CA2184165C - A telephone communication system having a locator - Google Patents

A telephone communication system having a locator Download PDF

Info

Publication number
CA2184165C
CA2184165C CA002184165A CA2184165A CA2184165C CA 2184165 C CA2184165 C CA 2184165C CA 002184165 A CA002184165 A CA 002184165A CA 2184165 A CA2184165 A CA 2184165A CA 2184165 C CA2184165 C CA 2184165C
Authority
CA
Canada
Prior art keywords
telephone
pbx
telephones
function
locator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002184165A
Other languages
French (fr)
Other versions
CA2184165A1 (en
Inventor
Michael Yacenda
John Chaco
Yaron Ram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitel Business Systems Inc
Original Assignee
Executone Information Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Executone Information Systems Inc filed Critical Executone Information Systems Inc
Publication of CA2184165A1 publication Critical patent/CA2184165A1/en
Application granted granted Critical
Publication of CA2184165C publication Critical patent/CA2184165C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/42127Systems providing several special services or facilities from groups H04M3/42008 - H04M3/58
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
    • G08B3/1008Personal calling arrangements or devices, i.e. paging systems
    • G08B3/1016Personal calling arrangements or devices, i.e. paging systems using wireless transmission
    • G08B3/1083Pager locating systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/02Telephonic communication systems specially adapted for combination with other electrical systems with bell or annunciator systems
    • H04M11/022Paging systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/42229Personal communication services, i.e. services related to one subscriber independent of his terminal and/or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/42314Systems providing special services or facilities to subscribers in private branch exchanges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/50Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
    • H04M3/51Centralised call answering arrangements requiring operator intervention, e.g. call or contact centers for telemarketing
    • H04M3/5108Secretarial services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/50Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
    • H04M3/527Centralised call answering arrangements not requiring operator intervention
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2242/00Special services or facilities
    • H04M2242/30Determination of the location of a subscriber
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/38Graded-service arrangements, i.e. some subscribers prevented from establishing certain connections
    • H04M3/382Graded-service arrangements, i.e. some subscribers prevented from establishing certain connections using authorisation codes or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/436Arrangements for screening incoming calls, i.e. evaluating the characteristics of a call before deciding whether to answer it
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S379/00Telephonic communications
    • Y10S379/903Password
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S379/00Telephonic communications
    • Y10S379/913Person locator or person-specific
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S379/00Telephonic communications
    • Y10S379/914Programmable telephone component

Abstract

A telephone communication system having a locator system for locating telephone users and generating location information. The telephone communication system includes a plurality of telephone functions which are user accessible for usage in conjunction with the location information. Each telephone (12, 14, 16) of the system may be configured to facilitate interactive control and selection of the system features by the users.

Description

A TELEPHONE COMMUNICATION SYSTEM HAVING A LOCATOR
FIELD OF THE INVENTION
The present invention generally relates to a telephone communication system and more particularly a telephone communication system having a PBX connected to a locator system which determines the locations of the telephone users.
BACKGROUND OF THE INVENTION
Location systems for locating objects or personnel within a facility and their use in conjunction with telephone systems have previously been proposed. Typically, location systems locate personnel or objects by seeking out where the objects or personnel are closest to designated monitors. Such systems generally include a central controller connected to a plurality of transceivers distributed at designated locations throughout a facility. Portable units are worn or attached to objects or personnel to be located. Each portable unit is assigned a unique identification. In some systems, the central controller causes the transceivers to broadcast or page the portable unit by its identification. The broadcast or page signal is received by the portable units but only the portable unit having a matching identification will respond with a confirmation signal, which is received by the transceiver located closest to the responding portable unit. The transceiver in turn reports to the central controller that it has received a confirmation signal. The location of the 21841 b5 portable unit is determined by the central controller by the message received from the transceiver. Location systems employing such location technique are described, for example, in U.S. Patent No. 4,649,385 to Aires et al.; and U.S. Patent Nos. 3,805,265, 3,805,226 and 3,696,384 to Lester.
T'-~ proposea use of locator systems in conjunction with *elephone systems have usually been in the form of locating the called party end automatically ringing the telephone closest to the ,a~l~d party. While such systems world significantly re~:.ucz the "phone tagging" problems, (i.e., the calling :nd called parties repeatedly calling each other withoL~t an actual conversation, which are common in office f,clities), numerous problems associated with the use of telephones remains. For example, a busy called party who does not wish to answer the phone, who does not want to be disturbed or who wishes an opportunity to screen a caller, must nevertheless take the call. Ark automatic PBX/locator system may also be the cause of other problems, for example, the automatic routing of a call to a telephone in a conference room, causing disruption to an important meeting.
Therefore, a need exists for a telephone/locator system which provides advanced features to address the above problems and to facilitate interaction and control of the system by the users.
SUMMARY OF THE INVENTION
The present invention utilizes a PBX and a locator communication system adapted for wireless communication of information including identification information and for locating individuals. A plurality of portable badge units are associated with respective individuals and the -identification information is transmitted to a central ~ 184165 processing unit through a plurality of transceivers which are spatially dispersed throughout the facility. A private exchange may be used to determine the location of the individuals and to route telephone calls to the detected locations.
Various techniques may be employed to locate ~: ividuals d..~ to rotate telephone calls for the individuals. Fo:~ exar:ple, a method for locating individuals is provided whic~'a ir.clndes the steps of positioning a plurality of trGnscnivers in a closed environment and coupling the transceivers to a central processor which in turn is c~~.pled to a private-branch exchange. The transcPveers receive transmissions from the badges and relay ,.:_~, information to the central processor, which in turn directs the PBX to route to the closest telephone.
Alternatively, the plurality of telephones coupled to the PBX may include wireless sensors for receiving transmissions from the badges and therefore:act as transceivers. In such case, the wireless sensor is 20. incorporated as part of the telephone circuitry which includes identification processing circuitry and telephone transmitting and receiving circuitry to transmit and receive voice and data information.
Once the badge unit information is transmitted to a telephone, the information is transferred to the private-branch exchange where it is processed to determine the location of each individual in the closed environment.
After the location of an individual is determined, telephone calls may then be routed to the individual at the detected location.
According to the system and method according to the present invention, the telephone/locator system is capable of interacting with the users of the system and accepts user commands for controlling the system. For example, the locator information from the locator system may be used in conjunction with advanced telephonic functions, such as automatic callback, preprogrammed call blocking, do not disturb and auto call screening. The system is also capable of user programmed functions such as monitoring of specified location sensors and telephone conditions and the automatic actuation of devices upon the occurrence of such conditions. With the adaptability and interactive capabilities, the telephone/locator system according to the invention provides automatic or on-demand location, connection and communication information among the system users.
Therefore, various aspects of the invention are provided as follows A telephone communication system, comprising:
~ (a) a private branch exchange (PBX) having a processing unit and a plurality of telephones for facilitating telephone communication between a plurality of telephone users; and ~ (b) a locator system electrically connected to said PBX for providing location information, said locator system comprising:
~ a plurality of portable badges, each associated with a respective one of a plurality of telephone users and transmits badge information including an identification signal for identifying the telephone user associated with said respective badge; and ~ a plurality of transceivers, each electrically connected to said PBX and each adapted for receiving said badge information transmitted from said badges and for electrically forwarding at least a portion of said badge information to said processing unit of said PBX to determine location information of said telephone users;
said PBX further having a memory for storing said location information and stored programs for implementing a plurality of telephone functions in conjunction with said location information; each of said telephones having a keypad for selectively accessing said locator system and said telephone functions, a data receiver for receiving location information from said PBX, and a display for displaying said location information received from said PBX upon access of said locator system from said keypad.
A communication system for wireless communication of personal information including identification information between a plurality of telephones and a private-branch exchange, which comprises:
~ a private-branch exchange; and ~ a plurality of telephones, each of said plurality of telephones having a wireless receiver located at least partially therein for receiving wireless transmitted data, including remote transmitter identification from a remote transmitting device, said plurality of telephones having a processor coupled to voice and data transmission and receiving circuitry to facilitate bidirectional telephone communication with said private-branch exchange to provide telephone communications between said plurality of telephones;
wherein information received from said remote transmitting device is transferred to said private-branch exchange by said voice and data transmission circuitry, and wherein said private--4a-branch exchange processes said information received from said remote transmitting device to determine the location of an object or person associated with said remote transmitting device.
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the invention are described hereinbelow with reference to the drawings wherein:
Fig. 1 illustrates the system configuration for the telephone communication system of the present invention;
Fig. 2 illustrates an alternative system configuration for the telephone locator system of the present invention;
Fig. 3 illustrates a side elevational view of the housing of an exemplary badge unit according to the present invention;
Fig. 4 illustrates a top plan view of the housing of the badge unit according to the present invention;
Figs. 5 and 6 illustrate front and side elevational views of a function card according to the present invention;
Fig. 7 illustrates a top plan view of the housing of Fig. 4 having a function card inserted therein;
Fig. 8 is a block diagram of the components of the badge unit according to the present invention;
-4b-. ~~ ~~~ 6~ .
Fig 9 is a block diagram of the components for the telephone Yansceivero- of Figure 2;
Fic ~0 is an exemplary flow diagram showing a process of t: 'ransceivers in receiving badge data and trans.~~ ~.tting ~ data to the PBX;
F. 11 and 12 a:~e block diagrams of an infrared re~eW er ar.a ..ransmittei , respecaively, suitable for the infr~wed receiver and tran.;mitt : portion of the telephone acr:ording to the present i nventi~n;
Fig. 13 is an a.'te.rzate configuration of a tr~~nsceiver having hub tra.nsmitter/receivers;
Fig. 14 i~_.ustrates the alternative telephone cc;mm~nication h=ring the transceivers in a hub conf iguraLi;:n Fig. 15 illustrates exemplary data frames for communication between the telephone and the private-branch exchange;
Fig. 16 illustrates the data frames of Fig. 15 in an expanded form;
Fig. 17 illustrates exemplary data frames for communication from.the private-branch exchange to the telephone in an expanded form;
Fig. 18 illustrates typical input and output waveshapes for the waveshaping and amplifier network of Fig.
13;
Fig. 19 illustrates an alternative embodiment of the locator system of the present invention, illustrating a wall mounted transceiver;
Fig. 20 is a block diagram of the components of the transceiver of Fig. 19;
Fig. 21 is a flow-chart diagram for an exemplary operation of the telephone system of the present invention;
WO 95/23478 2,' 8 416 5 pCT/US95/02441 Fig. 22 is a flow-chart diagram for the utilization of the locator function to search for individuals;
Figs. 23, 23A and 23B are flow-chart diagrams for the group locate function according to the present invention;
Figs. 24, 24A, 24U, 2-~L and =4U are zi~-a-chart diagrams for implementing party unavailable and extension busy functions for the syste:a of the present invention;
' Fig. 25 is a flow--chart diagram for implementing a call screening function for the system of the present invention;
Fig. 26 is a flo:~-c: art diagram for implementing a secretary tracking function for t~.e :-vs~-.em of the present invention;
Fig. 27 is a flow-chart diagram for the operator find function according to the present invention;
Fig. 28 is a flow-chart diagram for the locator function implementing a voice recognition function for responding to telephone calls;
Fig. 29 is a flow-chart diagram for the station reconfigure function according to the present invention; and Fig. 30 is a flow-chart diagram for the programmable logic function according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
System Confiquration Fig. 1 illustrates an exemplary embodiment for the system configuration of the present invention. As shown, PBX 10 is connected to numerous telephones, e.g., telephones 12, 14 and 16, and central computer 20 is connected to a plurality of transceivers, e.g., 50, 52 and 54, each of which includes a wireless receiver/sensor adapted to receive radiated energy from a remote transmitting device.
Preferably, such receiver/sensor is adapted to receive infrared signals from the remote transmitter.
Each personnel 17 in the facility is provided with a remote transmitting de~.-:~e, such as badge unit 18, which periodically transmits p_.:xetermined persorr:Pl information.
Ff~° the purposes cf w'_~rity ~.r ;.ne pLa::~nt detailed description, the persor.:.al information transmitted by badge 18 will be identifi~.d as badge data, and inormation transmitted to the badge will be identified as return badge data. Each transceiver is capable of rF~aiving the badge data when the badge transmitters are ?n the transceiver's reception range. The transceiver ~.~etects, digitize and may process the received raa~~~nd ~aergy and transfers the processed information to the central computer 20 or, alternatively, directing to the PBX 10. The PBX can then, for example, utilize the information to re-direct incoming calls for each particular person to their detected location, as noted above.
PBX 10 is connected to central computer 20 to couple the central computer to the telephones located in the facility. Central computer 20 provides standard control of PBX 10 such as processing telephone data received by the PBX
and providing the PBX with the connection information to interconnect particular telephones. For example, if a telephone user ("the calling party") calls another extension connected to the PBX, central computer 20 processes the telephone data, e.g., the extension of the called party, and provides the PBX with the necessary information to interconnect the two telephones. In addition central computer 20 is utilized to process the information received from the remote badges, such as determining the identity of the person associated with the respective badge. Central computer 20 may also be utilized to update the display of 21841 b5 the calling party's telephone with the location information of the called party. Alternatively, the components and functions of central computer 20 may be incorporated within PBX 10, and all the functions of central computer 20 can be performed by the PBX 10. The PBX 10 includes a processing unit (not shown), stored programs and means for facilitating telephone functions such as special ring tones, ~allb=~~, caller ID, call blocking, do not disturb, call f,~rwarding, camp-on, voice-mail, etc. Implementation of these functions are known to one skilled in the telephone ar=. Preferably, PBX 10 is a model IDS-228, commercially avai.able from EXECUTONE Information Systems, Inc.
In an alternative embodiment as show:, in Fig. 2, transceiver is incorporated into each of the telep~.=~ns '_2, 14 and 16, i.e., each of the telephones includes a wireless sensor for receiving wireless transmissions from the badges.
The badge information can then be relayed by the telephones to the PBX through the existing telephone to PBX
connections. In a further alternative embodiment, each telephone (12, 14, 16) includes a wireless transmitter and each badge includes a wireless receiver to facilitate bidirectional wireless communication between the telephone and the badges. The badge signals received by the telephones include telephone user information, such as the identification information of the remote transmitter for the telephone user. Each telephone preferably includes a display for displaying the location of the called person.
If the called person is moving from one location to another and the telephone connection remains connected, the locations of the called person may be updated substantially continuously on the display, so as to enable the caller to track the locations) of the called person. An exemplary telephone having a transceiver is shown in Fig. 6 and is disclosed below. Figure 2 also shows an operator station 22 _g_ WO 95123478 ~ rj ~ PCT/US95/02441 and actuable device 25 connected to the PBX 10. A personal computer (PC) 29 may be linked to the PBX 10, either directly or through the telephone 12. The operator station 22 is used to perform operator functions such as connecting incoming calls to the users of the facility. According to the present invention, the operator station 22 includes a display for displaying, on c?Pmand or ~:~ a continu~~~ly updated basis, the locations of one users of the system ana also identify the persons locited at specified teleprone to extensions.
The actuable device 25 may be a mechaW ;:al or electrical device, e.g., a thermostat, a door ~~ck which may be remotely controlled by comma~ds from the 2BX. The PC 29 may communicate with the PBX to acce5~ f-:.nction modules such as a Logical Function Module to be described below.
Remote Transmitting Device An example of a suitable transmitting/receiving device (badge) is shown in Figs. 3-5 and 7. As shown in Figs. 3 and 4, the transmitting/receiving device is a badge unit 18 having associated electronics enclosed in housing 310. Generally, housing 310 is shaped and sized like an ordinary credit card and includes clip 312 which is secured thereto via resilient band 314, so the badge can be worn by personnel. Preferably, housing 310 is approximately 3.8 inches in length, 2.27 inches in width and .39 inches in thickness and includes slots 316 and 318 for slidably receiving and maintaining a personnel or a smart card. Card switch 520, shown in Fig. 5, is disposed in slot 316 in the path of the personnel card so that when the personnel card is inserted into slots 316 and 318 of housing 310, card switch 520 is opened. The personnel card may be an ordinary business card, a smart card having electronically stored information, or like member which includes a prearranged WO 95!23478 2 1 $ 416 5 PCT/US95102441 mark pattern, which when coupled to the housing, produces data which may represent canned messages.
According to the embodiment as shown in Figs. 5-7, the personnel card may be a function card 320 having a plurality of function keys 322 arranged thereon in a standard keypad matrix. The keypad matrix is coupled to edge connector 324. One or more serial number generator 3i~i is coupled to the keypad matrix such that upon pressing tra appropriate function key or sequence of function keys, preassigned data is output to the edge connector 324. The serial number generator 324 includes a number, which miy be up to 48 bits, which has been embedded in silicon. The serial number generator is connected to a high voltage l,::vel and ground to create the '1' and '0' data. The preassigned data may be prearranged to represent an identification number, a password, or canned messages. The data output at the edge connector 324 is transferred to microcontroller 510 of badge unit 18. An example of a suitable: serial number generator is the model DS2400 silicon serial number manufactured by DALLAS Semiconductor. Function card 320 is in a streamline configuration so that it may be inserted within slots 316 and 318 of housing 310, as shown in Fig. 7.
In this alternative embodiment the function card 320 is coupled to microcontroller 510 via edge connectors 324 and 328, as shown in phantom in Fig. 5. Edge connector 328 is positioned within slots 316 and 318 of housing 310 so as to engage edge connector 324 when the function card is inserted in the slots, as shown in phantom in Fig. 7.
As noted, the function card is coupled to microcontroller 510 and is provided to activate predefined functions from predefined commands. The predefined functions are performed by microcontroller 510. For example, an individual may initiate a locator function (described hereinbelow) from the badge unit 18 by pressing a WO 95!23478 2 ~ 8 416 5 PCT~S95/02441 single function key or a sequence of function keys, which define a command signal. The command signal is transferred to microcontroller 510 which reconfigures the command signal and transmits corresponding badge data to a telephone IR
receiver or to transceiver 24. The telephone then transfers the badge data to PBX 10 and/or computer 20 to activate the selected function. Preferably, the functions xElj may L_ used to define custom instructions specific to try user.
For example, the badge user may enter his pass~.,rord and define specific conditions to be met before a call is transferred to his extension from the locator system. In another example, the function key may cause mi~rocontroller 510 to transmit a preassigned ("canned") messag,, to perform a specific function, such as change the voice mail L_~~ti~.n to the secretary tracking function. Such functions are described in more detail below. The function card may also be utilized to initiate a station reconfigure function which is also described hereinbelow.
The housing 310 also includes select button switch 522, shown in Figs. 3 and 8, which facilitates manual communication to microcontroller 51o so that a user may select desired operational functions, such as mode select or transmission of a preselected message. The function selected is dependant upon the number and sequence of button pushes. The modes of operation may include: "erase memory"
for erasing the contents of the RAM memory; "turn-off transmitter" for disabling any transmission from the badge;
"card reinsertion" for turning off the badge when the personnel card is removed until a card is reinserted; "ID
code change" for changing the ID code to a special preselected code to signal an abnormal condition; and "disable counters" mode, which overrides parameter operations for turning off or disabling the badge and maintains badge operations. Alternatively, the housing 310 WO 95/23478 PCTlUS95102441 z~ g~~ 65 may include a keypad 526 which facilitates manual communication to microcontroller 510 so that a user may select desired operational functions, as well as transmit messages to computer 20. The housing further includes a display 528 for displaying information transmitted to or received from computer 20. More particularly, the display is utilized to display the operational functions selected by select button switch 522 or keypad 526, any messages or data entarad by the keypad and any messages or data received from 10-~ computer 20. A speaker 530 and associated voice circuit 532 may also be included in housing 310. The speaker is provided to broadcast audio messages, for example, messages received from computer 20. Voice circuit 532 translates digital signals received by receiver 516 and processed by microcontroller 510 to audio signals which excite speaker 530.
Fig. 8 shows the components of the exemplary badge unit according to the preferred embodiment of the present invention. The badge unit circuitry includes a microcontroller 510 for controlling the.operations of the badge and a transmitter 512 for transmitting or radiating signals to a plurality of receivers. Preferably, transmitter 512 is an infrared transmitter. Microcontroller 510 is preferably a single integrated circuit chip which includes a processor, RAM and ROM memory and input/output (I/0) ports. The ROM memory may be of the programmable type which stores software programs for operating the badge.
Examples of programs stored within the ROM include: a program for controlling transmitter 512; for monitoring operational parameters of the badge unit; and for interfacing with external devices. Generally, the operational parameters are used to safeguard against unauthorized use of the badge and to conserve battery power.
The parameters include: rate of transmission; maximum duration of operation; card-out duration; maximum number of transmissions; and the length of the ID.
The "rate of transmission" parameter is the time rate or period between each transmission from the transmitter 512. This parameter value is input to a counter and is counted down to zero until the next transmission.
The actual rate of transmission will vary from badge to badge even if each badge is preset with the same rate of transmission because the microprocessor clock is derived from a resistor/capacitor time constant network and the microprocessor clock period will necessarily vary along with the variations within the tolerance of the resistor/capacitor devices. With such variations, when mc,.-e than one badge is transmitting to the same receiver, the likelihood of two consecutive transmission bursts of information arriving at precisely the same time as the receiver is substantially nonexistent.
The "maximum duration of operation" parameter is a preset time limit which is monitored by the microcontroller processor. The expiration of this parameter causes the badge to switch to another operating mode. This parameter allows a system administrator to limit the time of usage of the badge dependent upon the user. This parameter is also useful for automatically turning off the badge after a certain time of operation to conserve battery power.
The "card out duration" parameter is the amount of time which is monitored when the personnel card is removed from the badge. The expiration of the card out duration will cause the badge unit to turn off or switch to another operating mode.
The "maximum number of transmissions" is a count value which is decremented each time a badge transmits.
When this value reaches zero, the badge unit will, depending on the preset mode of operation, halt all transmissions, alert the user of the condition, and/or switch to another preselect operation mode.
The "length of ID" allows the user to adjust the transmission of the length of ID to include other pertinent information. The RAM memory includes a database for storing such information, e.g., badge data, including the ideui':.~fication code of the badge and operational parameters ' which arP retrieved and monitored by the processor for operating th~~ k~adge unit. The database may further include informatior_ such as passwords, access codes for secured areas, er canned messages. The processor functions include:
logical and arithmetic operations and coordination of data cransfer to and from microcontroller 510. A microcontroller such as the PIC~16C5X manufactured by Microchip Technology, Inc. is used in the preferred embodiment of the present invention. However, it is apparent to one skilled in the art that any microcontroller having equivalent performance characteristics and similar in size may also be used.
An edge connector 514 facilitates interfacing the 2o components of the badge to an external processing device ("the base"), such as a computer. The edge connector 514 preferably has four connections which include a "Bidirect I/O" connection to an input/output port of microcontroller 510 for bidirectional communication with the microcontroller. Data can be written into or read out of the microcontroller memory by an external processing device through this connection. A standard serial interface protocol such as RS-232 may be used for data communication to the external processing device. An "In-Base" connection is monitored by the microcontroller 510. An active signal at the "In-Base" input indicates that the microcontroller is to relinquish control of the badge unit to the external processing device. The badge according to the present invention is powered by a battery, which preferably is made of lithium. However, other battery designs such as a NICAD
(nickel cadmium) rechargeable type or solar cell may also be used. Therefore, another input connection of edge connector 514 in combination with blocking diode 524 may be used to recharge S the battery. The fourth connection of the edge connector 514 is a spare input/output.
As noted above, the badge may also include a wireless receiver adapted to receive radiated signals from transceivers or the telephones. Generally, the wireless receiver 516 has a light sensitive LED array which is utilized to input data received from a telephone into microcontroller 510 by serially strobing a light source modulated by data into the microcontroller 510.
An oscillator 518 is connected to the microcontroller 510 and provides an oscillation signal, which in turn generates a clock signal for clocking or timing purposes. In the preferred-embodiment, oscillator 518 includes a resistor/capacitor combination for providing a clock which operates at a frequency of about 455 kilohertz. Due to variations in the tolerances of the resistor/capacitor combination, the clock rate for each badge unit will vary from one badge to another substantially around 455 kilohertz. The microcontroller 510 also includes a prescaler for providing timing and clock signals. A more detailed description of the badge unit and the data format of the infrared transmission is described in commonly assigned U.S.
Patent No. 5,455,851 issued October 3, 1995.
Telephone Circuitry Fig. 9 illustrates an exemplary embodiment for the hardware of each telephone utilized within the facility. The telephone circuitry includes microcontroller 610 for controlling the operations of the telephone and 2) X4165 communication hardware for interfacing the telephone with the PBX. The microcontroller and communication hardware provide standard telephone communications with the PBX, and include, for example, a keypad for dialing, a ring indicator for identifying incoming calls, a handset with a speaker and microphone, and in some in:.=i:ances, an LCD display for proviuina ~-i~ual infor~u~:~.ion. The telephones of the present inver.ion also include inf-ared receiver 612 for receiving badge transmissions and ar opitcnal infrared transmitter 614 for transmitting infrared sic~7a7s from the telephone to the ba ~ige .
PreferabJ~-, microcontroller 610 is a single interated circu?L chip which includes a processor, RAM and ROM memory ~~'.. I/O ports. An example of a suitable microcontroller is the model 80C51 manufactured by Motorola.
However, one skilled in the art would know that any microcontroller having equivalent performance characteristics may also be used. The ROM memory may be of the programmable type which stores software programs for operating the telephone features, e.g., a Rolodex type directory of telephone numbers for access and display by the user, for speed dialing or displays of pertinent information such as the number of the called telephone, the location of the called personnel, or a real-time count of the duration of the call, etc.
Examples of programs stored within the ROM
include: a program for controlling the reception of badge data and transmission of return badge data to badge unit 18;
programs for transferring the received badge data to the PBX; and programs for receiving return badge data from the PBX. An example of one such program is illustrated in Fig.
10. In this example, the infrared (IR) badge data is received by receiver 612 and transferred to microcontroller 610 (step 710).

Microcontroller 610 determines the energy level window of the received infrared signal, using a plurality of comparators each having a predetermined threshold value so as to provide a signal range or window of the energy level of the received signal (step 720), and formats the badge data includ~.ng the IR energy level data into a micro~..:wtroller data frame (step 730). Microcontroller 610 then waits for an interrupt from the PBX and upon receipt thereof se;Zds 'che badge data to the PBX. Alternatively, microcontroJ.?er 610 forwards the data frame to the PBX in a period°... basis (e. g., every 2 seconds) without any interrupt fro~~ the PBX. The data frame may be forwarded to the PBX, fir example, via a robbed bit signaling technique, which will be described in more detail below (steps 740 and 750).
The RAM memory of microcontroller 610 may include storage of the retrieved badge data and the return badge data. Functions associated with the microcontroller processor include: logical and arithmetic operations and coordination of data transfer to and from microcontroller 610.
The other components of the telephone, including receiver waveshaping and conditioning 620, PCM codes 617, transmitter conditions 618, parallel-to-serial and serial to parallel converters 616 and 624, respectively, are well known telephone components, the operations of which are apparent to one skilled in the art, but are further . described below.
Telephone Infrared Receiver Referring to Figs. 9 and 11, an exemplary embodiment for the infrared receiver portion 612 is illustrated. Infrared light sensitive diode array 810 receives infrared signals, preferably frequency modulated infrared signals, transmitted from an infrared transmitter, 21841 ~5 such as badge unit 18. Waveshaping and amplifier network 812 conditions and amplifies the signals generated by the diode array 810. FM receiver 814 demodulates the data from the carrier signal and serially transfers the received data to an I/o connection of the microcontroller 610. According to the preferred embodiment of the prPSent invention, the receiver is ~:araale ~° ~ecemn~ infrared transmissions from badge units up ';.~ a 'distance of 30 r'eet. Microcontroller ' 612 receives the serial data from Fr: receiver 814 and extracts tha: badge data, e.g., the idPrtity information, associated ~.~ith badge unit 18. ~:ie extracted data is reformatted and forwarded in ~ message frame to PBX 10 in a manner as ~Jil~ be describec' below. A more detailed description of the ='M ~~.frared transmitter and receiver and their operation are described in U.S. Patent No. 4,977,519 to J. Crimmins, which is, incorporated herein by reference.
Telephone Infrared Transmitter Referring to Figs. 9 and 12 an exemplary embodiment for the infrared transmitter portion 614 is illustrated. Transmitter portion 614 includes FM Generator 910, LED driver 912 and LED array 914 which radiate energy for detection by the badge unit. FM Generator 910 receives from microcontroller 610 a serial data bit stream reflective of the information to be transmitted and generates a carrier signal which is frequency modulated by the serial data. The modulated signal is fed to LED driver 912 for providing current driving capability to LED array 914. According to the preferred embodiment, LED array 914 emits infrared signals. The FM infrared signal transmission technique is known to one skilled in the art. A more detailed description of an FM infrared transmitter/receiver and its operation is described in U.S. Patent No. 4,977,519 to J.
Crimmins. It is also readily apparent to one skilled in the WO 95/23478 2 ~ ~ ~ ~ 6 5 PCT/US95/02441 art that other known wireless data transmission techniques may be used, e.g., RF transmission and reception.
Hub Configuration The infrared transmitters and receivers associated with the :.°.lephones of the ~;r.esent invention may be co~:r~ec tea ir. , ~ emote ~.:.W arrang ement 1010 , as shown in Figs. '..~ and 14. In the pzeferrPd embodiment, the number of hub~, 1012 range between one any;. twelve and the number of bac'ges associated with each hub may range between 1 and 50.
However, the number of r;:ps and the badges associated with eac.~ hub may be incr~=sed by expanding the communication bandr,i.dth of the hib and/or the badges. The hubs 1012 receive L::_ 'n;rayed signals from the badge, extract the badge data and reformat the data for communication to microcontroller 610. A standard interface protocol such as RS-422 may be used for data communication between the hub and the microcontroller 610. In addition, hubs 1012 may also be configured to receive return badge data from microcontroller 610 and transmit the data to the associated badge.
Badge to Receiver Communication The data format of the transmission between the badge unit and the telephone infrared receiver according to the preferred embodiment of the present invention will now be described. When the initial software steps required for microcontroller 510, shown in Fig. 8, to transmit data are completed, the processor in microcontroller 510 fetches the data to be transmitted from the RAM memory location recognized to have the stored data for transmission, e.g., the badge identification number. The processor adds the necessary information and formats the data into an eight bit 21 X41 ~5 word, framed by start and stop bits. An exemplary data burst is as follows:
Byte l: START / CONTROL & PARITY / ID /STOP

Bytes 2-5: START J ID /STOP
1 2 3 4 5 6 7 8 9 i0 The control and parity field (e.g., bits 2 to 5 cf byte 1) identifies the type «f data word to follow. For example, a fixed or a variable length data word: A fired length data word may be knows; in the system as 5 byves long.
If the data is variable ler_~ t:~ , the length of aata to be transmitted is identified in tht r_ontrol f;eld. Parity information may also be included in this field.
The formatted data is forwarded serially from microcontroller 510 to the transmitter for transmission to a wireless receiver, e.g., telephones 12, 14 and/or 16, shown in Fig. 1. The data transmission duty cycle is selectable and preassigned, i.e., both the data transmission rate and the period between each data burst are selectable parameters and are preset during initialization. Preferably, the data is selected to transmit to the receiver at a rate of 19.2 khz and the time between each data burst (transmission period) is one to five seconds. The transmission period may vary between milliseconds to hours.
Communication Between the Telephone and the PBX
The badge data retrieved by microcontroller 610, shown in Fig. 9, is configured for transmission to the PBX
and stored in the microcontroller memory. Typically, voice and data communication between the telephone and the PBX is in the form of message frames which are divided into fields, e.g., a data field and a control field. As an example, the data field associated with voice data to the telephone is WO 95/23478 21 g 416 5 PCT~S95/02441 approximately 64 kilobits in length and the control field is approximately 2 kilobits in length. The control field includes a sync bit for synchronizing communications between the telephone and the PBX. The preferred transmission rate for data is 19.2 kHz.
Figs. 15-17 illustrate typical system timing and forma- -:iagrams fir the ,.ummumca;.~.on of data frames between the te~ephone or ;.iie transceiver of t~~e present invention and the PBX 1C. As shown in Fig. 15, the. data from microcontroll:r 610 in each telephone: is configured in a 16 bit parallel ~~ata word on the micYUc~~:itroller data bus, which is prefErably framed by ;a (1) start bit and seven (7) stop bits. Communications with the PBX system timing, on the other hand, a~.. ;°. a serial mode, therefore, the 16 bit parallel data word is converted to a serial data stream via parallel-to-serial converter 616. In addition, a synchronization bit (sync bit) is added into each microcontroller data frame so as to maintain clock alignment between the PBX and the telephone.
The transfer of the badge data to the PBX is preferably via a secondary channel of the PBX, such as the - data channel of an IDS 228 PBX, available from EXECUTONE
Information Systems, Inc. The data format of such PBX is similar to the transmission format of the data channel in the Basic Rate Interface of the ISDN.
Alternatively, a robbed bit signalling technique may be used, utilizing the robbed bit technique, one bit within every forth transmission of the microcontroller data frame is utilized for the transmission of the badge data.
Thus the effective data transmission rate of the badge data is approximately 2 kilobits, while the overall data transmission rate between the PBX and the telephone is 64 kilobits. Actual voice and telephone data transmissions between the PBX and the telephone may be by PCM format, 8 2 ~ g 41 ~ ~ PCTlUS95/02441 which utilize a primary channel. The secondary channel may be used for voice and/or data. PCM CODEX 617 compresses the analog voice data and formats the voice and data transmissions in the PCM format. Transmitter conditioner 618 amplifies and modulates each frame for transmission to the PBX. The primary channel is preferably a 64 kilobit channel to transfer the badge data to ~:~ T_'3X, a~ :~~ted above. The primary channel is also used ~r~ cransfer control information for the peripheral device (r.g., the PBX), a synchronization bit for the hardware, <~nd the PCM voice signal. Preferably, the secondary charunel is also a 64 kilobit channel to transfer badge data and is utilized to transfer EIA controls via robbed bit sig~~~alling for R~-232 or other applications. ' The badge data is formatted in the following protocol by microcontroller 610:
IR; ST; ENERGY LEVEL WINDOW; DATA,; SP
where the IR field is one byte and provides the PBX with the type of signal received from the badge (e.g., infrared), and the ST field, also one byte, is the start message field.
The ENERGY LEVEL WINDOW field is one byte and provides the PBX with a range of the energy level or the strength of the signal received from the badge. If the energy level is below a predetermined level, computer 20 may not consider the message from the transmitting device as valid data. The DATA field is preferably between one and five bytes in length and provides the PBX with the personnel data, e.g., the badge identity. The SP field is one byte long and is the stop message field.
If the telephones and badges are arranged in a hub configuration, shown in Figs. 13 and 14, the badge data is formatted in the following protocol by microcontroller 610:

IR; ST; ENERGY LEVEL WINDOW; DATA; SP; RECEIVER N0.
The first five fields are similar to those described above and the RECEIVER NO. field provides the PBX with the hub number (e. g., 1-12) associated with the badge that transmitted the message.
Fig. 15 also illust~ac,-.:a the ~wf~erentia:ron between a sync bit pulse and the ~~~~ce or data bit pul.;e.
Typically, a sync bit is definfd as the occurrence of vwo consecutive pulses in the time allotted for the transiTissi.on of one voice or data bit pulse Figs. 16 and 17 illu:.trate exemplary ~:~~sage frame formats and timing in an expardea form for vo~_ce, telephone data and badge data between the tele~:::_~~ .end the PBX. As noted, data from the microcontroller is in a 16 bit parallel format and is framed by one start bit and seven stop bits to form the microcontroller (uC) data frame, where each uC data frame is approximately 8ms in length. Parallel data from microcontroller 610 along with voice and telephone data is then converted to a serial data bit stream via parallel-to-serial converter 616 which then transfers the serial signal to transmitter conditioner 618. Transmitter conditioner 618 formats the signal to be transmitted into PCM format and drives the PCM signal to the PBX via the 4-pair telephone wire.
An exemplary embodiment of the format and timing of data transmitted from the PBX to the telephone is shown in Fig. 17. Return badge data, e.g., data to notify a called party of a call, generated in the PBX is formatted into an 8 bit microcontroller (uC) data frame of approximately 8 ms. in length (i.e., 1 ms/bit). Two of the eight bits are designated as auxiliary. A sync frame is then added into each bit portion of the uC data frame and WO 95!23478 . PCT/LIS95/02441 the resultant signal is conditioned for PCM transmission to the telephone.
The PCM signal received at the telephone from PBX
is then processed through a waveshaping and conditioning 5 network 620. Network 620 converts the received signal from the PCM format to a serial digital format, recovers the synchronization clock to sync the timing via phase-locked loop 622, and recaptures the voice, telephone data and return badge data utilizing the robbed bit signaling 10 technique. Data is retrieved by the receiver waveshapi-~g and conditioning network 620 using an alternate mark inversion (AMI) conversion technique. Fig. 18 illustrates exemplary input and output waveforms of the AMI conversio:, technique. The AMI conversion method changes the level of the output.waveform for each crossing of the zero line by the input waveform. The converted data is transferred to serial-to-parallel converter 624 which converts the data from a serial format to a parallel format, picks off the return badge data and transfers the data to microcontroller 610 for subsequent transmission to the badge.
Fig. 19 illustrates a typical setup of the system configuration having the transceivers disposed throughout the facility, e.g., office space and hallways, have wireless transceivers 24, attached to fixed surfaces such as the ceiling or walls in the office space. In one embodiment, the transceivers 24 include the same circuitry and operate in the same manner as the wireless transmitters and receivers incorporated in telephones 12, 14 and 16 shown in Fig. 1. Thus, all functions performed by the wireless transmitters and receivers in the telephones may be performed by transceiver 24. PBX 10 and the central computer 20 are connected to each transceiver 24 via appropriate cabling and data communications between either the PBX or the central computer and may be accomplished the same as described above with respect to the wireless transmitters and receivers incorporated into the telephones.
Alternatively, as shown in Fig. 20, transceiver 24 includes infrared transmitter 512 and receiver 516 connected to a transceiver microcontroller 510 which is coupled to a remote communications processor, such as the central computer 20 or the PBX 10. The transmitter- ,:nd rP~.~~.~er 51~
and 516 respectively, and processor 510 are :~=ascribed hereinabove with respect to Figures 8 ana 9. Communications between the processor 570 and either central computer 20 or PBX 10 may be accomplished using serial or parallel communication techniques such as described for the telephones or via other standard techniqu~.~, such as, fir example, RS 232.
Fig. 21 illustrates an example of the operational flow of the system of the present invention tracking users and routing a telephone call to a user. The PBX either periodically or aperiodically receives the badge data, e.g., user identification information, from telephones or transceivers within the closed environment (step 1610). The received badge data is then transferred to the PBX 10, which determines whether the IR energy level is above the threshold level (step 1620). If the energy level is below the threshold level, the badge data is discarded. If the energy level satisfies the threshold level then PBX 10 determines the identity of the user from the user identification data and the location of the telephone (step 1630). PBX 10 and/or Computer 20 then stores the identity and location of the user in internal memory (step 1640).
According to a preferred method of the present invention, the PBX 10 and/or computer 20 archives each user's location in memory, preferably the five last locations of each user and time stamps each new location entry. The system accomplishes this by keeping a separate 2184 i b5 memory area for each user, preferably by allocating a memory area such as user LD number + 10 memory locations. The PBX
compares, for each user, the present location with the last entered location. If the locations are different, the new location and a time stamp, preferably the real time, is entered in memory. If the location data exceeds five different locations, the earliest locating date is discarded (step 1650).
Any user may access the locator system by using any of the telephones connected to the PBX. The user enters a locator access code such as 1 9 on the telephone keypad and then followed by a locator function code (step 1660).
The PBX 10 receives and recognizes the locator access code and accesses the locator system software portion to initiate locator functions (step 1670). The locator function code is then interpreted by the locator software to perform the specified location function (step 1680).
Telephone Communication Usina the Locator Svstem The apparatus according to the present invention is suitable for enhanced communication among telephone users for minimizing down time due to the failure to reach called personnel when needed and minimizes the disruptions that may be caused by an automated telephone routing system.
According to a preferred embodiment of the invention, the telephone user adaptively controls the locator and the telephone systems at any telephone by selecting advanced telephone functions after invoking the locator system and receiving location information such as where the called person is and whether there are other people at the same location. The operation and features of the preferred embodiments are detailed below.

218 1 b5 LOCATOR SYSTEM FUNCTIONS - Locate User Function Fig. 22 illustrates an example of the operational flow for locating users of the system. A user searching for the location of another user enters search instructions into any telephone connected to the PBX. For the pres-::t disclosure the individual searching is identified 3s "the searching party" and the individual sought is "the searccxed party". The locate user function is preferably the default locator function. The user need not enter a function codF..
The searching party enters the 1, 9 "access locator" code and the parameters for the searched party (steps 1712 and 1714) . The search parameters may include the telephone extension, name or like identifying information of the searched party. For example, the telephone entry is 1, 9 and then the extension number or 1, 9, # and the person's name in alphanumerics. Upon receipt of such command(s), the PBX 10 compares the function code with the operation codes in the command instructions previously installed in the locator system software portion of the PBX 10, to determine the "locate user" function has been requested and to initiate searching the searched party.
To locate a user, the locator system retrieves the location information previously archived in the locator memory portion allocated for the searched party (step 1716).
The location information is then forwarded to the calling telephone for display on the telephone display (step 1718).
For example, the display may be the called person's last detected location such as in his office or wherever he is located, such as in a copyroom. The caller may select display functions such as "track" and "audit" (step 1720).
If the caller actuates a tracking mode, the location of the called personnel is displayed on display 650 of the calling telephone. The location information is continuously updated, preferably every two seconds from the PBX 10, microcontroller 610 and then display 650. As the called personnel is moving from one location to another, the changed location information is updated on the display 650.
If the caller activates the "audit" mode, such as by depressing * on the calling telephone, the last five locations 4nd the corresponding time stamps may be usrl~ved. if the *1 keys are depressed, the last five locations of the searched party and the amount of time spent at each lo~:ati~n may be displayed. For the *1 function, the locator s~.rftware calculates the elapsed time of each location py differencing the time stamps of two succeeding locations. If there is no match in the search party's ID or n~.me from the locator memory (step 1722), PBX 10 notifies the searching party that the searched party has not been located (step 1724). PBX 10 may provide a visual notification that the searched party has not been located on the telephone display 650 (Fig. 6). The PBX 10 may also provide an audio message that the searched party's location has not been found. Alternatively, the PBX 10 may provide a voice mail option for the searching party. If selected, the PBX connects the call to the searched party's mailbox of the voice mail system for functions such as recordal of messages for the searched party (step 1726).
If a searched party is located and the location information has been displayed on the display of the telephone of the searching party, the searching party may be queried as to whether or not the searched party is to be called at the current location or paged (step 1730). If no further communication is desired, the telephone connection is terminated by PBX 10 (step 1732). If further communication is desired, the searching party is queried to select between calling or paging the searched party (step 1734). Upon selection of the "call" query, PBX 10 establishes a telephone connection between the telephone of WO 95/23478 ~ ~ PCTIUS95/02441 the searching party and the telephone nearest the location of the searched party (step 1736). Advantageously, the use of the locator system prior to "paging" on a facility. wide paging system avoids the disruptions fro,: a page. Thus, the paging system may force the user to act to the locator system prior to the actual paging.
Upon selection of the "page" query, PBX 10 Pstablishes a communication link with the badge unit 18 of i.he searched party (step 1738) and sends a page message to the badge. The message may be displayed on badge display 526 or which may be audibly broadcasted via speaker 528 (step 1740). Alternatively, upon selection of the "page"
query, PBX 10 may be instructed to broadcast the page at speakers and telephones in a generalized area where the called party was detected. To activate this broadcast paging feature, PBX 10 establishes a communication link to multiple telephones and speakers.
"LOCATE BY STATION" FUNCTION
This locator function identifies all users at a specific station. The function code may be a 1, 9, 7 entry followed by a room or telephone number. For the 1, 9, 7 command, the names of all the persons detected at the requested location are displayed.
Returning to step 1712, if the searching party entered 1, 9, 7 followed by a station designation such as a room number or telephone station extension (step 1750), the PBX 10 retrieves the location information data transmitted from the transceiver or telephone at the designated location (step 1752). PBX 10 then identifies each individual in the designated location from the messages) received from the designated transceiver (step 1754). This is done at the PBX 10 by comparison of the transmitted ID codes with a data table stored in the locator memory to determine the identity WO 95/23478 2 ~ g 416 5 PCT/US95/02441 of each person. Once the identity of each individual in the designated location is determined, PBX 10 provides the searching party with an audible list of the names or displays the list on the telephone display 650 (step 1756).
As previously noted, the locator system including the associated locator m~.:?ory and stored programs may be i.~sta ~ .'. ~:. in the ~8X l0 o;Y computer 2 0 and the locator ~unctions may be perFormed by PBX 10 and/or computer 20, either alone or in c~~mbp..na Lion. Thus, the descriptions of 17 locator functions a:e interchangeable for either computer 20 and PBX 10.
Group Locate: Function This embodiment permits a calling party to find any member of a group, to find a member of the group nearest the calling party, and/or to find the most recently detected member of the group. In certain closed environments individuals may be combined into various groups. For example, engineers may be combined into project teams, or maintenance workers may be combined into different task teams, e.g., housekeeping. Such group listings may be stored in the memory of computer 20 in, for example, a group data table. Upon entering a series of keystrokes or pressing a function key on the telephone, a calling party can locate and contact members in the group.
Figs. 23, 23A and 23B illustrate an exemplary flow-chart diagram for the group locating function. To activate the group locating function, the searching party presses either a single soft key or a series of soft keys, which provides computer 20 with the identity of the searching party as well as the group of interest (step 1810). The searching party is then queried about which members of the group are to be located (step 1812). The options of group members to be located may include, for 21~84ib~
example, a designated number of group members, the group member closest' to the location crf the searching party, or the group member most recently detected by the location function.
When the designated number of group members function is ~.-:elected, the Gd~~uter 20 retrieves the names of she gruui member: from the group data table and displays them on the display of the searching party's telephone (step 1814). If .he -i:~play has a single line display, then the searching ~~artv can scroll through the names by pressing a designa~~.~ scroll soft key. While scrolling through the list '.he searching party can select the name of one group mer.ber or a number of group members whose location is to be determined (step 1816). Once the group member is selected, computer 20 activates the locator function to determine the location of the group member (step 1818). If the selected group member is not detected by the locator function, then a message is displayed on the searching party~s telephone that the group member was not detected. The connection between the calling party's telephone and the PBX is then disconnected (step 1824). If the group member is available, the location of the group member is displayed on the searching party's telephone display (steps 1820 and 1826).
After the location of the group member is displayed, the searching party may be queried regarding whether or not to call the group member (step 1828). If the . searching party does not want to call the group member, the communication link to the PBX is disconnected (step 1830).
If the searching party does want to call the group member, PBX 10 establishes a communication link between the searching party's telephone and a telephone nearest the detected location of the group member (step 1832).
Returning to step 1812, when the closest group member option is selected, computer 20 retrieves the names of the group members from the group data table (step 1834).
The locator function then determines which group members have been detected (step 1836). If no members of the group are detected, a member not detected message is displayed on the searching party's telephone display (steps 1838 and 1840). The communication link between the searching party's telephone ana ti~~ PBX :.s then dis~.~nnected (step 1842) . If group members are available, the loca~:ion .,f the member closest to thF. location of the searching party is displayed on the searching party's telephone display (steps 1838 and 1844). Thereafter, the searching Ya-rty may be queried to call the grou~~ member (step 18:x). If the searching party does not wart t.~ call the grrup member, the PBX
communication link L" Lh.~. searching party's telephone is disconnected (step 1842). If the searching party wants to call the group member, PBX 10 establishes a communication link between the searching party's telephone and the telephone closest the detected location of the group member (step 1848).
Returning again to step 1812, upon selection of the most recently detected group member option, computer 20 retrieves the names of the group members from the group data table and determines which group member was the last person detected by the locator function (steps 1850 and 1852). The location of the last group member detected is displayed on the searching party's telephone display (step 1854). Once ' the location of the group member is displayed, the searching party is queried to call the group member (step 1856). If no call is desired, the PBX communication link to the searching party's telephone is disconnected (step 1858). If a call is desired, PBX 10 establishes a communication link between the searching party's telephone and the telephone nearest the detected location of the group member (step 1860).

2i 841 b5 DO NOT DISTURB FUNCTION
In some instances, persons who are detected by the locator function may not want to be disturbed. To achieve such capabilities, the party desiring privacy could provide the computer 20 With a do-not-disturb (DND) instruction.
Activation of the d0-rot-disturb function inhibits computer 20 or ~rmate branch excE~a:~ge 10 from establishing a ::ommunication link with the located individual. Op~~.ons are provided to the user to in'oke station specific DND or 1C global DND. For example, the #, 3, 6 entries on the keypad of a telephone may signal a station specific DND, which blocks any call connections to the user's telephone extension. ~'or global DND, the user may enter #, 3, 7 which blocky o~y locator system routed calls to any telephone determined to be closest to the requested user.
The DND command may also be input from badge unit 18. As described above, each badge unit 18 includes transmitters and receivers to provide bidirectional data communications with the PBX 10 and ultimately computer 20, and a select button or keypad which generate data for transmission from the badge unit to the PBX 10. To send a do not disturb instruction to computer 20, the individual seeking privacy may enter from keypad 526, shown in Fig. 8, badge data which includes instructions to computer 20 to include in the personnel available data table a do not disturb (DND) field for that individual.
The DND function may also be a preassigned code that was previously imprinted in the smart card 320 (Fig.
5), which is transmitted via connector 324 to the badge unit 18. It is understood by one skilled in the art that other commands and locator functions may similarly be input to the system from the smart cards and badges.
Upon activation of the DND command by the user, the PBX 10 attaches a DND flag to the user's allocated 21841 E~5 memory area and the flag is checked by the PBX prior to the establishment of a call connection.
To provide the calling party with an indication that the DND function has been activated by the called party, an audible or visual message may be generated by PBX
and provided to the searching party's telephone. For example, a special DND ~i~:g tone '_:~ sent Lu she searching party's telephone. An exar~~le of a DND tone ring is two long tones.
Unavailable Party And B;xsy Signal Functions Fig. 24 illustrates an example of the optional f low for providing messac~ ~s to individ~~als who are unavailable or whose telephone are busy. An unavailable individual is defined as an individual who is not located by the locator system, or does not answer an incoming call or who has activated the DND function. Initially, when a calling party calls the extension of a particular individual, the PBX 10 and/or computer 20 determines whether no one is available to answer the call or that the extension of the called party is busy or a DND function has been activated (step 1910). The PBX provides a message to the calling party that the called party is unavailable or that the extension is busy (step 1912) and provides instructions to the calling party to press particular keys on the telephone keypad if the calling party wants to leave a message, to have the called party return the call (i.e., call back), or to activate a call waiting function (step 1914).
In response to the selection of the "message"
function, PBX 10 activates a voice mail function which instructs the calling party to leave a message after a particular tone (step 1916 shown in Fig. 24A) and stores the WO 95/23478 . 218 416 5 pCT~S95/02441 message. Such voice mail functions are known and commercially available.
Further 'message' features may include message forwarding, in which the PBX searches the location data table to determine the location of the called party (step 1918 ) . If the location of the called ~:a: ty cannot be ascertained, computer 2~ .aonitors L.:~ location data table for the return or laentification of the calJd party from incoming transceiver messages (steps lSal8 anc. 1920). When the location o.-' the called party is as~e~tained. PBX 10 establishes a telephone connection ,~W1-~ a telephone nearest the location of the called part~~ ;step 1922), and plays an audio message th~~ the called party has a voice mail message (step 1924). Preferaul,~, .hen the telephone connection is established with a telephone nearest the location of the called party, a locating function ring tone which is different from a standard telephone ring tone is generated at the telephone nearest the called party. .The locating function ring tone provides the called party with an audible indication that the telephone connection was established by the locator function. An example of a locator function ring tone is a short tone followed by a long tone.
In addition to providing an audible message to the called party at a telephone, a message could be transmitted to the called party's badge unit 18 using the above described data transmission techniques. The message received by the badge unit may be displayed on display 528, shown in Fig. 8, or the message may be broadcast over speaker 530, shown in Fig. 8. The called party may respond to the calling party, by sending a presaved message (i.e., a "canned message"). To send the canned message, the called party may press the select button 522, a single key or a sequence of keys on the badge unit keypad 526, which 2i S~~ 65 instructs microcontroller 510 to retrieve the saved message from memory and transmit the message to computer 20.
Additional features associated with the voice mail function of the present invention include, for example, a message confidentiality feature which prevents messages - identified as confidential from being broadcast over either the telephone speaker or the badge unit cppaker. Anf'~rlC1 feature is a priority message feature whic.'. v~~tifies the v called party of priority messages only.
Returning to Fig. 24A, PBX 10 then queries the called party as to whether the voice mail message is to be replayed (step 1926). If the called par:y does not want to replay the voice mail message, the message is maintainer: in the voice mail memory queue for later retrieve' by t'.~e called party (steps 1926 and 1928). If the called party elects to replay the voice mail messages, the PBX 10 instructs the voice mail function to replay the message (steps 1926 and 1930). .
Returning to step 1914 in Fig. 24 and referring to Fig. 24B, if the calling party selects the "call back"
function in response to the PBX's query, the PBX 10 prompts the calling party to enter his identity (e.g., ID number or name) or telephone number (step 1940). The entered information is stored in the locator memory in a call back data table (step 1942). PBX 10 monitors the called party's telephone to determine if the line is no longer busy. If the called party's telephone is no longer busy, or if the PBX 10 determines that the called party is away from his designated telephone, the PBX monitors incoming badge data for the return of the called party to locate the called party (steps 1944 and 1946). When the called party is located, the PBX 10 provides an audible message to the telephone nearest the detected location of the called party, that the called party received a call. In addition, the PBX

WO 95/23478 PCT/tTS95/02441 instructs the called party to press a key on the telephone keypad to return the call (steps 1948 and 1950).
The call back data table may include more than one calling party who has selected the "call back" function. Thus, 5 different keys on the telephone keypad may represent the different calling parties stored in the call back data table. In this instance, L:.~ cal7 -...: party wo~.~ d be instructed to select one of :.ire keys. If the called ~~_rty presses the key, the PBX '..0 retrieves the telephc ne :mr ber 10 of the calling party from memory and establishes a telephone connection between the czlling party and the ::aJ.lback party (step 1952).
In instances in ,which the calling party is no longer at their designated teler'~~nP when the callback party returns the call, the locator function is activated to determine the location of the calling party. When the calling party is located, PBX 10 establishes a telephone connection between the calling party and the calling party at the detected location.
Preferably, when the telephone connection is established, a call back ring tone is generated at the telephone nearest the called party. The call back ring tone provides the called party with an audible indication that the telephone connection was established by the locator function and that the "call back" function was activated.
An example of a call back ring tone is two short tones followed by a long tone.
Continuing to refer to Fig. 24B, PBX 10 then determines if the telephone of the calling party is busy (step 1954). If the telephone is busy, computer queries the callback party to select either the "call back" function or to select the "message" function (step 1956). If the "call back" function is selected, the "call back" function described above is performed (step 1940). If the "message"

21841b5 function is selected the "message" function described above with respect to Fig. 24A is performed (step 1960).
Returning to step 1954, if the calling party's telephone is not busy, computer 20 retrieves the location of the calling party from memory (step 1961) and determines if the calling party is available (step 1962). If the calling party is unavailable, then the computer queries t~~= ~a.'.lback party to select between the "call back" and "message'' functions (steps 1956). The PBX 10 also determines if the DND function has been activated (step 1963). If the DND
function has been activated, then the PBX queries the callback party to select between the "call back" arid "message" functions (step 1956) . If the DND functi~~n has not been activated, the PBX establishes a telephone connection between the called party and the telephone nearest the location of the calling party (step 1964).
Returning to step 1914 in Fig. 24, if the calling party selects the "call waiting" function, PBX 10 forwards a call waiting tone to the called party (step~1965). PBX 10 monitors the called party's telephone to determine if the called party has responded to the call waiting tone (step 1966). If the called party responds to the call waiting tone the original caller is put on hold and the telephone connection between the calling party and the called party is established (step 1967). If the called party does not respond to the call waiting tone for a predetermined duration, PBX 10 queries the calling party to select either the "message" or "call back" function (steps 1968 and 1969).
If the "message" function is selected, the message function shown in Fig. 24A and described above is performed. If the "call back" function is performed, the call back function shown in Fig. 24B and described above is performed.
Returning to step 1912 in Fig. 24, if computer 20 determines that the called party is unavailable, the computer provides a message to the calling party that the called party is unavailable (step 1971). Computer 20 also quer.ie~s the calling party to select between the "message", "call back", "locator" and "paging" functions to either leave a message for the called party or to establish telephone communications with the called party (step 1972'.
If the "message" function is selected, the "message' function described above is performed (step x.973). If the "call back" function is selected, the "cal- back" function described above is performed (1974).
If the calling party selects the "locator"
function in response to the query, the com~~uter 20 retrievP~
the location of the called party from memory (steps 1975 end 1976 shown in Fig. 24C) . Computer 20 then detern~i..;
whether the called party has activated the do not disturb (DND) function (step 1977). If the DND function has been activated, computer 20 provides the caller with a message or a special tone that the called party does not want to be disturbed and instructs the caller to select either the "call back" or "message" function (step 1978). If the do not disturb function has not been activated, the PBX
establishes a telephone connection between the telephone of the searching party and the telephone nearest the location of the called party (step 1979).
If the calling party selects the "paging" function (step 1980) in response to the computer's query, computer 20 initially determines whether a "forced locator" function has been activated (step 1981). The "forced locator" function is user programmable and is provided to minimize the number of pages broadcasted in the closed environment and to minimize the number of disturbances to individuals within the environment. The "forced locator" function requires the calling party to activate the locator function to contact the called party prior to any paging of the called party.

Therefore, if the "forced locator" function is activated, computer 20 performs the "locator" function. As described above, the computer 20 retrieves the location of the called party from memory (step 1982) and determines whether the DND
function has been activated (step 1983). If the DND
function has been activated, the computer 20 queries the calling party to select between the "call back" function and the "message" function, and performs the selected function - (step 1984). If the DND function has not been activated, the PBX 10 to establish a telephone link between the telephone nearest the detected location of the called party and the calling party's telephone (step 1985).
After the telephone link is established, PBX 10 monitors the telephones to determine if the called party has answered the telephone (step 1986). If the called party has not answered the telephone or if the "forced locator"
function is not active, computer 20 queries the calling party to select either a general page, a specific area page, or a badge unit page (step 1987). If a general page is selected, computer 20 instructs the PBX 10 to establish a communication link to a plurality of speakers located throughout the closed environment (step 1988). The speakers include broadcast speakers positioned in public locations, e.g., hallways, as well as telephone speakers on each individual telephone in the closed environment. Once the communication link to the speakers is established, the . calling party may broadcast a desired paging message (step 1989).
Continuing to refer to Fig. 24D, if a specific page is selected, e.g., paging an area by pressing on a telephone keypad 8, 0 and the extension of the telephone in that area, computer 20 retrieves the location of the called party from memory (step 1990) and instructs the PBX 10 to establish a communication link to a predetermined number of WO 95!23478 21 ~ 41 b 5 pCT~S95/02441 speakers nearest the detected location of the called party (step 1991). Once the communication link is established, the calling party may broadcast a desired paging message (step 1992).
If the badge unit page is selected, computer 20 retrieves the location of the called party from memory (step 1993). Computer 20 then instructs PBX 10 to transf::~
paging message to a telephone or transceiver 24 (shown ~r.
Fig. 19) nearest the detected location of the called party (step 1994). The telephone or transceiver 24 trans:~its the paging message to the badge unit 18 of the called p~;rty (step 1995). The paging message may include, for e~,ample, the name and telephone number of the calling party. once the badge unit 18 receives the paging message, the badge unit displays the message on display 528 (shown in Fig. 4).
Speed Dialing A speed location function permits~a person to store preselected search parameters and/or command data in assigned memory for speedy activation. Alternatively, the searching party may store a listing of individuals who are in the closed environment, e.g., telephone numbers of the employees frequently contacted. This listing is similar to an electronic rolodex and upon depressing predefined soft keys, the searching party is permitted to scroll through the rolodex to find the name of the searched party. When the name of the searched party is found, the searching party may depress a soft key to enter the search parameters automatically.
Call Screening Functions The telephone system according to the present invention also includes call screening capabilities. The "call screening" function utilizes a call screening data 21841 b5 table stored in the memory of the computer 20 or the PBX 10, to permit each individual assigned to a telephone to screen their incoming telephone calls to individuals identified in the data table. In addition, the "call screening" function prevents the calling party from utilizing the locator function unless the called party's name or other identifying i-iformation is stored in the call screening data table.
Pref~rablv, the "call screening" function is user activated so that ~a~h individual in the closed environment has the option tc activate or deactivate this function.
Initially, each individual associated with a telephone extension generates the call screening data table which preferably contains the names of individuals they will speak to. When the PBX 10 receives a call for a particular individual, i.e., the called party, computer 20 determines if the called party has previously activated the "call screening" function.
If the "call screening" function ~s active, computer 20 determines if the incoming call is from within the closed environment or if the incoming call is from outside the closed environment (step 2510). If the call is from inside the closed environment, computer 20 retrieves the call screening data table associated with the called party (steps 2515 and 2520). The identity of the calling party is compared to the identity information (e.g., the name or employee number) within the call screening data table (step 2525) and the computer determines if the calling party's identity is in the call screening data table (step 2530). If the calling party's identity is in the data table, a telephone connection is established with the called party's telephone (step 2535). Computer 20 may then simply allow the called party's telephone to ring or may perform another system function. For example, the computer may perform the unavailable party/busy signal functions described above with respect to Fig. 24 (step 2540). If the calling party's identity is not in the call screening data table, the calling party is then instructed to select a system function which permits the callinc °-:~,rty to leave a message for the called party. For exampl, the computer may instruct the calling party to select betwaw~n the "call back"
and the "message" functions described above (step 2545).
Returning to step 2515 in Fig. 25, if the incoming call is from outside the closed environment, computer 20 .'0 activates caller identification hardware and associated programs to determine the identity of the calling party (step 2550). Caller identification information is provided by the telephone central office. The information is usually embedded between the ringing signals from the central office. The process of extracting the caller ID information is well known to one skilled in the art.
Once the identity of the calling party is ascertained, the computer 20 retrieves the call screening data table from memory (step 2555) and determines whether the calling party's identity is in the data table (step 2560). If the calling party's identity is in the data table, a telephone connection is established with the called party's telephone (step 2535) and then performs, for example, the unavailable party/busy signal functions (steps 2540). If the calling party's identity is not in the call screening data table, the calling party is then instructed ' to select a system function which permits the calling party to leave a message (step 2545).
Secretary Tracking Function Another function which may be implemented with the present invention is a "secretary tracking" function. The "secretary tracking" function permits an individual, i.e., the called party, to have incoming calls routed to their WO 95123478 218 ~ 16 5 PCT/US95102441 secretary, whether or not the called party (or individual) is in the closed environment. The "secretary tracking"
function may be automatically activated or selectively activated by the called party.
Fig. 26 illustrates an exemplary flow chart diagram for implementing the "secretary tracking" function.
~:~itiai~_1, a secrt~ary assignment data table is generated a:~d stored in the memory or the computer 20. The secretary assignment data table inc~uctes the names (or other form of identity, e.g., emplcyee number) of the secretaries in the closed environment anc: the names (or other form of identity) of the individu~'.s who they are assigned to.
Once the.PBX 10 determines who an incoming call is for ~s'~ep 2610), the computer 20 determines whether the "secretary tracking" function for the called party is in the automatic mode (step 2612). Preferably, the automatic mode is triggered when either the called party does not answer the incoming call, the locator function cannot determine the location of the called party, or the called party has activated the DND function. If the "secretary tracking"
function is not in the automatic mode, computer 20 instructs the PBX 10 to establish a telephone connection with the called party's telephone (step 2614). PBX 10 monitors the called party's telephone to determine if the called party has activated the "secretary tracking" function (step 2616).
Typically, the called party can activate the "secretary . tracking" function, when the telephone is ringing, by pressing a single function (soft) key or a sequence of function keys on the telephone keypad. If the "secretary tracking" function is not activated then the "unavailable party" and "busy signal" functions described above with respect to Fig. 24, are performed (step 2618).
If the "secretary tracking" function is activated or if the "secretary tracking" function is in the automatic mode, computer 20 retrieves the secretary assignment data table from memory (steps 2612, 2616 and 2620) and determines which secretary is assigned to the called party (step 2622).
Computer 20 then instructs the PBX 10 to establish a telephone connection with the telephone assigned to the secretary (step 2624) and determi--aes if the secretary is aval'~ble or if the telephone is busy (step 2626). If the secretary i~ unavailable, computer 20 retrieves the location of the se~.:retary from memory (steps 2628 and 2630). Once the lc ~c:~tic~r of the secretary is ascertained, the computer 2C~ instructs the PBX 10 to establish a telephone connection ~etween the calling party and a telephone nearest the detected location of the secretary (step 2632). Preferably, when the connection is established, a message is displayed or broadcasted by the telephone nearest the detected location of the secretary, that the call is for the called party (step 2634). Alternatively, a secretary tracking ring tone may be generated at the telephone nearest the detected location of the secretary. The secretary tracking ring tone provides the secretary with an audible indication that the incoming telephone call was initiated by the "secretary tracking" function.
Returning to step 2628 in Fig. 26, if the secretary's telephone is busy, computer 20 queries the calling party to select between the "message" and "call back" functions as described above (step 2636).
Operator Locator Functions Typically, telephone systems used in the closed environments noted above include an operator station or receptionist area which permits a single individual to manage numerous incoming telephone calls, as well as attend to paging and other functions for individuals within the closed environment. The operator station typically has a WO 95!23478 218 416 5 pCT/CTS95/02441 telephone terminal which provides an operator with a telephone communication connection with the PBX and a display terminal which provides the operator with audio and/or visual indications relating to the telephone system.
In one embodiment, the operator station has a plurality of function keys and a plurality o~ associated indicators which illumir~Qi.~. to not'.'r , ror t:..~mple, the operator that the person is v.sing a particular te!.ephone extension. In an alternative embodiment, the opev_~atc~ station may include a monitor which identifies the telephone system status.
Fig. 2 :'_llustrates an operat~.:;: s;.ation 22 connected to the PBX 10 to provide such c~~ibilities.
In one confi~,uration, data stored within the location data '~~:rlP is extracted by computer 20 to generate an individual available data table which contains the identity of individuals who have been detected, i.e., individuals who are available in the closed environment. As noted above, the location of each available.person is continuously updated to provide real-time location data for each individual, as well as a continuously updated log of which individuals are available. The individual available data table is then transferred to the operator station 22 to provide the operator with a listing of who is available. In one embodiment, indicators on the operator station may be illuminated to identify that a particular person is "in" or "out". For example, an amber indicator may be illuminated to indicate that a particular person is "in", and a red indicator may be illuminated to indicate that a particular person is "out". In an alternative embodiment, the operator station may include a monitor which displays the listing.
As noted, the listing is continuously updated to provide a real-time indication of which individuals are available.
However, each previously detected location for each individual may be stored in, for example, a location 21841 b5 history data table. Thus, an operator may retrieve a listing of locations where each individual has been over a predetermined ~i~rne period, e.g., 24 hours. Alternatively, the operator covLr~ determine which individuals have been in a particular locc3tion for a predetermined time period.
These listings dre they, displayed on the operator station d i-Splay ~ O~e a~.i' 1 ed in tY:e art would recognize that once a ~~;~:a ion history data table is established, individuals would be able to extra;t ~~1C~1 history data from their telephones and displa,~ the information on the telephone display 650.
As described above, instances occur where individuals do not want to be disturbed. If an individual has provided a DND instruction to the computer 20, the computer will provide an indication at the operator station 22 that the party being sought does not want to be disturbed. In the embodiment where indicators are used to identify if a particular individual is available, the DND
field may be indicated by utilizing a different color indicator which represents that the person is in but is not to be disturbed. Alternatively, a flashing indicator may be utilized to indicate the DND field. In the embodiment where the operator station 22 has a monitor, the display may simply include the "DND" field for the individual seeking privacy. In addition, a DND tone may be broadcast at the operator station 22 to indicate that a particular individual does not want to be disturbed.
Another operator function for the present invention is a "find" function which permits the operator to determine the location of a particular individual from the operator station 22. The following is a description of the "find" function implemented with the various operator station configurations described hereinabove. Fig. 27 illustrates an exemplary flow-diagram of the "find" function WO 95/23478 2 i 8 416 5 pCT/US95/02441 for the embodiment where the operator station includes a plurality of function keys, including, for example, a "find"
function key, and an associated plurality of indicators.
To actuate the "find" function, the operator presses the "find" function key and a function key associated with the particular individual (step 2~)l0). In response, computer 20 receiVe~ the ''rind" ins~.ruction, determines who is being searched, and determines if t'r.~
searched party is available by comparing the seaz~chea party identity with the individual available data table (steps 2020 and 2030). If the Searched party is not available (i.e., the searched party is not in the individual available data table), then computer 20 provides the operator station 22 with either an audio or visual indication that the searched party is not available (steps 2040 and 2050). If the searched party is available, computer 20 retrieves from the location data table the location of the searched party (steps 2040 and 2060), and illuminates the indicators associated with the function key nearest the detected location of the searched party (step 2070). Thus, providing the operator with a visual indication of the location of the searched party.
Another operator function is a room look-up function which permits the operator to determine the identity of individuals in a particular room or location.
For example, the operator can press the find function key followed by the room number. Computer 20 will then determine the identity of each person in the room using the locator function and provide the operator with a visual indication of who is in the room.
In addition to permitting an operator to locate individuals within the closed environment, the system of the present invention may also be configured to permit the operator to transfer calls to the detected location of the 21~4)~~
searched party, as well as actuate the voice mail function to respond to a telephone call to searched party.
Another operator function for the present invention is a tracking function which permits the operator try tracK individuals within the closed environment. As n~ted dbove, the location data taul~ is continuously update. '1'i~.~t is . tf~e locate~n data table is updated on a periodic or aperiodic basis. Thig real-time location capability permits the operator t~~ track the location of ,individuals within the environment. To illustrate, if the operator gtation 22 includes ~, fipr~itor, the computer 20 can continuously update the inc~:ividual available data table and refresh the listing disp~,ayed on the monitor.
Automated Operator In this embodiment, the operator station 22 is an automated operator which answers telephone calls and if necessary, responds to voice commands or keypad entries from the calling party to manage the telephone calls. For example, by prompting the calling party to answer yes or no or input the names of the called individuals. Fig. 28 illustrates an exemplary flow diagram for implementing the automated operator function. The automated operator answers the call and instructs the calling party to recite the name of the called party (step 2110). A voice recognition circuit (not shown) or a DTMF decoder processes the received name of the called party and determines whether the name is recognized (step 2112). If the name is not recognized, the calling party is again instructed to recite the name of the called party (step 2114). If the name is recognized, computer 20 determines the location of the called party using the locator function (step 2116). If the called party has not been located, the voice mail function may be activated to permit the calling party to leave a message WO 95/23478 2 ~ g 416 5 PCT~S95/02441 (step 2120). If the called party is located, computer 20 instructs PBX 10 to provide an indication at the telephone nearest the detected location of the called party of the call (step 2122). Preferably, the PBX 10 provides an audible indication to the called party. Thereafter, computer 20 instructs the PBX 10 to establish a telephone connection between the calling party ar~~ the c~'_led party (step 2124). Alternatively, computer 2~7 :nay transmit badge data to the badge unit 18 associated with the called party, which includes a message that the called party has a telephone call.
Home Phone Function Fig. 19 illustrates infrared transceiliers 24 disposed in rooms and hallways. In certain environments, such as office environments, space is often divided into cubicles wherein each cubicle is used as individual offices with each individual having their own telephone and extension. In this cubicle arrangement, a single transceiver 24 may be disposed near the ceiling to serve multiple cubicles. As a result, when the locator function is implemented in such an arrangement, the locator transferred calls may be directed to a telephone designated as a main telephone for all persons in cubicles covered by the transceiver. This arrangement works well in most instances but may inconvenient other individuals assigned to that transceiver.
To avoid this inconvenience, the system of the present invention can be configured to provide a "home phone" function for each individual in each cubicle. The home telephone is preferably the telephone extension assigned to each individual. If the locator function determines that the called party is located at the home transceiver, computer 20 will direct the incoming call to 2i X41 ~b5 the called party's home telephone and not to the telephone designated for the transceiver (the main phone). If the called party is not located near their home telephone, then computer 20 will direct the incoming call to the designated main telephone.
Rinq When Alone Function This function is us~a if a user prefers to minimize interruptions when she conducts conferences ~n her office. She selects the 'ring when alone" feature ay entering the designated function codes. When selected, the locator system is activated each time them is an incoming call to determine if she is alone in her office. Her telephone is not rung unless the lQra~or determines that she is alone. An alternate global "ring when alone" function may also be selected. In the global function, the locator system prevents routing of a call to a located extension when she is away from her designated extension if the locator detects more than one person at the to-be-routed-to-telephone.
Station Reconfiquration Function In some instances it is advantageous to have the capability to reconfigure operational functions of telephones during different periods of time. One such instance occurs when different individuals work different ' shifts but share a common telephone.
The station reconfiguration function according to the present invention utilizes the locator function to automatically reconfigure telephones when a single individual is detected. To illustrate, typically individuals in the closed environment have a telephone and associated extension number assigned to the telephone.
Current telephones have the capability to permit the individual to configure functional soft keys to actuate predefined functions. For example, telephones may be programmed for speed dialing operation which permits an individual to dial commonly used telephone numbers by simply pressing one soft key.
Fig. 29 illustrates an exemplary flow-chart of the station reconfiguration function according to the ares~.~t invention. Initially, as noted above, the locator function continuously updates the location data table with tY.e most recent location of each individual (step 2210). Ccmputer 20 continuously monitors the location of each individual by monitoring the data in the location data table (steFe2220), and determines whether a single individual is detecte:? by a telephone. If a single individual is not detected, the computer returns to monitor the location of each individual (step 2230). If a single individual is detected, computer determines how long the individual has been near the telephone (step 2240). If the individual i.s not at the detected location for a predetermined period of time, e.g., 20 10 minutes, the computer 20 returns to continuously monitor the location of each individual (step 2250). If the individual is detected at the telephone location for the predetermined period of time, then computer 20 reconfigures the telephone at the detected location and would treat that telephone extension as corresponding to the detected individual (step 2260).
Alternatively, an individual can manually reconfigure the operational functions of a telephone by either entering a code into the telephone keypad, or by pressing a single on the telephone and by pressing a key or a sequence of keys on keypad 526 of badge unit 18, shown in Flg. 4.

Automatic Call Cost Accountinq Another feature which may be implemented by the system of the present invention is an automatic call cost accounting function. The call cost accounting function correlates the cost of calls with different billable accounts. For example, if an attorney is in a conference room with a client, all calls, in particular long distar~c~
calls, made from the conference room would be billed to the client.
To implement this feature, the individual wearing the badge either presses a single key or a series of keys err.
the badge unit keypad to provide computer 20 with bil?=-ig information, e.g., the client and the start time for billing the client. Thereafter, the locator function ~~'acks the individual and any calls placed from any detected location of the individual will be attributed to the particular client.
PASSWORD PROTECTION AND MULTI-LEVEL CONTROL
According to a preferred embodiment of the present invention, the telephone functions of the system may be password protected and can only be accessible or controllable upon entry of a preassigned password. For example, to prevent an automatic transfer of a telephone call by the locator system to a conference room telephone, which have previously been assigned as a password protected telephone, the PBX 10 prompts the calling telephone for a password and establishes a communication link between the calling telephone and the protected phone only upon receiving a matched password.
The telephone/locator system according to the invention may also be configured for multi-level usage. In such configuration, users of the system are categorized into different levels, for example, 1, 2 and 3, and a database of users assigned to each level is stored in the PBX 10. In use, the system may be configured to allow access or retrieval of location information of users only within or beneath the caller's own level, e.g., if level 1 is the highest level, a level 2 caller can only access location information of users in levels 2 and 3. In such system, the PBX 10 automatically retrieves the identifications and the assigned levels of the user initiating the search and the person being searched, matches the names to the list of names in the different levels, and activates the locator system only upon finding the calling person level being equal or higher level than the called person.
The facility employing the system of the present invention may also include password protected zones. In the specified protected zones, the entries of the zones are protected by automated locking devices which are opened only upon entry of the appropriate password. The password may be entered through a telephone at the entry or, may be directly transmitted from the badge 18 to the transceiver assigned to the entry. In the badge embodiment having the smart card 320, the password may be imprinted in the card and the password is included in the badge transmission.
Alternatively, the select button 522 of badge 18 may be depressed in a preassigned sequence to signal the badge to transmit the user password.
Programmable Logical Functions According to another embodiment of the present invention, the PBX 10 includes storage of a programmable logical function module which allows certain users of the system to modify the operating configuration of the system.
Generally, this is done by accessing the system controls and specifying logical conditions to be monitored by the sensors WO 95/23478 ~ ~ PCT/US95/02441 of the system. Upon occurrence of the specified conditions, the system is instructed to perform an output function.
The programmable logical function feature is preferably password protected and the module may be accessible by a personal computer (PC) link on any of the telephone hook-ups of the PBX system having an appropriate PC interface. Referring to Fig. 30, which shows an exemplary usage of the feature, the user accesses the module by appropriate password entries (3010) and specifies the sensors to be monitored, what conditions must be met ~tnd what output functions) is to be performed upon occurrence of the specified conditions. For example, he may specify that his own extension be monitored (3020), and that anj~
direct calls to his telephone that is not routed by the locator system to be automatically transferred to another back-up extension, such as a secretary's extension (3030).
If a call is routed by the locator system, the user directs the locator to detect the number of persons,~in his room (3040). If the number is more than one person (3050), the call is directed to check the level of the caller (3070).
The call or communication link is established or the telephone is rung only if the caller is designated as level 2 or higher (3080). If not, the call is directed to his voice mail (3060).
Another exemplary usage of the programmable logical function module may be to specify security zones which permits only cleared individuals to enter. In such configuration, the user designates the transceivers encompassing a secured area for monitoring by the PBX to and the persons or level of persons who may enter. The automatic locks disposed at the entries of the secured area are linked to the PBX 10, preferably through the respective transceivers. The PBX 10 will cause the lock to open at the location of the transceiver which detected a designated OerS~o?'1. It is aDDarent t0 one skilled that the programmab~°_ logical .unction Yeature may be used to spec=-~ other mechar_~ca1 or electrical devices connected to she ~el~phone/locator system. nor example, the us=r may contrc-_ a thermOStat - --t0 autOmatlCally adjust tile temperatLre in :niS
=OOm deDenC~'c.nt uDOn hi S DresenCe in the rOOm and/or tile ~liP=
c= day.
t will be ~.:nderstood that vari ous modi =icati o ns can be made to tile embodiments of the present v_nvention herein disclosed without departing from the scope th_ereo=.
or example, various modifications may be made in the communication for~r,a~s uti~i2ed to transmit daces. There=cre _he above descriotior_ should not be construed as limiting ' the invention but merely as exemplifications c= pre_erred 1~ =mnodimer_ts thereof. Those skilled in the art will envisio-_ other modifications within the scope of the present invention as defined by the claims appended hereto.
t., ~,MEND~D ~~~

Claims (23)

We claim:
1. A telephone communication system, comprising:
~ (a) a private branch exchange (PBX) having a processing unit and a plurality of telephones for facilitating telephone communication between a plurality of telephone users; and ~ (b) a locator system electrically connected to said PBX
for providing location information, said locator system comprising:
~ a plurality of portable badges, each associated with a respective one of a plurality of telephone users and transmits badge information including an identification signal for identifying the telephone user associated with said respective badge; and ~ a plurality of transceivers, each electrically connected to said PBX and each adapted for receiving said badge information transmitted from said badges and for electrically forwarding at least a portion of said badge information to said processing unit of said PBX to determine location information of said telephone users;
~ said PBX further having a memory for storing said location information and stored programs for implementing a plurality of telephone functions in conjunction with said location information; each of said telephones having a keypad for selectively accessing said locator system and said telephone functions, a data receiver for receiving location information from said PBX, and a display for displaying said location information received from said PBX upon access of said locator system from said keypad.
2. The system according to claim 1, wherein said transceivers are incorporated in said plurality of telephones whereby each of said plurality of telephones is configured to receive transmissions from said badges.
3. The system according to claim 1, wherein each of said badges includes means for housing a card having a memory for storing information and each of said badges includes means for receiving said stored information from said card.
4. The system according to claim 1, further including an operator station which includes a display for selectively displaying the location of each of said telephone users and for displaying all telephone users located at a specific location.
5. The system according to claim 1, wherein said telephone functions are accessible from one of said plurality of telephones after said data receiver of said one of said plurality of telephones has received location information from said locator system.
6. The system according to claim 1, further including an actuatable device connected to said PBX and is actuated by commands from said PBX, said commands are generated by said PBX based upon the occurrence of a plurality of predetermined conditions.
7. The system according to claim 1, wherein each of said plurality of telephones includes storage means for storing a plurality of telephone numbers for selection and use in conjunction with said locator system.
8. The system according to claim 1, wherein said telephone functions include a code representing a selection by a calling telephone user from a calling telephone to connect to a voice mail storage device of a called telephone user after said data receiver of said calling telephone has received location information from said locator system.
9. The system according to claim 1, wherein said telephone functions include a code representing a do-not-disturb (DND) function selectable by a user at one of said plurality of telephones assigned to said user by entering said code for instructing said PBX to not establish a communication link with another telephone upon determination of location of said user by said locator system at said one of said plurality of telephones assigned to said user.
10. The system according to claim 9, wherein said PBX sends said do-not-disturb code to said another telephone and said code is displayed on a display at said another telephone when said PBX is instructed to not establish a communication link based on said selection of said DND function.
11. The system according to claim 1, wherein said telephone functions include a global-do-not-disturb (GDND) function for blocking an incoming telephone call, said GDND function being selectable by a user for instructing said PBX to not establish a communication link between said incoming telephone call and a telephone determined by said locator system to be closest to said user.
12. The system according to claim 1, wherein said PBX
includes means for causing a preset ring tone to ring at a called telephone when said called telephone is rung by said PBX based on a telephone number supplied from said locator system.
13. The system according to claim 1, wherein said telephone functions include a callback code representing an automatic call back feature selectable by a telephone user which automatically rings a telephone from which said callback code is selected and upon determination of the location of a searched person by said locator system.
14. The system according to claim 1, wherein said telephone functions include a callback code representing an automatic callback feature for selection by a calling user after detection by said PBX of an off-hook signal at a telephone called by said calling user for activating said locator system for locating said calling user and ringing a telephone determined by the locator system to be closest to said calling user upon detection of an on-hook signal at said called telephone by said PBX.
15. The system according to claim 1, wherein said telephone functions include an identify-personnel command selectable by a telephone user for calling a telephone and activating said locator system to determine the identity of all persons located within reception range of a transceiver associated with said called telephone.
16. The system according to claim 1, wherein at least one of said telephones further includes a memory for storing keypad entries and for facilitating speed redial by recalling said keypad entries from said memory.
17. The system according to claim 1, further including a paging system having a plurality of speakers for broadcasting an audio message over at least one of said speakers said paging system is connected to said PBX and is activated by a selection of a preassigned code from one of said telephones after said one of said telephones has received location information from said locator system.
18. The system according to claim 1, wherein each of said telephones includes means for configuring the keys on the telephone keypad to represent commands for activating the telephone functions; and ~ each of said telephones is automatically reconfigured to commands specific to a user when said user is detected by said locator system to have been at a location closest to one of said telephones for more than a predetermined duration.
19. The system according to claim 1, wherein said locator system includes means for grouping each of said telephone users into one of a plurality of groups and said locator system includes means for locating all users belonging in a selected one of said groups and display means for displaying the locations of all users in said selected group.
20. The system according to claim 19, wherein each of said groups is classified into one of a plurality of levels and said locator system sends location information to a telephone only if a calling telephone user is determined to be at equal or higher level than a called telephone user.
21. The system according to claim 1, wherein said location information and said plurality of telephone functions are accessible from any of said telephones upon entry of one of a plurality of preassigned passwords at said any of said telephones.
22. A communication system for wireless communication of personal information including identification information between a plurality of telephones and a private-branch exchange, which comprises:

a private-branch exchange; and ~ a plurality of telephones, each of said plurality of telephones having a wireless receiver located at least partially therein for receiving wireless transmitted data, including remote transmitter identification from a remote transmitting device, said plurality of telephones having a processor coupled to voice and data transmission and receiving circuitry to facilitate bidirectional telephone communication with said private-branch exchange to provide telephone communications between said plurality of telephones;

~ wherein information received from said remote transmitting device is transferred to said private-branch exchange by said voice and data transmission circuitry, and wherein said private-branch exchange processes said information received from said remote transmitting device to determine the location of an object or person associated with said remote transmitting device.
23. The system according to claim 22, wherein said private-branch exchange processing of said information received from said remote transmitting device includes a determination of the energy level of the information received from said remote transmitting device for rejecting received information having an energy level below a preset level.
CA002184165A 1994-02-28 1995-02-27 A telephone communication system having a locator Expired - Fee Related CA2184165C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US20334094A 1994-02-28 1994-02-28
US08/203,340 1994-02-28
US08/369,184 1995-01-05
US08/369,184 US5515426A (en) 1994-02-28 1995-01-05 Telephone communication system having a locator
PCT/US1995/002441 WO1995023478A1 (en) 1994-02-28 1995-02-27 A telephone communication system having a locator

Publications (2)

Publication Number Publication Date
CA2184165A1 CA2184165A1 (en) 1995-08-31
CA2184165C true CA2184165C (en) 2001-04-24

Family

ID=26898532

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002184165A Expired - Fee Related CA2184165C (en) 1994-02-28 1995-02-27 A telephone communication system having a locator

Country Status (8)

Country Link
US (2) US5515426A (en)
EP (1) EP0748556B1 (en)
AT (1) ATE180370T1 (en)
AU (1) AU708573B2 (en)
CA (1) CA2184165C (en)
DE (1) DE69509755T2 (en)
ES (1) ES2132649T3 (en)
WO (1) WO1995023478A1 (en)

Families Citing this family (232)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375161A (en) 1984-09-14 1994-12-20 Accessline Technologies, Inc. Telephone control system with branch routing
US6545589B1 (en) 1984-09-14 2003-04-08 Aspect Communications Corporation Method and apparatus for managing telecommunications
US5588037A (en) 1984-09-14 1996-12-24 Accessline Technologies, Inc. Remote access telephone control system
US6201950B1 (en) 1984-09-14 2001-03-13 Aspect Telecommunications Corporation Computer-controlled paging and telephone communication system and method
US5752191A (en) 1984-09-14 1998-05-12 Accessline Technologies, Inc. Telephone control system which connects a caller with a subscriber AT A telephone address
US6897780B2 (en) 1993-07-12 2005-05-24 Hill-Rom Services, Inc. Bed status information system for hospital beds
US5515426A (en) * 1994-02-28 1996-05-07 Executone Information Systems, Inc. Telephone communication system having a locator
US6026156A (en) 1994-03-18 2000-02-15 Aspect Telecommunications Corporation Enhanced call waiting
JP3365054B2 (en) * 1994-06-29 2003-01-08 カシオ計算機株式会社 Position information transmission system and position information management device used therein
US5892817A (en) * 1995-07-10 1999-04-06 Will; Craig Alexander Wireless system for alerting individual to incoming telephone call
US5841853A (en) * 1995-09-07 1998-11-24 Matsushita Electric Industrial Co., Ltd. Telephone apparatus with interrupt call processing capability
US5724417A (en) * 1995-09-11 1998-03-03 Lucent Technologies Inc. Call forwarding techniques using smart cards
US6411682B1 (en) 1995-09-21 2002-06-25 Aspect Telecommunications Corporation Computer controlled paging and telephone communication system and method
US5946626A (en) * 1995-12-26 1999-08-31 At&T Corp. Method and system for determining location of subscriber of two-way paging service
KR100206178B1 (en) * 1996-03-28 1999-07-01 윤종용 Key phone monitoring method
US6804726B1 (en) 1996-05-22 2004-10-12 Geovector Corporation Method and apparatus for controlling electrical devices in response to sensed conditions
US5960331A (en) * 1996-07-01 1999-09-28 Harris Corporation Device and method for maintaining synchronization and frequency stability in a wireless telecommunication system
US6160881A (en) * 1996-09-19 2000-12-12 Siemens Information And Communication Networks, Inc. System and method for integrating electronic entry systems with telecommunication systems
US5903302A (en) * 1996-10-04 1999-05-11 Datapoint Corporation Automated video call distribution
JPH10257545A (en) * 1997-03-11 1998-09-25 Sony Corp Communication system and mobile communication terminal equipment
US6101242A (en) * 1997-03-28 2000-08-08 Bell Atlantic Network Services, Inc. Monitoring for key words with SIV to validate home incarceration
US6038305A (en) * 1997-03-28 2000-03-14 Bell Atlantic Network Services, Inc. Personal dial tone service with personalized caller ID
US5978450A (en) * 1997-03-28 1999-11-02 Bell Atlantic Network Services, Inc. Personal dial tone
US6122357A (en) * 1997-03-28 2000-09-19 Bell Atlantic Network Services, Inc. Providing enhanced services through double SIV and personal dial tone
US6404858B1 (en) 1997-03-28 2002-06-11 Verizon Services Corp. Personal dial tone service with personalized call waiting
US6167119A (en) * 1997-03-28 2000-12-26 Bell Atlantic Network Services, Inc. Providing enhanced services through SIV and personal dial tone
US6067347A (en) * 1997-04-01 2000-05-23 Bell Atlantic Network Services, Inc. Providing enhanced services through double SIV and personal dial tone
GB9707615D0 (en) * 1997-04-14 1997-06-04 British Telecomm Telecommunications apparatus and method
US5825823A (en) * 1997-06-06 1998-10-20 General Datacomm, Inc. PCM channel diagnosis
US6091957A (en) * 1997-06-12 2000-07-18 Northern Telecom Limited System and method for providing a geographic location of a mobile telecommunications unit
US6125176A (en) * 1997-06-17 2000-09-26 At&T Corporation Method and system for routing calls based on conditions of electronic devices
JP3760581B2 (en) * 1997-07-28 2006-03-29 富士通株式会社 Communication partner information retrieval apparatus and communication support system using the same
US6009333A (en) * 1997-08-14 1999-12-28 Executone Information Systems, Inc. Telephone communication system having a locator and a scheduling facility
US7039393B1 (en) * 1997-10-03 2006-05-02 Karen Jeanne Kite Remote operational screener
AU1367699A (en) 1997-11-03 1999-05-24 Arial Systems Corporation Personnel and asset tracking method and apparatus
US7010369B2 (en) 1997-11-07 2006-03-07 Hill-Rom Services, Inc. Medical equipment controller
ATE260632T1 (en) 1997-11-07 2004-03-15 Hill Rom Services Inc CONTROL FOR MEDICAL FACILITIES
US6047193A (en) * 1997-11-12 2000-04-04 Northern Telecom Limited System and method for locating a switch component
US6178185B1 (en) 1997-11-25 2001-01-23 International Business Machines Corporation Network interface device, method and article of manufacture for providing high bit rate access over robbed bit
US6104730A (en) * 1997-11-25 2000-08-15 International Business Machines Corporation System, method and article of manufacture for high bit rate access over robbed bit trunks
US6215998B1 (en) 1997-12-11 2001-04-10 Nortel Networks Limited Local component-specific console
US6201858B1 (en) * 1997-12-17 2001-03-13 Nortel Networks Limited Multiple terminal message indicator for a telecommunications network
US6104913A (en) * 1998-03-11 2000-08-15 Bell Atlantic Network Services, Inc. Personal area network for personal telephone services
US6317484B1 (en) 1998-04-08 2001-11-13 Mcallister Alexander I. Personal telephone service with transportable script control of services
US6947544B2 (en) * 1998-04-14 2005-09-20 Yamartino Robert J Telephone number area code preprocessor
ATE434338T1 (en) 1998-04-14 2009-07-15 Robert Yamartino TELEPHONE NUMBER AREA CODE PREPROCESSOR
FR2778995B1 (en) * 1998-05-19 2000-08-18 Jean Francois Taillens REMOTE CONNECTION METHOD AND CORRESPONDING ANALOG ELECTRONIC APPARATUS
US6359711B1 (en) 1998-05-20 2002-03-19 Steelcase Development Corporation System and method for supporting a worker in a distributed work environment
US6298047B1 (en) 1998-05-20 2001-10-02 Steelcase Development Inc. Method and apparatus for establishing a data link between a portable data communications device and an interface circuit
US6337856B1 (en) 1998-05-20 2002-01-08 Steelcase Development Corporation Multimedia data communications system
US7116763B2 (en) * 1998-06-10 2006-10-03 Henry Sifuentes Voice and motion activated telephone
US6631179B1 (en) * 1998-06-10 2003-10-07 Henry Sifuentes Voice and motion activated telephone
EP1127444B1 (en) * 1998-10-14 2007-08-15 Bradley S. Templeton Method and apparatus for intermediation of meetings and calls
FR2786974B1 (en) * 1998-12-07 2001-02-16 Sagem METHOD FOR ROUTING INCOMING CALLS TO A PERSON
DE19857346A1 (en) * 1998-12-11 2000-06-15 Nokia Mobile Phones Ltd Communication system and method for forwarding an incoming call and for selecting a terminal in a communication system
GB9827989D0 (en) * 1998-12-19 1999-02-10 Koninkl Philips Electronics Nv Location beacon system
US6466788B1 (en) 1998-12-21 2002-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for transferring position data between terminals in wireless communications systems
US6307469B1 (en) * 1998-12-22 2001-10-23 Karl F. Mandry Remote detection device
US6118373A (en) * 1998-12-22 2000-09-12 Mandry; Karl F. Method of remotely detecting an ambient condition
US6658254B1 (en) * 1998-12-31 2003-12-02 At&T Corp. Method and apparatus for personalization of a public multimedia communications terminal
US7034690B2 (en) * 1999-02-09 2006-04-25 Hill-Rom Services, Inc. Infant monitoring system and method
US6192115B1 (en) * 1999-03-09 2001-02-20 Lucent Technologies Obtaining information about a called telecommunications party
DE19910455A1 (en) * 1999-03-10 2000-09-21 Bosch Gmbh Robert Disk and electrical device
US6842505B1 (en) * 1999-04-05 2005-01-11 Estech Systems, Inc. Communications system enhanced with human presence sensing capabilities
GB2355133A (en) * 1999-10-06 2001-04-11 Mitel Corp Automatic configuration of communication endpoints in response to detection of identificaton badges
US6087983A (en) * 1999-07-20 2000-07-11 Glenayre Electronics, Inc. System for broadcasting GPS data to a pager
US6539393B1 (en) * 1999-09-30 2003-03-25 Hill-Rom Services, Inc. Portable locator system
US6727818B1 (en) 1999-10-29 2004-04-27 Hill-Rom Services, Inc. Hygiene monitoring system
IL132711A (en) * 1999-11-03 2005-05-17 Elpas Electro Optic Systems Lt Dual rf/ir communication device and method of use thereof
US6594354B1 (en) * 1999-11-05 2003-07-15 Nortel Networks Limited Method and apparatus for alert control on a communications system
EP1143758B1 (en) * 1999-11-09 2006-03-22 Sony Corporation Information transmission system and method
US7645258B2 (en) 1999-12-01 2010-01-12 B. Braun Medical, Inc. Patient medication IV delivery pump with wireless communication to a hospital information management system
US20010031633A1 (en) * 1999-12-01 2001-10-18 Nokia Mobile Phones Ltd. Method and apparatus for providing context-based call transfer operation
JP3895092B2 (en) * 2000-03-24 2007-03-22 富士通株式会社 Communications system
US20020023134A1 (en) * 2000-04-03 2002-02-21 Roskowski Steven G. Method and computer program product for establishing real-time communications between networked computers
US7844670B2 (en) * 2000-04-03 2010-11-30 Paltalk Holdings, Inc. Method and computer program product for establishing real-time communications between networked computers
WO2001086575A2 (en) 2000-05-05 2001-11-15 Hill-Rom Services, Inc. Patient point of care computer system
CA2408258A1 (en) * 2000-05-05 2001-11-15 Hill Rom Services, Inc. Hospital monitoring and control system and method
US6681109B1 (en) 2000-05-08 2004-01-20 Richard Leifer Server call system
US10353856B2 (en) 2011-03-17 2019-07-16 Carefusion 303, Inc. Scalable communication system
CZ20023818A3 (en) 2000-05-18 2003-06-18 Alaris Meidical Systems, Inc. System and method for management of information concerning provision of medical care
US11087873B2 (en) 2000-05-18 2021-08-10 Carefusion 303, Inc. Context-aware healthcare notification system
US7860583B2 (en) 2004-08-25 2010-12-28 Carefusion 303, Inc. System and method for dynamically adjusting patient therapy
US9069887B2 (en) 2000-05-18 2015-06-30 Carefusion 303, Inc. Patient-specific medication management system
US9741001B2 (en) 2000-05-18 2017-08-22 Carefusion 303, Inc. Predictive medication safety
US10062457B2 (en) 2012-07-26 2018-08-28 Carefusion 303, Inc. Predictive notifications for adverse patient events
US9427520B2 (en) 2005-02-11 2016-08-30 Carefusion 303, Inc. Management of pending medication orders
US20050171815A1 (en) * 2003-12-31 2005-08-04 Vanderveen Timothy W. Centralized medication management system
US6987846B1 (en) * 2000-05-31 2006-01-17 Rockwell Electronic Commerce Technologies, Llc System and method of changing entity configuration information while automatically monitoring and displaying such information in a call center
US6975874B1 (en) * 2000-06-09 2005-12-13 International Business Machines Corporation Portable phone that changes function according to its self-detected geographical position
EP1168267B1 (en) * 2000-06-20 2007-01-31 Lucent Technologies Inc. Paging device
US6463142B1 (en) * 2000-06-27 2002-10-08 Motorola, Inc. Messaging system with automatic proxy service
US7957514B2 (en) 2000-12-18 2011-06-07 Paltalk Holdings, Inc. System, method and computer program product for conveying presence information via voice mail
US7006832B1 (en) * 2001-03-07 2006-02-28 At&T Corp. Method for intelligent home controller and home monitor
US7054645B1 (en) * 2001-03-07 2006-05-30 At&T Corp. System for intelligent home controller and home monitor
US6924739B1 (en) 2001-03-07 2005-08-02 At&T Corp. Home resource controller system
WO2002073357A2 (en) 2001-03-09 2002-09-19 Radianse, Inc. A system and method for performing object association using a location tracking system
EP1374194A2 (en) * 2001-03-30 2004-01-02 Hill-Rom Services, Inc. Hospital bed and network system
US20020183068A1 (en) * 2001-04-24 2002-12-05 Greg Dunko Searching method for mobile terminal
US7242306B2 (en) 2001-05-08 2007-07-10 Hill-Rom Services, Inc. Article locating and tracking apparatus and method
WO2002091297A1 (en) * 2001-05-08 2002-11-14 Hill-Rom Services, Inc. Article locating and tracking system
EP1390277A1 (en) 2001-05-25 2004-02-25 Hill-Rom Services, Inc. A waste segregation compliance system
US20030002646A1 (en) * 2001-06-27 2003-01-02 Philips Electronics North America Corp. Intelligent phone router
US7120238B1 (en) * 2001-07-12 2006-10-10 8X8, Inc. Sensor-controlled telephone system
AU2002326417A1 (en) * 2001-07-20 2003-03-03 Hill-Rom Services, Inc. Badge for a locating and tracking system
US6980111B2 (en) 2001-08-03 2005-12-27 Hill-Rom Services, Inc. Medication tracking system
US7068769B1 (en) * 2001-09-04 2006-06-27 Sprint Spectrum L.P. Method and system for communication processing based on physical presence
US8121649B2 (en) * 2001-09-05 2012-02-21 Vocera Communications, Inc. Voice-controlled communications system and method having an access device
US7953447B2 (en) * 2001-09-05 2011-05-31 Vocera Communications, Inc. Voice-controlled communications system and method using a badge application
US6892083B2 (en) * 2001-09-05 2005-05-10 Vocera Communications Inc. Voice-controlled wireless communications system and method
US8098806B2 (en) * 2001-09-05 2012-01-17 Vocera Communications, Inc. Non-user-specific wireless communication system and method
US6901255B2 (en) * 2001-09-05 2005-05-31 Vocera Communications Inc. Voice-controlled wireless communications system and method
US7099453B2 (en) * 2001-09-26 2006-08-29 Sbc Properties, L.P. Method and apparatus for enhanced call routing in a telecommunication system
US7415502B2 (en) 2001-11-16 2008-08-19 Sbc Technology Resources, Inc. Method and system for intelligent routing based on presence detection
US6735287B2 (en) 2001-11-16 2004-05-11 Sbc Technology Resources, Inc. Method and system for multimodal presence detection
GB0128595D0 (en) 2001-11-29 2002-01-23 Mitel Knowledge Corp Automatic location-aware feature selection
US7325065B1 (en) * 2001-12-21 2008-01-29 Aol Llc, A Delaware Limited Liability Company Identifying unauthorized communication systems using a system-specific identifier
US6985870B2 (en) 2002-01-11 2006-01-10 Baxter International Inc. Medication delivery system
US6619545B2 (en) 2002-01-15 2003-09-16 International Business Machines Corporation Kiosk having a people presence detector to determine if a kiosk item is to be presented to a customer
US8775196B2 (en) 2002-01-29 2014-07-08 Baxter International Inc. System and method for notification and escalation of medical data
US10173008B2 (en) 2002-01-29 2019-01-08 Baxter International Inc. System and method for communicating with a dialysis machine through a network
DE10208522C1 (en) * 2002-02-27 2003-12-24 Harman Becker Automotive Sys Method and system for searching a telematics device
TWI307228B (en) * 2002-03-25 2009-03-01 Asulab Sa A method of transmitting information between two units each provided with means for sending and/or receiving signals
US8234128B2 (en) 2002-04-30 2012-07-31 Baxter International, Inc. System and method for verifying medical device operational parameters
US7212837B1 (en) * 2002-05-24 2007-05-01 Airespace, Inc. Method and system for hierarchical processing of protocol information in a wireless LAN
GB2389273B (en) * 2002-05-28 2004-08-18 Motorola Inc Wireless communication system architechture mobile station and method
US8509736B2 (en) 2002-08-08 2013-08-13 Global Tel*Link Corp. Telecommunication call management and monitoring system with voiceprint verification
US7333798B2 (en) 2002-08-08 2008-02-19 Value Added Communications, Inc. Telecommunication call management and monitoring system
US7298836B2 (en) * 2002-09-24 2007-11-20 At&T Bls Intellectual Property, Inc. Network-based healthcare information systems
US7376704B2 (en) * 2002-09-24 2008-05-20 At&T Delaware Intellectual Property, Inc. Methods, systems, and products for converting between legacy systems
AU2003275297A1 (en) * 2002-09-27 2004-04-23 Hill-Rom Services, Inc. Universal communications, monitoring, tracking, and control system for a healthcare facility
US7620170B2 (en) 2002-12-31 2009-11-17 At&T Intellectual Property I, L.P. Computer telephony integration (CTI) complete customer contact center
US7573999B2 (en) 2002-12-31 2009-08-11 At&T Intellectual Property I, L.P. Computer telephony integration (CTI) complete healthcare contact center
US7356139B2 (en) * 2002-12-31 2008-04-08 At&T Delaware Intellectual Property, Inc. Computer telephony integration (CTI) complete hospitality contact center
US7440567B2 (en) * 2003-01-27 2008-10-21 At&T Intellectual Property I, L.P. Healthcare virtual private network methods and systems
US8149823B2 (en) * 2003-01-27 2012-04-03 At&T Intellectual Property I, L.P. Computer telephony integration (CTI) systems and methods for enhancing school safety
US7248688B2 (en) * 2003-01-27 2007-07-24 Bellsouth Intellectual Property Corporation Virtual physician office systems and methods
TWI288882B (en) * 2003-01-28 2007-10-21 Lite On Technology Corp A system for positioning staff in office
US7248880B2 (en) * 2003-02-07 2007-07-24 Siemens Communications, Inc. Methods and apparatus for determining a location of a device
EP1593217A4 (en) 2003-02-10 2009-04-01 Nielsen Media Res Inc Methods and apparatus to adaptively gather audience information data
HK1059191A2 (en) 2003-02-26 2004-05-28 Intexact Technologies Ltd A telephony system and a method of operating same
US6950651B2 (en) * 2003-02-27 2005-09-27 Avaya Technology Corp Location-based forwarding over multiple networks
JP2004266453A (en) * 2003-02-28 2004-09-24 Toshiba Corp Network system, server equipment, and communication method
US7190778B2 (en) * 2003-03-20 2007-03-13 Siemens Communications, Inc. Communication system and keyset therefore capable of identifying selected user locations
US7907053B2 (en) 2003-05-14 2011-03-15 Hill-Rom Services, Inc. Combined locating, tracking and communications system
US7627091B2 (en) 2003-06-25 2009-12-01 Avaya Inc. Universal emergency number ELIN based on network address ranges
WO2005022692A2 (en) 2003-08-21 2005-03-10 Hill-Rom Services, Inc. Plug and receptacle having wired and wireless coupling
US20070080801A1 (en) * 2003-10-16 2007-04-12 Weismiller Matthew W Universal communications, monitoring, tracking, and control system for a healthcare facility
WO2005057466A2 (en) * 2003-12-05 2005-06-23 Cardinal Health 303, Inc. System and method fot network monitoring of multiple medical devices
WO2005057879A1 (en) * 2003-12-05 2005-06-23 Cardinal Health 303, Inc. Discovery and connection management with mobile systems manager
US7130385B1 (en) 2004-03-05 2006-10-31 Avaya Technology Corp. Advanced port-based E911 strategy for IP telephony
US8045697B1 (en) 2004-06-02 2011-10-25 Nortel Networks Limited Method and apparatus for interfacing a customer with a call center
US7319386B2 (en) 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US7852208B2 (en) 2004-08-02 2010-12-14 Hill-Rom Services, Inc. Wireless bed connectivity
US7536188B1 (en) * 2004-09-01 2009-05-19 Avaya Inc. Communication device locating system
DK1794665T3 (en) * 2004-09-29 2008-07-14 Swisscom Ag Method and system for loading user instructions into a user-controlled telecommunications device
US8294584B2 (en) * 2004-10-12 2012-10-23 Plost Gerald N System, method and implementation for increasing a likelihood of improved hand hygiene in a desirably sanitary environment
GB0423326D0 (en) 2004-10-21 2004-11-24 Nortel Networks Ltd Improvements in or relating to call polarisation methods in a call center
US7756259B2 (en) 2004-11-22 2010-07-13 Nortel Networks Limited Enhanced caller identification using caller readable devices
US8498865B1 (en) 2004-11-30 2013-07-30 Vocera Communications, Inc. Speech recognition system and method using group call statistics
US7457751B2 (en) * 2004-11-30 2008-11-25 Vocera Communications, Inc. System and method for improving recognition accuracy in speech recognition applications
US20060141926A1 (en) * 2004-12-29 2006-06-29 Nokia Corporation Call rejections and reminders in order to enhance enjoyment of media items
US7684386B2 (en) * 2005-01-18 2010-03-23 Plant Equipment, Inc. Apparatus and method for communications control
US7589616B2 (en) * 2005-01-20 2009-09-15 Avaya Inc. Mobile devices including RFID tag readers
US7783021B2 (en) 2005-01-28 2010-08-24 Value-Added Communications, Inc. Digital telecommunications call management and monitoring system
US8804935B2 (en) * 2005-02-03 2014-08-12 Avaya Inc. Call establishment based on presence
US20060210033A1 (en) * 2005-03-17 2006-09-21 Lucent Technologies, Inc. Context sensitive ring back service
US8107625B2 (en) 2005-03-31 2012-01-31 Avaya Inc. IP phone intruder security monitoring system
US20070004971A1 (en) * 2005-05-27 2007-01-04 Hill-Rom Services, Inc. Caregiver communication system for a home environment
US20060291629A1 (en) * 2005-06-10 2006-12-28 Lucent Technologies Inc. Systems and methods for providing location enabled voice mail
US8121856B2 (en) * 2005-06-28 2012-02-21 Hill-Rom Services, Inc. Remote access to healthcare device diagnostic information
US20070127652A1 (en) * 2005-12-01 2007-06-07 Divine Abha S Method and system for processing calls
US8355363B2 (en) * 2006-01-20 2013-01-15 Cisco Technology, Inc. Intelligent association of nodes with PAN coordinator
DK2317700T3 (en) * 2006-02-10 2016-08-22 Hyintel Ltd A system and method for monitoring hygiene standards compliance
US20070206747A1 (en) * 2006-03-01 2007-09-06 Carol Gruchala System and method for performing call screening
MX2007015979A (en) 2006-03-31 2009-04-07 Nielsen Media Res Inc Methods, systems, and apparatus for multi-purpose metering.
US7769039B2 (en) * 2006-10-05 2010-08-03 International Business Machines Corporation System configured for complex determination of a user's busy state and for assigning an organic “do not disturb” filter
US7617830B2 (en) 2006-10-31 2009-11-17 Resurgent Health & Medical, Llc Wash chamber for automated appendage-washing apparatus
US7818083B2 (en) * 2006-10-31 2010-10-19 Resurgent Health & Medical, Llc Automated washing system with compliance verification and automated compliance monitoring reporting
US7659824B2 (en) * 2006-10-31 2010-02-09 Resurgent Health & Medical, Llc Sanitizer dispensers with compliance verification
US7698770B2 (en) * 2006-10-31 2010-04-20 Resurgent Health & Medical, Llc Automated appendage cleaning apparatus with brush
US7817601B1 (en) 2006-11-17 2010-10-19 Coversant Corporation System and method for seamless communication system inter-device transition
US20080189132A1 (en) * 2007-02-05 2008-08-07 Matthew Minson Automatic Hospital Bed Accounting System
WO2008103455A2 (en) * 2007-02-22 2008-08-28 Vocera Communications, Inc. Voice-controlled communications system and method having an access device or badge application
US8116441B2 (en) * 2007-03-23 2012-02-14 Verizon Patent And Licensing Inc. Call routing based on physical location of called party
US8461968B2 (en) 2007-08-29 2013-06-11 Hill-Rom Services, Inc. Mattress for a hospital bed for use in a healthcare facility and management of same
US7868740B2 (en) 2007-08-29 2011-01-11 Hill-Rom Services, Inc. Association of support surfaces and beds
US8082160B2 (en) 2007-10-26 2011-12-20 Hill-Rom Services, Inc. System and method for collection and communication of data from multiple patient care devices
US8046625B2 (en) 2008-02-22 2011-10-25 Hill-Rom Services, Inc. Distributed fault tolerant architecture for a healthcare communication system
US8566839B2 (en) * 2008-03-14 2013-10-22 William J. Johnson System and method for automated content presentation objects
US8400309B2 (en) * 2008-04-29 2013-03-19 Resurgent Health & Medical, Llc Hygiene compliance
US8340272B2 (en) * 2008-05-14 2012-12-25 Polycom, Inc. Method and system for initiating a conference based on the proximity of a portable communication device
US20090296913A1 (en) * 2008-05-28 2009-12-03 Eric Thomas System and method for location based call processing
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
US8554579B2 (en) 2008-10-13 2013-10-08 Fht, Inc. Management, reporting and benchmarking of medication preparation
US9138078B2 (en) * 2009-04-15 2015-09-22 Southern Imperial, Inc. Retail merchandise hanger with mounting clip
US20110050411A1 (en) * 2009-09-01 2011-03-03 Schuman Richard J Integrated healthcare communication and locating system
US20110103564A1 (en) * 2009-10-30 2011-05-05 Mitel Networks Corporation System and method for communicating guest preferences to a telephony device
US8779924B2 (en) 2010-02-19 2014-07-15 Hill-Rom Services, Inc. Nurse call system with additional status board
US8265254B2 (en) * 2010-04-01 2012-09-11 Crucs Holdings, Llc Auto-matching of a phone extension to a tracked individual within a domain
US9000930B2 (en) 2010-05-24 2015-04-07 Georgia-Pacific Consumer Products Lp Hand hygiene compliance system
US9672726B2 (en) 2010-11-08 2017-06-06 Georgia-Pacific Consumer Products Lp Hand hygiene compliance monitoring system
US8559932B2 (en) * 2010-12-20 2013-10-15 Ford Global Technologies, Llc Selective alert processing
US9411934B2 (en) 2012-05-08 2016-08-09 Hill-Rom Services, Inc. In-room alarm configuration of nurse call system
US9282366B2 (en) 2012-08-13 2016-03-08 The Nielsen Company (Us), Llc Methods and apparatus to communicate audience measurement information
CN103634491B (en) * 2012-08-25 2016-09-21 华为技术有限公司 Telephone user condition detection method in place, Apparatus and system
BR112015003914A2 (en) 2012-08-31 2019-11-19 Baxter Corp Englewood systems for executing a medication request and for managing medication request, and method for executing a medication request
US9314159B2 (en) 2012-09-24 2016-04-19 Physio-Control, Inc. Patient monitoring device with remote alert
NZ707430A (en) 2012-10-26 2016-04-29 Baxter Corp Englewood Improved work station for medical dose preparation system
CA2889210C (en) 2012-10-26 2020-12-15 Baxter Corporation Englewood Improved image acquisition for medical dose preparation system
US11182728B2 (en) 2013-01-30 2021-11-23 Carefusion 303, Inc. Medication workflow management
US10430554B2 (en) 2013-05-23 2019-10-01 Carefusion 303, Inc. Medication preparation queue
CN105074765B (en) 2013-03-13 2022-05-24 康尔福盛303公司 Patient-specific medication management system
EP4195119A1 (en) 2013-03-13 2023-06-14 Carefusion 303 Inc. Predictive medication safety
US9830424B2 (en) 2013-09-18 2017-11-28 Hill-Rom Services, Inc. Bed/room/patient association systems and methods
US9699499B2 (en) 2014-04-30 2017-07-04 The Nielsen Company (Us), Llc Methods and apparatus to measure exposure to streaming media
CA2953392A1 (en) 2014-06-30 2016-01-07 Baxter Corporation Englewood Managed medical information exchange
US11575673B2 (en) 2014-09-30 2023-02-07 Baxter Corporation Englewood Central user management in a distributed healthcare information management system
US11107574B2 (en) 2014-09-30 2021-08-31 Baxter Corporation Englewood Management of medication preparation with formulary management
JP2018503180A (en) 2014-12-05 2018-02-01 バクスター・コーポレーション・イングルウッドBaxter Corporation Englewood Dose preparation data analysis
US10116794B2 (en) * 2015-05-13 2018-10-30 Interactive Intelligence Group, Inc. Determining an active station based on movement data
EP3314488A1 (en) 2015-06-25 2018-05-02 Gambro Lundia AB Medical device system and method having a distributed database
US9773403B2 (en) 2015-07-28 2017-09-26 Hill-Rom Services, Inc. Hygiene compliance system
US10607471B2 (en) 2015-10-06 2020-03-31 Hill-Rom Services, Inc. Hand hygiene monitoring system with customizable thresholds
CN110100283B (en) 2016-12-21 2023-07-04 甘布罗伦迪亚股份公司 Medical device system including information technology infrastructure with secure cluster domain supporting external domain
US11123014B2 (en) 2017-03-21 2021-09-21 Stryker Corporation Systems and methods for ambient energy powered physiological parameter monitoring
JP6680256B2 (en) * 2017-03-31 2020-04-15 京セラドキュメントソリューションズ株式会社 Private branch exchange system
US10734110B2 (en) 2018-12-05 2020-08-04 Hill-Rom Services, Inc. Caregiver locating tag having advanced functionality
US11911325B2 (en) 2019-02-26 2024-02-27 Hill-Rom Services, Inc. Bed interface for manual location
US11595527B2 (en) 2021-03-16 2023-02-28 Bank Of America Corporation Dynamic routing for communication systems
US11715056B2 (en) 2021-03-16 2023-08-01 Bank Of America Corporation Performance monitoring for communication systems

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739329A (en) * 1971-05-24 1973-06-12 Recognition Devices Electronic system for locating
US3696384A (en) * 1971-07-08 1972-10-03 Recognition Devices Ultrasonic tracking and locating system
US3805265A (en) * 1971-10-06 1974-04-16 Rcds Enterprises Inc Radiant wave locating system
US3805227A (en) * 1972-10-03 1974-04-16 Rcds Enterprises Inc Electronic tracking locating system using multiple frequency, modulated, and time delayed ultrasonic signals
US4275385A (en) * 1979-08-13 1981-06-23 Bell Telephone Laboratories, Incorporated Infrared personnel locator system
US4601064A (en) * 1983-01-13 1986-07-15 Fisher Berkeley Corporation Communication system
US4553267A (en) * 1981-07-31 1985-11-12 Crimmins James W Infrared telephone extension modulation system
US4649385A (en) * 1982-08-13 1987-03-10 Teloc R & D Ltd. Electronic locating system for persons receiving telephone calls
JPS60103834A (en) * 1983-11-11 1985-06-08 Nippo Tsushin Kogyo Kk Individual call communication system
US4757553A (en) * 1984-05-15 1988-07-12 Crimmins James W Communication system with portable unit
US4835372A (en) * 1985-07-19 1989-05-30 Clincom Incorporated Patient care system
US5103108A (en) * 1985-10-17 1992-04-07 Crimmins James W Distributed infrared communication system
US4752951A (en) * 1985-12-23 1988-06-21 Konneker Lloyd K Method of providing location dependent person locator service
US4955000A (en) * 1986-07-17 1990-09-04 Nac Engineering And Marketing, Inc. Ultrasonic personnel location identification system
US4977619A (en) * 1986-10-01 1990-12-11 Crimmins James W Distributed infrared communication system
US4899373A (en) * 1986-11-28 1990-02-06 American Telephone And Telegraph Company At&T Bell Laboratories Method and apparatus for providing personalized telephone subscriber features at remote locations
US5164985A (en) * 1987-10-27 1992-11-17 Nysen Paul A Passive universal communicator system
US4906853A (en) * 1988-03-17 1990-03-06 United Manufacturing Co., Inc. Apparatus and method for varying the timing of a control signal
GB8819481D0 (en) * 1988-08-16 1988-09-21 Plus 5 Eng Ltd Portable memory device
US5204670A (en) * 1988-08-29 1993-04-20 B. I. Incorporated Adaptable electric monitoring and identification system
US4916441A (en) * 1988-09-19 1990-04-10 Clinicom Incorporated Portable handheld terminal
GB2230365B (en) * 1989-02-18 1993-05-26 Olivetti Research Ltd Mobile carrier tracking system
US4940963A (en) * 1989-03-10 1990-07-10 Motorola Inc. Paging system with improved acknowledge-back capabilities
IL90277A0 (en) * 1989-05-12 1989-12-15 Shmuel Shapira System for locating compatible persons at a given locality
US4932050A (en) * 1989-06-30 1990-06-05 At&T Bell Laboratories Proximity detection for telecommunications features
US5148148A (en) * 1989-12-28 1992-09-15 Hochiki Kabushiki Kaisha Radio alarm system
US5119104A (en) * 1990-05-04 1992-06-02 Heller Alan C Location system adapted for use in multipath environments
US5140626A (en) * 1990-06-21 1992-08-18 Andrew D. Ory Paging system for establishing telephone connection between calling party and paged party
FR2665038B1 (en) * 1990-07-23 1994-04-01 Alcatel Business Systems RADIO-IDENTIFICATION SYSTEM WITH ANSWERING BADGES, UNITS CONSTITUTING SUCH A SYSTEM AND CORRESPONDING OPERATING ARRANGEMENT.
US5291399A (en) * 1990-07-27 1994-03-01 Executone Information Systems, Inc. Method and apparatus for accessing a portable personal database as for a hospital environment
US5594786A (en) * 1990-07-27 1997-01-14 Executone Information Systems, Inc. Patient care and communication system
US5455851A (en) * 1993-07-02 1995-10-03 Executone Information Systems, Inc. System for identifying object locations
US5253285A (en) * 1990-12-13 1993-10-12 Alheim Curtis C Automated interactive telephone communication system for TDD users
EP0505627A2 (en) * 1991-03-29 1992-09-30 Analogic Corporation Patient monitoring system
US5329578A (en) * 1992-05-26 1994-07-12 Northern Telecom Limited Personal communication service with mobility manager
US5363425A (en) * 1992-06-29 1994-11-08 Northern Telecom Limited Method and apparatus for providing a personal locator, access control and asset tracking service using an in-building telephone network
US5432841A (en) * 1992-07-10 1995-07-11 Rimer; Neil A. System for locating and communicating with mobile vehicles
US5561412A (en) * 1993-07-12 1996-10-01 Hill-Rom, Inc. Patient/nurse call system
US5548637A (en) * 1993-09-09 1996-08-20 Precision Tracking Fm, Inc. Method and apparatus for locating personnel and objects in response to telephone inquiries
US5515426A (en) * 1994-02-28 1996-05-07 Executone Information Systems, Inc. Telephone communication system having a locator
US5465286A (en) * 1994-05-24 1995-11-07 Executone Information Systems, Inc. Apparatus for supervising an automatic call distribution telephone system

Also Published As

Publication number Publication date
EP0748556B1 (en) 1999-05-19
ATE180370T1 (en) 1999-06-15
CA2184165A1 (en) 1995-08-31
US5822418A (en) 1998-10-13
ES2132649T3 (en) 1999-08-16
AU1933995A (en) 1995-09-11
DE69509755D1 (en) 1999-06-24
US5515426A (en) 1996-05-07
EP0748556A1 (en) 1996-12-18
DE69509755T2 (en) 2000-01-27
WO1995023478A1 (en) 1995-08-31
AU708573B2 (en) 1999-08-05

Similar Documents

Publication Publication Date Title
CA2184165C (en) A telephone communication system having a locator
EP0578374B1 (en) Method and apparatus for providing a personal locator, access control and asset tracking service using an in-building telephone network
AU654963B2 (en) Telephone paging system for connecting calling and paged parties
EP1002305B1 (en) A telephone communication system having a locator and a scheduling facility
US4578537A (en) Telecommunication apparatus serving as an interface between a digital computer and an analog communication medium
US4524244A (en) Digital and voice telecommunication apparatus
US5884184A (en) Supervised cellular reporting network
CA2402657C (en) Integrated security and communications system with secure communications link
US6160881A (en) System and method for integrating electronic entry systems with telecommunication systems
CN1092911C (en) Radio communication apparatus
US5802147A (en) System and method for notifying a user of awaiting messages
CA2180991C (en) Intelligent cordless telephone interface device
WO1993005605A1 (en) Method and system for home incarceration
Want et al. The active badge location system
US6332085B1 (en) Integrated telecommunication system and method with voice messaging and local area paging
JP3407958B2 (en) Incoming mail notification method in mail system
WO1993010616A1 (en) Personal locator and call forwarding
CN2261050Y (en) Indoor alaming device capable of manually identified and controlled
EP1719371A1 (en) Method of operation of terminal device in mobile system
JP3082145B2 (en) Silent phone system
JPH05236126A (en) Telephone transfer aid system
JP2000134328A (en) Remote monitoring device
CA2235469A1 (en) Multi-purpose central telephone management system
JPH04120999A (en) Radio calling telephone system
IES60972B2 (en) Alarm device

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed