mechanically independent of said radiation source, said applicator having a beam inlet end and a beam outlet end;
a plurality of targets affixed to said applicator;
imaging means affixed to said radiation source for forming image data representative of said targets; and position means for determining positions of said targets based upon said image data.
2. The system of claim 1 wherein said imaging means includes a plurality of cameras directed at said applicator.
3. The system of claim 1 further comprising automated means for adjusting an alignment of said beam axis and said applicator based upon positions of said targets as determined by said position means.
4. The system of claim 1 wherein said position means has an output indicative of said positions of said targets in three dimensions.
5. The system of claim 1 further comprising a patient table for supporting a medical patient, said applicator being fixed to said patient table.
6. The system of claim 5 wherein said radiation source and said patient table are independently displaceable.
7. The system of claim 1 further comprising a laser light source directed to illuminate said targets.
8. The system of claim 7 wherein said targets have retroreflective material exposed to said laser light source.
9. The system of claim 1 further comprising memory means for storing desired positions of said targets relative to said imaging means, said system further comprising means for comparing said stored desired positions to said target positions determined by said position means.
10. A method of localizing radiation for application to a patient comprising steps of:
(a) attaching an applicator such that said applicator has an orientation that is substantially fixed relative to said patient;
(b) supporting a radiation source adjacent to said applicator;
(c) imaging said applicator to determine a first alignment of said radiation source and said applicator;
(d) determining whether said first alignment is a desired source-to-applicator alignment for applying radiation to said patient;
(e) if said first alignment does not match said desired source-to-applicator alignment, adjusting the relative positioning of said radiation source and applicator and repeating steps (c) and (d);
(f) when said desired source-to-applicator alignment is achieved, generating a radiation beam to enter said applicator.
11. The method of claim 10 wherein said step (c) of imaging said applicator includes imaging targets affixed to said applicator, said method further comprising a step of determining positions of said targets in three dimensions.
12. The method of claim 10 wherein said step (a) of attaching said applicator is a step of fixing said applicator to direct radiation through an incision in said patient.
13. The method of claim 10 wherein said step (e) of adjusting said relative positioning includes at least one of repositioning a gantry and repositioning a patient table on which said patient is supported.
14. The method of claim 13 wherein step (e) is an automated step of repositioning at least one of said gantry and said patient table.
15. A system for applying localized therapeutic radiation comprising:
a displaceable gantry having a collimator for directing a radiation beam along a beam axis;
a displaceable patient table mechanically independent of said gantry for supporting a patient to receive radiation therapy;
an applicator supported by said patient table for directing said radiation beam to said patient, said applicator having targets;
imaging means supported by said gantry for forming image signals indicative of said targets; and means for determining positions of said targets in three dimensions based upon said image signals.
16. The system of claim 15 further comprising means for determining the alignment of said radiation beam and said applicator based upon said positions of said targets in three dimensions.
17. The system of claim 16 further comprising means for automatically varying said alignment to achieve a preselected alignment.
18. The system of claim 15 wherein said targets include retroreflective material.
19. The system of claim 15 wherein said imaging means includes a plurality of cameras and light sources.
20. The system of claim 19 wherein said imaging means further includes an infrared filter for each camera, said light sources being infrared lasers.
CA002213091A 1996-08-16 1997-08-14 Alignment system and method for intra-operative radiation therapy Abandoned CA2213091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/708,066 1996-08-16
US08/708,066 US5745545A (en) 1996-08-16 1996-08-16 Alignment system and method for intra-operative radiation therapy

Publications (1)

Publication Number Publication Date
CA2213091A1 true CA2213091A1 (en) 1998-02-16

Family

ID=24844257

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002213091A Abandoned CA2213091A1 (en) 1996-08-16 1997-08-14 Alignment system and method for intra-operative radiation therapy

Country Status (3)

Country Link
US (1) US5745545A (en)
CA (1) CA2213091A1 (en)
GB (1) GB2317545A (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
DE19750004B4 (en) * 1997-11-12 2004-07-29 Lap Gmbh Laser Applikationen Device for positioning a patient on an adjustable surface
US6078036A (en) * 1998-05-06 2000-06-20 Intraop Medical, Inc. Laser soft docking system for medical treatment system
US6363940B1 (en) * 1998-05-14 2002-04-02 Calypso Medical Technologies, Inc. System and method for bracketing and removing tissue
IL125676A (en) * 1998-08-05 2003-01-12 Moshe Ein Gal Positioner for radiation treatment
US6907106B1 (en) * 1998-08-24 2005-06-14 Varian Medical Systems, Inc. Method and apparatus for producing radioactive materials for medical treatment using x-rays produced by an electron accelerator
FR2785713B1 (en) * 1998-11-10 2000-12-08 Commissariat Energie Atomique CONTROL SYSTEM FOR LIFT AND TELEMANIPULATION UNITS PLACED IN CONFINED ENCLOSURES
WO2001054765A2 (en) * 2000-01-31 2001-08-02 Zmed, Incorporated Method and apparatus for alignment of medical radiation beams using a body frame
JP3513700B2 (en) 2000-03-29 2004-03-31 稔 植松 Mobile radiation shielding device
ATE456332T1 (en) * 2000-11-17 2010-02-15 Calypso Medical Inc SYSTEM FOR LOCALIZING AND DEFINING A TARGET POSITION IN A HUMAN BODY
US20020193685A1 (en) 2001-06-08 2002-12-19 Calypso Medical, Inc. Guided Radiation Therapy System
US20030026758A1 (en) * 2001-07-27 2003-02-06 Baker Gregg S. Method and device for monitoring real-time position of an area targeted by a radiosurgery system
US7135978B2 (en) * 2001-09-14 2006-11-14 Calypso Medical Technologies, Inc. Miniature resonating marker assembly
WO2003039212A1 (en) * 2001-10-30 2003-05-08 Loma Linda University Medical Center Method and device for delivering radiotherapy
US6838990B2 (en) 2001-12-20 2005-01-04 Calypso Medical Technologies, Inc. System for excitation leadless miniature marker
US6812842B2 (en) 2001-12-20 2004-11-02 Calypso Medical Technologies, Inc. System for excitation of a leadless miniature marker
US6822570B2 (en) 2001-12-20 2004-11-23 Calypso Medical Technologies, Inc. System for spatially adjustable excitation of leadless miniature marker
WO2003070101A1 (en) * 2002-02-15 2003-08-28 Breakaway Imaging, Llc Gantry ring with detachable segment for multidimensional x-ray- imaging
EP1340470B1 (en) * 2002-03-01 2004-09-15 BrainLAB AG Operation theatre lighting device with camera system for three-dimensional referencing
JP2005519688A (en) * 2002-03-13 2005-07-07 ブレークアウェイ・イメージング・エルエルシー Pseudo simultaneous multiplanar X-ray imaging system and method
EP2345370A3 (en) * 2002-03-19 2012-05-09 Breakaway Imaging, Llc Computer tomography with a detector following the movement of a pivotable x-ray source
US6783275B2 (en) * 2002-03-29 2004-08-31 Siemens Medical Solutions Usa, Inc. Verification of radiation and light field congruence
US20030206610A1 (en) * 2002-05-01 2003-11-06 Collins William F. Patient positioning system
US8244330B2 (en) * 2004-07-23 2012-08-14 Varian Medical Systems, Inc. Integrated radiation therapy systems and methods for treating a target in a patient
ATE369792T1 (en) * 2002-06-11 2007-09-15 Breakaway Imaging Llc FREE-STANDING GANTRY DEVICE FOR X-RAY IMAGING
US7012391B2 (en) * 2002-08-09 2006-03-14 Seagate Technology Llc Motor acceleration using continuous sequence of current limit values
CN100415168C (en) * 2002-08-21 2008-09-03 分离成像有限责任公司 Gantry positioning apparatus for x-ray imaging
AU2003262726A1 (en) * 2002-08-21 2004-03-11 Breakaway Imaging, Llc Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system
US7289839B2 (en) * 2002-12-30 2007-10-30 Calypso Medical Technologies, Inc. Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices
US7912529B2 (en) * 2002-12-30 2011-03-22 Calypso Medical Technologies, Inc. Panel-type sensor/source array assembly
US7926491B2 (en) * 2002-12-31 2011-04-19 Calypso Medical Technologies, Inc. Method and apparatus for sensing field strength signals to estimate location of a wireless implantable marker
US9248003B2 (en) * 2002-12-30 2016-02-02 Varian Medical Systems, Inc. Receiver used in marker localization sensing system and tunable to marker frequency
DE10304221A1 (en) * 2003-01-30 2004-08-12 Carl Zeiss Surgical assistance device for assisting a surgeon in the removal of tissue, e.g. for cancer treatment, whereby movement of an operating instrument is at least partially automated based on tissue measurements
CN1960780B (en) 2003-08-12 2010-11-17 洛马林达大学医学中心 Modular patient support system
WO2005018734A2 (en) * 2003-08-12 2005-03-03 Loma Linda University Medical Center Patient positioning system for radiation therapy system
US8196589B2 (en) * 2003-12-24 2012-06-12 Calypso Medical Technologies, Inc. Implantable marker with wireless signal transmitter
US20050154284A1 (en) * 2003-12-31 2005-07-14 Wright J. N. Method and system for calibration of a marker localization sensing array
US7684849B2 (en) * 2003-12-31 2010-03-23 Calypso Medical Technologies, Inc. Marker localization sensing system synchronized with radiation source
US20050154280A1 (en) * 2003-12-31 2005-07-14 Wright J. N. Receiver used in marker localization sensing system
US7073508B2 (en) 2004-06-25 2006-07-11 Loma Linda University Medical Center Method and device for registration and immobilization
DE102004050428B4 (en) * 2004-10-15 2006-09-28 Mtu Aero Engines Gmbh Device and method for displaying the effective direction of a working medium
EP2191774A3 (en) * 2004-12-06 2010-06-23 Cambridge Research & Instrumentation, Inc. Systems and methods for in-vivo optical imaging and measurement
US7147371B2 (en) * 2004-12-10 2006-12-12 Joseph Hecker Laser guides for X-ray device
US7349730B2 (en) * 2005-01-11 2008-03-25 Moshe Ein-Gal Radiation modulator positioner
US7014361B1 (en) * 2005-05-11 2006-03-21 Moshe Ein-Gal Adaptive rotator for gantry
GB2436424A (en) * 2006-02-28 2007-09-26 Elekta Ab A reference phantom for a CT scanner
DE102006021681A1 (en) 2006-05-10 2007-11-22 Lap Gmbh Laser Applikationen Apparatus and method for checking the alignment of lasers on a diagnostic and / or therapeutic machine
US7587024B2 (en) * 2006-09-01 2009-09-08 Siemens Aktiengesellschaft Particle beam irradiation system
US7535991B2 (en) 2006-10-16 2009-05-19 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US7620147B2 (en) * 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
US8210899B2 (en) * 2006-11-21 2012-07-03 Loma Linda University Medical Center Device and method for immobilizing patients for breast radiation therapy
US8363783B2 (en) * 2007-06-04 2013-01-29 Oraya Therapeutics, Inc. Method and device for ocular alignment and coupling of ocular structures
US8506558B2 (en) * 2008-01-11 2013-08-13 Oraya Therapeutics, Inc. System and method for performing an ocular irradiation procedure
CN101329813B (en) * 2007-06-20 2010-09-29 鸿富锦精密工业(深圳)有限公司 Three-dimensional remote-control device as well as three-dimensional remote-control system
US7801271B2 (en) 2007-12-23 2010-09-21 Oraya Therapeutics, Inc. Methods and devices for orthovoltage ocular radiotherapy and treatment planning
EP3272395B1 (en) * 2007-12-23 2019-07-17 Carl Zeiss Meditec, Inc. Devices for detecting, controlling, and predicting radiation delivery
US7789561B2 (en) * 2008-02-15 2010-09-07 Xiaodong Wu Laser aligned image guided radiation beam verification apparatus
WO2009149409A1 (en) 2008-06-05 2009-12-10 Calypso Medical Technologies, Inc. Motion compensation for medical imaging and associated systems and methods
US7668292B1 (en) * 2008-08-26 2010-02-23 Siemens Medical Solutions Usa, Inc. Patient setup error evaluation and error minimizing setup correction in association with radiotherapy treatment
US8077328B2 (en) * 2009-07-06 2011-12-13 Gammex, Inc. Variable color incoherent alignment line and cross-hair generator
US8908162B2 (en) 2011-02-24 2014-12-09 Idi Dental, Inc. System for aligning a collimator and an alignment ring
US8976236B2 (en) * 2011-11-08 2015-03-10 Mary Maitland DeLAND Surgical light and video control system and method of use
US8644571B1 (en) 2011-12-06 2014-02-04 Loma Linda University Medical Center Intensity-modulated proton therapy
US10463339B2 (en) * 2013-02-11 2019-11-05 Nikon Metrology Nv Artefact for evaluating the performance of an X-ray computed tomography system
US9884206B2 (en) 2015-07-23 2018-02-06 Loma Linda University Medical Center Systems and methods for intensity modulated radiation therapy
US10561860B2 (en) * 2016-11-23 2020-02-18 Jennifer Hertzoff Imaging beam positioning apparatus and method of use thereof
US11135449B2 (en) * 2017-05-04 2021-10-05 Intraop Medical Corporation Machine vision alignment and positioning system for electron beam treatment systems
CN115068833B (en) * 2021-03-15 2024-02-06 湖南华创医疗科技有限公司 Positioning device for beam stopper and radiation therapy system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314158A (en) * 1980-04-01 1982-02-02 Siemens Medical Laboratories, Inc. Electron applicator for a linear accelerator
US4638814A (en) * 1984-09-11 1987-01-27 Siemens Medical Laboratories Electron accelerator unit for electron beam therapy
US4672212A (en) * 1985-02-28 1987-06-09 Instrument Ab Scanditronax Multi leaf collimator
GB2211709B (en) * 1987-10-28 1991-03-20 Philips Electronic Associated Multileaf collimator and related apparatus
US5027818A (en) * 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
US5233990A (en) * 1992-01-13 1993-08-10 Gideon Barnea Method and apparatus for diagnostic imaging in radiation therapy
DE4207632C2 (en) * 1992-03-11 1995-07-20 Bodenseewerk Geraetetech Device and method for positioning a body part for treatment purposes
US5446548A (en) * 1993-10-08 1995-08-29 Siemens Medical Systems, Inc. Patient positioning and monitoring system
US5553112A (en) * 1995-06-06 1996-09-03 Medical Instrumentation And Diagnostics Corp. Laser measuring apparatus and method for radiosurgery/stereotactic radiotherapy alignment

Also Published As

Publication number Publication date
US5745545A (en) 1998-04-28
GB9717298D0 (en) 1997-10-22
GB2317545A (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US5745545A (en) Alignment system and method for intra-operative radiation therapy
US6914959B2 (en) Combined radiation therapy and imaging system and method
CA2213069C (en) Identification system and method for radiation therapy
EP1123059B1 (en) System for positioning patients
US6260999B1 (en) Isocenter localization using electronic portal imaging
KR100528101B1 (en) Proton beam digital imaging system
US6760402B2 (en) Verification of mlc leaf position and of radiation and light field congruence
US7502443B1 (en) Radiation therapy machine with triple KV/MV imaging
US7016522B2 (en) Patient positioning by video imaging
US7587024B2 (en) Particle beam irradiation system
US5657368A (en) Apparatus for positioning and marking a patient at a diagnostic apparatus
EP0776637A1 (en) Stereotactic radiosurgery
WO2006061772A2 (en) In bore ct localization marking lasers
EP1079735B1 (en) Laser soft docking system for medical treatment system
WO2018038299A1 (en) Patient alignment method and system using light field and light reflector during radiation therapy
Via et al. A platform for patient positioning and motion monitoring in ocular proton therapy with a non-dedicated beamline
JP2004121406A (en) Radiotherapeutic medical treatment device
JPH06105922A (en) Radiation treatment device for external irradiation
US20220347494A1 (en) Radiotherapy apparatus comprising an imaging ring

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued