CA2163891A1 - Brain resuscitation and organ preservation device and method for performing the same - Google Patents

Brain resuscitation and organ preservation device and method for performing the same

Info

Publication number
CA2163891A1
CA2163891A1 CA002163891A CA2163891A CA2163891A1 CA 2163891 A1 CA2163891 A1 CA 2163891A1 CA 002163891 A CA002163891 A CA 002163891A CA 2163891 A CA2163891 A CA 2163891A CA 2163891 A1 CA2163891 A1 CA 2163891A1
Authority
CA
Canada
Prior art keywords
organ
solution
brain
patient
resuscitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002163891A
Other languages
French (fr)
Inventor
Ronald M. Klatz
Robert M. Goldman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Resuscitation Technologies Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2163891A1 publication Critical patent/CA2163891A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • A01N1/0247Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components for perfusion, i.e. for circulating fluid through organs, blood vessels or other living parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B16/00Devices specially adapted for vivisection or autopsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0054Liquid ventilation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/13Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel by means of a catheter allowing explantation, e.g. catheter pumps temporarily introduced via the vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/295Balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/31Medical purposes thereof other than the enhancement of the cardiac output for enhancement of in vivo organ perfusion, e.g. retroperfusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/36Medical purposes thereof other than the enhancement of the cardiac output for specific blood treatment; for specific therapy
    • A61M60/38Blood oxygenation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0468Liquids non-physiological
    • A61M2202/0476Oxygenated solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0693Brain, cerebrum

Abstract

The invention discloses a method for preserving organs in brain-dead humans or cadavers which allows additional time for the organs to remain viable such that they may be harvested for subsequent transplantation. The method includes the steps of catheterizing the vessels or tissues around the organ sought to be preserved, introducing a temperature controlled solution to cool the organ to inhibit degenerative metabolism, oxygenating the organ and inhibiting free radical damage. The temperature controlled organ preservation solution includes perfluorocarbons, antioxidants, tissue damage reversing and protecting agents, carrier vehicles, diluents, nutrients, and anticoagulating agents.
A device which performs this method is also disclosed. This device includes a fluid reservoir (30), an oxygen tank (34), a heat exchanger (38) and removable catheter lines (60). Also disclosed is a method for brain resuscitation involving injections of "warm" resuscitation solution followed by injection of "cool" and oxygenated resuscitation solution.

Description

21~3~1 094/28960 PCT~S94/05764 BRAIN RESUSCITATION AND ORGAN PRESERVATION
DEVICE AND l~ O~

Field of the Invention The present invention relates generally to treating ischemic and anoxic brain injuries associated with cardiac arrest. More particularly, the present invention provides an apparatus and method for resuscitation of the brain and maintenance of viability durin~ trauma or other periods of decreased blood flow, allowing the health professional extra time to restore blood circulation. With the present invention, the brain and associated neurologic tissues remain intact, throughout attempts to restart the victim's heart and restore circulation, allowing the victim increased chances of survival with less chance of per~nent brain damage.
The present invention also provides an apparatus and method for preserving organs in brain-dead patients or cadavers, which keeps the requisite organs viable for extended time periods. Nith this invention, the organs may be preserved such that they are suitable for subsequent harvesting and transplantation.

Brief Description of the Prior Art During cardiac arrest, the heart ceases to pump blood. Subsequently, there is no circulation, and the brain fails to receive freshly oxygenated blood.
Without a steady supply of oxygenated blood, the brain will cease to function.
Current resuscitation techniques for cardiac arrest have been directed almost exclusively towards the heart. However, even with methods such as cardiopulmonary resuscitation (CPR), patient survival rates are low. In hospitals and clinics with advanced CPR and life support systems, the survival rate is normally around 14%. Outside of hospital settings, the survival rate is about 5%.
4 0 SUBSTITUTE SHEET (RULE 2~) 2~6~89i W094/28960 PCT~S94/05764 Among cardiac arrest victims overall, less than 10~ survive neurologically intact and without si~nificant brain damage. The other approximately 90 either die or sustain some neurologic injury from ischemia (i.e., lack of blood flow to the brain), or anoxia (i.e., lack of oxygen to the brain). Such frequency of neurologic injury occurs because after cardiac arrest, basic cardiopulmonary resuscitation and advanced life support techniques, such as CPR, closed heart cardiac chest massage, and electroshock treatments, typically require fifteen to twenty minutes to regain circulation from a failed heart. Reversible neurologic damage beings as early as four minutes and irreversible neurologic damage beings as early as six minutes after circulation stops. To combat this potential neurologic injury, initial resuscitation efforts need to be directed toward reviving the brain in addition to resuscitating the heart.
As indicated above, anoxic and ischemic brain injuries from cardiac arrest result in damage to the brain and associated neurologic tissues after about four minutes. In contrast, the heart can survive intact up to four hours after cardiac arrest. The short viability of brain tissue upon deprivated oxygenated blood is a result of the requirement of high amounts of nutrients for tissue maintenance. Brain tissue uses almost all of the nutrients supplied by the circulating blood for mainte~Ance and has very little re-~i n ing for storage.
Absent blood flow to the brain, the small amount of stored nutrients is rapidly exhausted. once exhausted, brain oxygen content rapidly depletes. This oxygen depletion is traumatic and causes a series of reactions in the oxygen starved brain tissue cells. These reactions produce free radical ions, primarily consisting of the superoxide radical 2-- These free radicals complex with proteins in the brain and associated neurologic tissues, altering respiration, SUBSTITUTE S~IEET (RULE 26) 21&~8~1 ~ W094/~960 PCT~S94/05764 energy transfer and other vital cellular functions, and irreversibly damaging these tissues.
Prior efforts at resuscitating the brain have involved highly invasive treatments, intruding physically into the brain itself. Such invasive techniques are described in U.S. Patents 4,378,797 and 4,445,500 issued to Osterholm. These patents describe a stroke treatment method which is a direct physical intrusion into the brain itself. In this method, an opening is drilled directly through the skull through the brain into the pons or brain ventricles. These areas are then directly cannulated and flooded with room tempexature oxygenated perfluorocarbons. These entering perfluorocarbons mix with cerebral spinal fluid, whereby they are carried throughout the brain and associated neurologic tissues through channels within the central nervous system, sometimes referred to as the "third circulation. n Excess fluid is drained through an opening invasively placed in the cisterna magna of the brain This stroke treatment method has several drawbacks. This method must be performed in a surgical environment by a skilled surgical team. It cannot be done by a single person with basic medical training. It cannot; be done in the field or other emergency type settings. The device used in performing this stroke treatment is not portable. Additionally, since this procedure is invasive (drilling directly into the brain), there is a high risk of mechanical damage to the brain and associated neurologic tissues. Finally, the treatment fluid used contains essentially perfluorocarbons. It lacks any agents needed to inhibit free radical damage.
Additionally, despite the dramatic success and increase in the number of organ transplants, there rem~ a massive shortfall of organs suitable for donation and subsecluent transplant. The demand for SUBSTITUTE SHEET (RU~E 26) 3 ~ 9 l W094/~960 PCT~S94/05764 ~

organs rc~i n~ greater than the supply. As a result, thousands of people unnecessarily die.
This is an irony because of the potential ablln~nce of suitable organs. Specifically, more than 1.5 million Americans who die from trauma, accidents or cardiac arrest with organs suitable for transplant, could easily have their organs salvaged.
Present salvaging techniques include putting the organ in ice after having been perfused in a Collins solution. This Collins solution mimics the internal environment of the cells, which form the organ tissue, and keeps the organ viable for approximately forty-eight hours. In most cases, these present methods do not permit sufficient time to transfer a suitable viable organ to the needy recipient. This is because organs deprived of oxygen nutrient rich blood flow in a body at normal body temperature suffer irreversible damage and injury in just a few hours or less. For example, the heart must be salvaged almost immediately, while the kidneys must be salvaged within one to three hours.
Under present circumstances, the time prior to that which a potentially transferable organ may be salvaged is usually delayed. This occurs because the brain-dead person must first be brought to a hospital.
Alternatively, a person dying outside a hospital or other clinical setting must first be brought to a morgue and be pronounced dead. The family must then sign organ donation forms. Only after the brain-dead person has been brought to a hospital and the organ donation procedures are complete, may a surgical team be permitted access to the body to harvest the viable organs for transplant. This procedure takes time to a point where organs are irreversibly damaged or are no longer viable.
It is therefore an object of this invention to non-invasively treat ischemic and anoxic brain injuries immediately upon cardiac arrest whereby resuscitation SUBSTIT~JTE SHEET (RULE 2~

21~8~l ~ 094/28g60 PCT~S94/05764 efforts are applied in time for a patient to survive neurologically intact. By directing resuscitating efforts to immediately treating the brain, the present invention allows medical personnel substantial additional time (beyond the critical four minute window) to regain the failed heart's circulation without the patient suffering neurologic damage.
It is also an object of the invention to provide a method of treating ischemic and anoxic brain injuries suffered upon cardiac arrest so as to inhibit free radical chemical species from complexing with proteins in the brain and neurologic tissue to avoid permanent irreversible damage.
It is another object of the invention to resuscitate the brain by establishing a non-invasive, artificial circulation of synthetically oxygenated blood to the brain.
It is yet another object of the invention to preven~ and reverse potential damage to the brain and associated neurologic tissue suffered as a result of ischem~c injury due to cardiac arrest, major trauma, suffocation, drowning, electrocution, blood loss and toxic poisoning from substances including carbon monoxide and cyanide.
It is further object of the invention to provide a device for treating the aforementioned injuries, which is suited for field as well as clinical use and that can be operated by a single person with ~ i n i ~1 medical training and experience.
It is still another object of the invention to provide a solution capable of inhibiting free radical ions from complexing with proteins in brain and associated neurologic tissue, and capable of protecting these tissues and reversing injuries to these tissues, thereby expanding the brain's critical four minute viability window.

SUBSTITUTE SHEET (RULE 26J

2~38~1 WOg4/28960 PCT~S94/05764 ~

It is still another object of this invention to provide a method of preserving organs in their viable states in brain-dead patients or cadavers, in order for organ harvesting, whereby the harvested organs are suitable for transplant~tion.
It is still another object of the invention to prevent and reverse potential damage to a brain-dead patient's or cadaver's organs prior to organ harvesting such that the harvested organs remain viable for harvesting, whereby they are suitable for transplantation.

Summary of the Invention The present invention focuses on initial resuscitation efforts toward resuscitating the brain due to its short viability, rather than the heart. The invention includes a non-invasive method which reverses and inhibits neurologic damage, and resulting ischemic and anoxic injury upon cardiac arrest. The method includes establishing an artificial circulation by catheterizing the circulatory system in both external carotid arteries, to deliver essential treatment components in a synthetic brain resuscitation solution to the brain. Once catheterized, the brain is driven into a submetabolic coma as barbiturates are introduced through the catheter. This coma lowers the brain's metabolism and decreases free radical production, while keeping its tissues viable. The brain is oxygenated by introducing temperature controlled perfluorocarbons, which are super-saturated with oxygen. These perfluorocarbons act as a blood substitute and transport oxygen in a manner similar to hemoglobin. Free radical damage is inhibited by introducing antioxidants, free radical scavengers. The antioxidants complex with ionic 2- and prevent the ions from complexing with proteins in brain tissue, which is a cause of irreversible damage.
Protecting and reversing neurologic damage is SUBSTITUTE SH~ET (RULE 26) ~ 094/28960 ~1~ 3 ~ 91 PCT~S94/05764 accomplished by introducing Lazaroids, an experimental drug class now being developed by the Upjohn Pharmaceutical Company of Kalamazoo, Michigan.
All of the above-mentioned compositions are included in a single brsin resuscitation solution. This brain resuscitation solution is delivered to the brain in a chilled condition. The fluid is chilled by cooling it to a temperature sufficiently low to hypothermically shock the brain. At this point, the brain's metabolism is slowed and free radical production decreases. The brain is additionally cooled externally with natural or synthetic ice packs around the patient's head.
Once the procedure is complete, continuing efforts are then made to resuscitate the heart and restore the circulation. This can be achieved by drug A~miniStration, CPR (manual and mechanical), chest compression, and the like.
Additionally, the present invention discloses a method of resuscitating or preserving organs (collectively known as organ preservation) in a brain-dead patient or cadaver prior to their harvesting for transplant, such that viable organ is transplanted. The method includes establishing an artificial circulation within the organ by catheterizing a major blood or lymph vessel supplying the organ or organ tissue parenchyma, to deliver essential treatment components in a synthetic solution to it. The solution is cooled below body temperature and introduced through the catheter. The solution includes components with serve to lower the organ's metabolism and decrease free radical production, while keeping the organ viable. Specifically, the solution includes temperature-controlled perfluorocarbons, which are super-saturated with oxygen.
- These perfluorocarbons oxygenate the organ by acting as a blood substitute, transporting oxygen in a manner similar to hemoglobin. Free radical damage is inhibited by introducing antioxidants, free radical scavengers.
SUBSTITUTE SHEET (RULE 26) 2~3~9~
W094/~960 PCT~S94/05764 ~

The antioxidants complex with the ionic 0z~ and prevent the ions from complexing with proteins in the tissue, which is a cause of irreversible damage. Further tissue damage protection is accomplished by introducing Lazaroids, an experimental drug class now being developed by the Upjohn Pharmaceutical Company of R~ 1 ~m~ ~oo, Michigan.
All of the above-mentioned compositions are included in a solution similar to that described above for brain resuscitation. The only significant difference is that barbiturates, which induce a coma in the brian, while permissible, are preferably not used in organ preservation as this result is not needed in this instance. Similar to the above-mentioned brain resuscitation solution, the organ preservation and resuscitation solution (hereinafter organ preservation solution), is chilled by cooling it to a sufficiently low temperature to inhibit degenerative metabolism of the organ. With the organ's metabolism is slowed, free radical production decreases.
Once this procedure is complete the organ will remain viable, such that harvesting and subsequent transplantation may take place at a later time. The harvest organ will have sustained ~ini~l, if any damage, and the transplant recipient will be able to resume a normal life.
The present invention includes a device for delivering the aforementioned brain resuscitation or organ preservation solutions. The device can be adapted for clinical or field use. This device includes a reservoir for holding brain resuscitation or organ preservation solution which communicates with an oxygen tank and a heat exchanger. Upon activation, the oxygen is released into the reservoir, oxygenating the brain resuscitation or organ preservation solution. The oxygenated solution is then pumped from the reservoir to the heat exchanger, where it is cooled. When brain SUBSTITUTE SHEET (RULE 2~) 2163~1 ~ 094/28g60 PCT~S94/05764 resuscitation is desired, the cooled solution is then introduced to the patient's circulatory system through the catheterized carotid arteries or other blood vessels and directed toward the brain. Alternately, in organ preservation, the cooled solution is introduced into blood or lymph vessels supplying the organ, the organ itself or the tissue surrounding the organ. For example, with the pancreas, the intestine, a surrounding tissue, would provide an organ preservation solution to the pancreas by capillary circulation.

Brief Description of the Drawinqs For a more complete understanding of the invention reference should be made to the drawings wherein:
FIG. 1 is a front view of the portable brain resuscitation/organ preservation device of the invention illustrating the internal components;
FIG. 2 is a side view of the portable brain resuscitation/organ preservation device of FIG. l;
FIG. 3 is a front view of a second embodiment of the portable device shown in FIG. 2;
FIG. 4 is a flow chart of the method of the present invention; and FIG. 5 is a front view of the patient being catheterized.

Detailed Description of the Drawings Referring to FIGS. 1 and 2, the brain resuscitation/organ preservation device of this embodiment of the invention is semi-automatic. It - includes an outer casing 22 with a handle 23 and a window 24. The window 24 is located within a first side 25 which has a greater width than length. The casing 22 includes an inner chamber 26. This inner chamber 26 contains components which include a reservoir 30, an SUBSTITUTE SHEET (RULE 2~

21633~1 W094/~960 PCT~S94/05764 oxygen tank 34, a heat exchanger 38, a pump 46, a logic control unit 50, and a power source 54.
The reservoir 30 holds the brain resuscitation or organ preservation solution. The solution of this invention i5 a fluid mixture of various components and is packaged in premixed, premeasured canisters, for a single immediate use. These canisters can be replenished (refilled) and exchanged for continued life support. The specific components are discussed below in accordance with the methods of the invention.
Preferably, this reservoir 30 is adapted to hold three liters of fluid contained within replaceable canisters 32. The preferred canisters are clear plastic bags, such that fluid depletion in the reservoir 30 can be viewed through the window 24. However, these canisters can be rigid containers, made of opaque material.
An oxygen tank 34, adjustable to various pressures, co~mllnicates with reservoir 30 through a first conduit 35. Oxygen tank 34 is sealed by a valve 36, which is opened once the device 20 is activated.
Tank 34 is preferably a cylinder ten inches tall by four inches in diameter, cont~;ning oxygen pressurized to at least 17 psig.
A heat exchanger 38 capable of controlling the fluid's temperature, surrounds reservoir 30. Preferably the heat exchanger cools by undergoing an internal endothermic reaction, once a charging valve 40 is opened when a charging handle 41 on the device is activated.
The exchanger contains Ammonium Nitrate and water, which are initially separate. Upon activation, these chemicals contact each other, reacting endothermically, causing the heat exchanger to cool. Additionally, the heat exchanger's cooling can be accomplished by carbon dioxide (dry ice), freon or a mechanical cooling device.
A second conduit 44 extends from the reservoir and communicates with a valve controlled pump 46, capable of pumping at various rates and modes, in SUBSTITUTE SHEEF (RULE 2~

21~3~1 094/~960 PCT~S94/05764 communication with a logic control unit 50. The pump 46 and the logic control 50 unit are both powered by an energy source 54. However, the device is suitable for an electric adapter. A battery pack is the preferred energy~ source 54. The logic control unit 50 includes (not shown) an oxygen pressure sensor, a fluid mass flow sensor, a fluid pressure indicator and regulator, a fluid temperature indicator and regulator, a fluid temperature indicator with feedback to a mass sensor, and a timing device for estimating the time the fluid in the reservoir will be depleted at a given mass flow.
The logic control unit 50 can control the rate and mode of pumping, i.e. continuous or pulsatile. One example of a pulsatile rate and mode would be that which simulates the pulsed flow of a beating heart.
Measurements from logic control unit 50 are displayed on an LED digital display 56. Digital display 56 preferably shows the temperature and flow rate of the brain resuscitation solution.
The second conduit 44 extends through the pump 46 and logic control unit 50 and terminates in a side opening 58 on the device 20. Preferably, this side opening 58 is on the side 66 adjacent to the longitudinal side 25. Side opening 58 is capable of attaching to catheter lines 60 to permit brain resuscitation solution to enter the patient's circulatory system, through catheters 62 placed into a single, but preferably both, external or internal carotid arteries. Similarly, side opening 58 is capable of attaching to catheter lines 60 to permit organ preser~ation solution to enter the patient's circulatory system, through catheters 62 placed into a single vessel near the organ sought to be preserved, the organ itself or tissues surrounding the organ.
With respect to catheters 62, one way balloon tipped catheters are preferred. The balloons generally inflate upon activation to block potential reverse blood SUBSTITUTE SHEET (RULE 26) 2 ~ ~3~
W094/~960 PCT~S94/OS764 and brain resuscitation or organ preservation fluid flow toward the heart (except in organ preservation where the heart is being resuscitated). Additionally, it is preferred that this ad~acent side 66 also contain openings for venting excess oxygen 68 and for oxygen intake 69. This oxygen intake can be from the atmosphere or ~rom adjunct oxygen sources.
Upon activating the brain resuscitation or organ preservation device, the oxygen tank valve 36 opens and pressurized oxygen is released from the oxygen tank 34 into contact with the brain resuscitation or organ preservation fluid, thereby oxygenating it. The heat exchanger 38 is activated by releasing the charging valve 40. Once activated, the oxygenated solution in the reservoir is cooled. This cooled solution moves through a second conduit 44, drawn by sufficient pressure from the oxygen tank 34 into a logic control unit 50, powered by an energy source 54, such as a battery pack. A pump 46, within this logic control unit 50 further moves the chilled oxygenated solution through this second conduit. Solution then enters a catheter line 60, attached to an opening 8 in device whereby it is delivered to the brain or organ through the catheters 62.
The preferred embodiment of the brain resuscitation/organ preservation device 20 is relatively small. It is portable, suitcase-like in appearance, and suitable for field use, such as in ambulances, battlefields, athletic fields, aircraft, marine vehicles, spacecraft, emergency treatment facilities, and the like. It is lightweight and can be carried directly to the patient. In one example of the device the outer casing measures twenty inches by eighteen inches by fifteen inches and weighs approximately thirty pounds.
FIG. 3 is a second embodiment of the brain resuscitation/organ preservation device 70. This SUBSTITUTE SHEET (RULE 2~) 094l~960 2 ~ 6 ~i PCT~S94/05764 embodiment is mechanical. It is manually activated and is fully operative under pneumatic power generated by pressurized oxygen. Device 70 includes an outer casing 72 with a handle 73 and preferably a window 74, located in a first side 75 having a greater length than width.
The outer casing 72 includes an inner chamber 76. This inner chamber 76 contains components which include a reservoir 80, an oxygen tank 82, a heat exchanger 90, and a logic control unit 96.
The reservoir 80 holds the brain resuscitation or organ preservation solution of the invention. The brain resuscitation or organ preservation solution is a mixture of various components and is packaged in pr~ixe~, premeasured canisters, for a single immediate use. These canisters can be replenished (refilled) and exchanged for continued life support. The specific components of the brain resuscitation or organ preservation solution are discussed below in accordance with their respective methods. Preferably, reservoir 80 is adapted to hold four to ten liters of solution contained within replaceable canisters 84. The preferred canisters are clear plastic bags through which the fluid depletion in the reservoir 80 can be viewed through the window 74.
Reservoir 80 communicates with an oxygen tank 82 through channels 85, which open when charging handle 86 is pulled. Oxygen tank 82 is adjustable to various pressures and is sealed by a valve 88 on the charging handle 86. The oxygen is pressurized to at least 17 psig.
Reservoir 80 also communicates with a heat exchanger 90, capable of controlling the solution~s temperature, through a conduit 92. Similar to that of the first embodiment, the preferred heat exchanger cools by undergoing an internal endothermic reaction, as explained with the first embodiment above. Heat exchanger 90 communicates with the charging handle SUBSTITUTE SHEET (RULE 26~

W094l~960 ~ PCT~S94/05764 through a valve 94, which when activated by pulling, initiates cooling.
Conduit 92 extends through the heat exchanger 90 into a logic control unit 96. Logic control unit 96 includes (not shown) an oxygen pressure sensor, a fluid mass flow sensor, a fluid pressure indicator and valve 98 for regulating fluid pressure and flow, a fluid temperature indicator and regulator, a fluid tempersture indicator with feedback to a mass sensor, and a timing device for estimating the time fluid in the reservoir 80 will be depleted at the current mass flow. Measurements from this logic control are displayed on an LED digital display 99. Digital display 99 shows the brain resuscitation or organ preservation fluid temperature and flow rate.
Conduit 92 extends from the logic control unit 96, to a ter~;n~l point 100 outside the device 70. A
high pressure fluid coupling valve 102 is at this terminAl point 100. The valve 102 is opened when the device 70 is activated. This t~r~i n~l point 100 is suitable for attachment of catheter line 104 and subsequent catheters 106.
As with device 20, one way balloon tipped catheters are preferred in alternate device 70. Upon activation the balloon portion of the catheter inflates, blocking possible reverse blood and brain resuscitation or organ preservation solution flow toward the heart.
Additionally, it is preferred that device 70 contain openings for venting excess oxygen and for oxygen intake. This oxygen intake can be from the atmosphere or adjunct oxygen sources.
Device 70 is activated when the user pulls the charging handle 86. This action opens a valve 88 on the oxygen tank 82, releasing pressurized oxygen, which moves through channels 85 into the reservoir 80 and into contact with the brain resuscitation or organ preservation solution thereby oxygenating the fluid SUBSTITUTE SHEET (RULE 26) ~1~3~1 094/~960 PCT~S94/05764 solution. The pressure from this released oxygen drives the o~ygenated solution into conduit 92 which passes through a heat exchanger 90, thereby cooling the solut:ion. Once the cooled oxygenated fluid solution leaves the heat exchanger 90, it continues in conduit 92 through the logic control unit 96.
Once past the logic control unit 96, the solution moves through this conduit 92 until it ter~;nAtes in a high pressure solution coupling valve 102 outside the device 70. Nhen the high pressure valve 102 is open, the catheters 106 are coupled to this termirl~l conduit end 100, brain resuscitation or organ preservation solution can enter the patient's circu]atory system. The oxygen pressure preferred is at least 17 psig, sufficient to drive this brain resuscitation or organ preservation solution from the reservoir 80 into the brain or organ respectively.
Other alternative embodiments may have two reservoirs. This would be especially useful in brain resuscitation. The first reservoir would be kept at body temperature or slightly cooler whereby this "warm"
brain resuscitation solution is available to flood the brain and quickly diffuses in it, whereby the blood-brain barrier is crossed. The second reservoir is available to deliver "cool" (approximately forty degrees fahrenheit) resuscitation solution, chilled by the heat exchanger, for the purpose of inducing hypothermic shock (discussed below).
Another alternative embodiment of the two-reservoir device, quite advantageous for brainresuscitation, includes a first reservoir containing - unoxygenated fluid, kept at body temperature or slightly below. A bolous of this "warm unoxygenated solution is initially delivered to the brain, so as to prevent an oxidative burst of free radicals. The second reservoir is available to deliver cool (approximately 40F) oxygenated resuscitation solution to the brain for the SUBSTITUTE SHEET (RUlE 26) 2~3~
W094/~960 PCT~S94/05764 purpose of inducing hypothermic shock (discussed below).
The above-described heat exchangers cool the solution, while oxygensting the solution occurs through either of the embodiments disclosed in FIGS. 1-3, as either of these embodiments is modified such that only this second reservoir communicates with the oxygen source. The "cool" oxygenated resuscitation solution is delivered to the brain shortly after the initial "warm" unoxygenated solution has been delivered.
Still additional alternative embodiments may use preoxygenated solution in the reservoirs.
Reservoirs cont~ini~g preoxygenated fluid solution eliminate the need for oxygen tanks as these devices have sufficient power (enh~nced electronics and powerful lS pumps), capable of moving the brain resuscitation solution from the reservoir in the device to the brain.
While these two preferred embodiments are portable devices particularly suited for portable, field use, they are also suited for stationery, clinical use.
Should a clinical device be desired, these two portable embodiments could be made larger and modified accordingly for such use.
In operation, the brain resuscitation/organ preservation device supplies treatment solution for the accompanying resuscitation or preservation methods respectively. As previously stated, one aspect of the invention comprises a method of treating anoxic and ischemic injuries suffered as a result of cardiac srrest, suffocation, drowning, electrocution, losses of circulation, strokes, bodily injuries, toxic (carbon monoxide, cyanide, etc.) poisoning, and associated major trauma.
Reference is now made to FIGS. 4 and 5 which describe and show the non-invasive method of the invention for brain resuscitation. Preferably, this method involves the initial step of shunting all effective cardiac output away from the lower extremities SUBSTITUTE SHEET (RULE 26J

094/~960 17 PCT~594/~5764 and the abdomen 112 and toward the patient's heart and head at step 112. This shunting is preferably accomplished with mast trousers or pneumatic compression suits, which compress the lower abdomen and lower extremities forcing blood to the heart. However, other equivalent devices may be employed. During this time, the patient's lungs are ventilated with 100% oxygen along with basic cardiac life support or chest percussion and ventilation at step 114.
An artificial circulation through the brain is established at step 116 as the patient 118 is catheterized at an injection point along the circulatory system 120. The brain resuscitation solution enters the circulatory system through at least one blood vessel (artery or vein). Preferably, at least one external or internal carotid arteries are catheterized. These carotid arteries are preferred since they are large arteries leading directly to the brain and can be easily found by feeling for the carotid pulse. Alternately, any other blood vessel (artery or vein) may be the injection point catheterized. Such points include the femoral arteries, or jugular veins.
Balloon type catheters 121 with the one way balloon valves at a distal point are preferred. Once inserted into the arteries, the balloons inflate, limiting any reverse blood and brain resuscitation fluid solution flow toward the heart through the artery.
Prior to catheterization, the catheter lines 122 are attached to the brain resuscitation device.
This device is now activated and temperature controlled (chilled) oxygenated brain resuscitation solution is - delivered to the brain at step 124. This brain resuscitation solution is a mixture of various components suitable for treating these ischemic and anoxic injuries and keeping the brain and associated neurologic tissues intact. Specifically, the brain resusc:itation solution is a fluid mixture contAining SUBSTITUTE SHEET (RULE 26) W094/289~ 8 91 PCT~S94/05764 barbiturates, oxygen carrying agents, antioxidants, Lazaroids, carrier vehicles, nutrients and other chemicals.
Initially the solution is temperature controlled, and delivered to the brain after having been chilled to approximately forty degrees F. At this temperature, the brain is hypothermically shocked and its metabolism, and subsequent free radical production is slowed. This temperature controlling (cooling) step 124 may alone allow an additional thirty minutes of brain viability. Additional cooling is achieved by applying external cooling means to the patient's head.
The cooling means includes bonnets cont~i~ing ice cubes, synthetic cooling packets and the like. These bonnets may extend to cover the next and spinal column.
Barbiturates comprise from about 0.000 to 20.00 percent by volume of the brain resuscitation solution.
Preferably, the brain resuscitation solution includes .001 to 10.00 percent by volume of barbiturates. These barbiturates drive the brian into a submetabolic coma at step 126. Brain metabolism and subsequent free radical production are further lowered.
Thiopental is the preferred barbiturate. It has a fast induction time as it can cross the blood-brain barrier in three to seven seconds. Alternately,Secobarbital or Pentobarbital may be used.
Oxygen carrying agents comprise from about 0.00 to 99.90 percent by volume of this brain resuscitation solution. The preferred brain resuscitation solution includes 10.00 to 99.90 percent by volume of oxygen carrying agents. Perfluorocarbons are the preferred oxygen carrying agents, as they have an extremely high oxygen carrying capacity. When delivered to the brain, in this oxidation step 128, these perfluorocarbons are supersaturated with oxygen, having been oxygenated in the fluid reservoir. These perfluorocarbons act as a blood substitute, carrying oxygen to the brain similar SUBSTITUTE SHEET (RULE 2~;) 21~91 094/~960 PCT~S94/05764 1~
to hemoglobin in the blood. These perfluorocarbons are temperature controlled and enter the patient~s circulation at temperatures between 0 and 105 degrees F.
Antioxidants comprise from about 0.00 to 50.00 percen,t by volume of this brain resuscitation solution.
Preferably, the brain resuscitation solution includes 0.001 to 30.00 percent by volume of antioxidants. These antioxidants are the preferred free radical scavengers.
Once introduced into the brain at step 130, these Antioxidants compete with brain tissue proteins as binding sites for the free radicals, mainly ionic 2.
Since a large portion of the free radicals complex with antioxidants, a substantial amount of free radical damage is prevented since these same free radicals do not bind and form complexes with proteins in the brain and associated neurologic tissues. The preferred antioxidants include Vitamin A, Vitamin B, Vitamin C, Vitamin E, Selenium, Cystine, Cysteine, BHT, BHA, Hydergine and the like.
Lazaroids, as experimental drug class being developed by the Upjohn Co. of Kalamazoo, Michigan, comprise about 0.00 to 30.00 percent by volume of the brain resuscitation solution. Preferably, Lazaroids comprise .001 to 20.00 percent by volume of the brain resuscitation solution. These Lazaroids are the preferred agents for protecting and reversing anoxic brain injury for up to forty-five minutes of anoxia, as shown in ~n i ~1 studies. These Lazaroids as well as nutrients, are introduced to the brain at step 132 in the brain resuscitation solution. Lazaroids are also free radical scavengers which fall under two major root - moieties: pregnanes, ranging in molecular weight from roughly 580-720 and benzopyrans, ranging in molecular weight from 425-905.
The brain resuscitation solution may include up to 50 percent by volume of components which act as carrier vehicles and diluents for the antioxidants, SUBSTITUTE SHEET (R~JLE 26) 21~8~1 W094/~g60 PCT~S94/05764 barbiturates, perfluorocarbons and Lazaroids.
Dimethylsulfoxide (DMSO) is the preferred carrier as it aids the above agents in traversing brain cell membranes. Additionally, the brain resuscitation solution may contain physiologic buffers to maintain pH.
Nutrients are also provided in this solution, up to 30 percent by volume. Glucose is one nutrient which is preferred.
Finally, the solution may contain up to 10 percent by volume of heparin or other suitable anti-blood coagulating agents to stop blood clotting which may occur due to lack of blood flow during the resuscitation attempt as a side effect of arterial system blockage and fluid backflow from the balloon tipped catheter.
Once this method has been performed and the brain resuscitation fluid has been properly a~m; ni stered, continuing efforts to restart the heart and restore the circulation at step 134 should be made.
Alternately, a method exists for use in emergency situations. In these situations, preoxygenated fluid may be directly injected into the patient's circulatory system. This is done by removing the reservoir canister from the brain resuscitation device and attaching it to a catheter line and then catheterizing the patient's circulatory system, or placing fluid from the reservoir canister into a syringe and injecting the patient.
The invention additionally discloses a method for preserving organs such as the heart, lungs, kidneys, pancreas and liver whereby they remain viable and suitable for harvesting and subsequent transplantation.
The method involves establishing an artificial circulation through the organ to be harvested, as the patient is catheterized at an injection point. This injection point typically includes a major blood or lymph vessel, the organ itself, or tissues surrounding SUBSTITUTE SHEET (RULE 26) 21~3~
WOg4/~960 PCT~S94/05764 the organ. If a lymph vessel is catheterized, it should be in close proximity to the organ to be harvested.
Prefe:rably, arteries proximate to the organ are catheterized, as they can be found easily and provide a direct route to the organ.
Balloon-type catheters (similar or identical to those disclosed above) with one-way balloon valves at distal point are preferred. Once inserted into the vessels of the circulatory system, the balloons inflate, limiting any reverse blood flow and organ resuscitation fluid solution flow away from the organ to be harvested.
The organ preservation solution may be delivered to the injection point through catheters from the reservoir in the organ preservation devices. Once the devices are activated, temperature controlled (chilled) oxygenated organ preservation solution is delivered to the organ. This organ preservation solution is a mixture of various components suitable for keeping the organ viable. Specifically, the organ preservation solution is a fluid mixture contAining oxygen-carrying agents, antioxidants, Lazaroids, carrier vehicLes, nutrients and other chemicals. It is similar to that disclosed above for brain resuscitation except that barbiturates, which may be included, are not required as there is not a great need to induce a coma in a brain-dead patient or cadaver.
Initially the solution is tempersture-controlled and delivered to the organ after having been chilled to approximately 40F. At this temperature, the degenerative metabolism of the organ is slowed as the subsequent free radical production ( 2) decreases. This - temperature-controlling (cooling) step may slone allow up to an additional four hours of organ viability.
Addit:ional cooling is achieved by applying external cooling means to portions of the patient or cadaver proximate to the organ to be harvested. The cooling SUBSTITUTE SHEET (RU~ 26) 2~3~9~
W094/28960 PCT~S94/05764 means include wraps cont~; n ing ice cubes, synthetic cooling packets and the like.
Oxygen carrying agents comprise about 0.000 to 99.900 percent by volume of this organ preservation ~olution. The preferred organ preservation solution includes 10.000 to 99.000 percent by volume of oxygen carrying agents. Perfluorocarbons are the preferred oxygen carrying agents, as they have an extremely high oxygen capacity. When delivered to the organ, in this oxidation step, these perfluorocarbons are supersaturated with oxygen, having been oxygenated in the fluid reservoir. These perfluorocarbons act as a blood substitute, carrying oxygen to the organ similar to hemoglobin in the blood. These perfluorocarbons are temperature controlled and enter the patient~s circulation at temperatures between 0 and 105 degrees F.
Antioxidants comprise from about 0.000 to 50.000 percent by volume of this organ preservation solution. Preferably, the organ preservation solution includes .001 to 30.000 percent by volume of antioxidants. These antioxidants are the preferred free radical scavengers. Once introduced into the organ, these Antioxidants compete with organ tissue proteins as binding sites for the free radicals, mainly ionic 2-Since a large portion of the free radicals complex withantioxidants, a substantial amount of free radical damage is prevented since these same free radicals do not bind and form complexes with proteins in the tissues forming the organ. The preferred antioxidants include Vitamin A, Vitamin B, Vitamin C, Vitamin E, Selenium, Cystine, Cysteine, BHT, BHA, Hydergine and the like.
Lazaroids, an experimental drug class being developed by the Upjohn Co. of Ralamazoo, Michigan, comprise about 0.000 to 30.000 percent by volume of the organ preservation solution. Preferably, Lazaroids comprise 0.001 to 20.000 percent by volume of the organ preservation solution. These Lazaroids are the SUBSTITUTE SHEET (RULE 2~) ~ 094/28960 2 ~ ~ 3 8 ~ ~ PCT~S94/05764 preferred agents for protecting and reversing anoxic injury for up to forty-five minutes of anoxia, as shown in ~n i ~1 studies. These Lazaroids as well as nutrients, are introduced to the organ as part of preserving the organ. Lazaroids are also free radical scavengers which fall under two major root moieties:
pregnanes, ranging in molecular weight from roughly 580-720 and benzopyrans, ranging in molecular weight from 425-9~5.
The organ preservation solution may include up to 50.000 percent by volume of components which act as carrier vehicles and diluents for the antioxidants, perfluorocarbons and Lazaroids. Dimethylsulfoxide (DMSO) is the preferred carrier as it aids the above agents in traversing tissue cell membranes.
Additionally, the organ preservation solution may contain physiologic buffers to maintain pH.
Nutrients are also provided in this solution, up to 30.000 percent by volume. Glucose is one nutrient which is preferred.
The solution may also include up to 20.000 percent by volume heavy metal scavengers or chelating agents. These heavy metal scavengers or chelating agents would also serve to inhibit free radical damage.
Desferoxamine is one preferred heavy metal chelator.
Cytoprotective agents such as Calcium ~h~nn~
Blockers (CA++) may also be present in this organ resuscitation solution in amounts up to 10.000 percent by volume. These cytoprotective agents, inhibit cell damage by stabilizing the cell membrane.
Additional metabolic mediators such as MK-801 - and glutamate, aspartate or N-methyl-d-aspartate (NMDA) antagonists may also be in the solution up to 10.000 percent by volume.
Finally, the solution may contain up to 10.000 percent by volume of heparin or other suitable anti-blood coagulating agents to stop blood clotting which SUBSTITUTE SHEET (RULE 26) ~ ~3~1 W094/28960 PCT~S94/05764 may occur due to lack of blood flow during the trauma, or due to the fact the patient is dead.
Once this method has been performed and the organ preservation solution has been properly 5 ~i n i stered, organ harvesting may begin.
From the foregoing description, it is clear that those skilled in the art could make changes in the described embodiments and methods of the invention without departing from the broad inventive concepts thereof. It is understood, therefore, that this invention is not limited to the particular embodiment disclosed, but it is intended to cover any modifications which are within the spirit and scope of the claims.

SUBSTtTUTE SHEET (RULE 26)

Claims (18)

WHAT IS CLAIMED IS:
1. A method of preserving organs such that said organs remain viable for harvesting and subsequent transplant, comprising:
a. establishing an artificial circulation in an organ of a patient or cadaver by catheterizing said patient or cadaver at an injection point;
b. oxygenating the organ by introducing oxygen carrying agents through said catheter;
c. lowering the organ's temperature by introducing cooled fluid through said catheter, said cooled fluid being at a temperature below body temperature;
d. inhibiting free radical damage by introducing free radical scavengers through said catheter;
whereby the metabolic rate of said organ is slowed and said organ remains viable.
2. The method of claim 1, wherein said method further involves the step of introducing tissue-protecting agents and damage-reversing agents through said catheter.
3. The method of claim 1, wherein said injection point is at least one blood vessel, one lymph vessel, said organ or the tissue surrounding said organ.
4. The method of claim 3, wherein said blood vessel is at least one artery or vein.
5. The method of claim 1, wherein said oxygen carrying agents include perfluorocarbons.
6. The method of claim 1, wherein said fluid is cooled to approximately 40 degrees Fahrenheit.
7. The method of claim 1, wherein said free radical scavengers include antioxidants.
8. The method of claim 7, wherein said antioxidants comprise: Vitamin A, Vitamin B, Vitamin C, Vitamin E, Selenium, Cystine, Cysteine, BHT, BHA and Hydergine.
9. The method of claim 2, wherein said protecting and reversing agents include Lazaroids.
10. A method of preserving organs comprising:
a. providing a solution including barbiturates, free radical scavengers and oxygen carrying agents;
b. oxygenating said solution;
c. cooling said solution to a temperature substantially below body temperature;
d. introducing said solution into a patient at an injection point within said patient's body;
whereby metabolic rates of the tissues in said organ are slowed, enabling a viable organ to be harvested for transplantation.
11. The method of claim 10, wherein injection step further includes providing said solution with tissue protecting agents and tissue damage reversing agents.
12. The method of claim 10, wherein said oxygen carrying agents include perfluorocarbons.
13. The method of claim 10, wherein injection point is at least one blood vessel whereby said injection point is at least one blood vessel whereby said solution uses the circulatory system in moving to said organ.
14. The method of claim 10, wherein said injection point is at least one lymph vessel said organ, or the tissue surrounding the organ.
15. The method of claim 10, wherein said free radicals scavengers include the antioxidants: Vitamin A, Vitamin B, Vitamin C, Vitamin E, Selenium, Cystine, Cysteine, BHT, BHA, and Hydergine.
16. The method of claim 10, wherein said solution is cooled to approximately 40 degrees Fahrenheit.
17. The method of claim 10, wherein said tissue protecting agents and said tissue damage reversing agents include Lazaroids.
18. A method of treating anoxic and/or ischemic brain and associated nervous tissue injury comprising:
a. providing a solution including barbiturates, free radical scavengers and oxygen carrying agents in a first and second amount;
b. introducing said first amount of said solution in an amount effective to prevent an oxidative burst of free radicals into a patient at an injection point within said patient's body;
c. oxygenating said second amount of said solution;
d. cooling said second amount of said solution to a temperature substantially below body temperature;
e. introducing said second amount of said solution into said patient at said injection point within said patient's body;
whereby metabolic rates of said nervous tissues are slowed during treatment.
CA002163891A 1993-06-01 1994-05-23 Brain resuscitation and organ preservation device and method for performing the same Abandoned CA2163891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/069,916 US5395314A (en) 1990-10-10 1993-06-01 Brain resuscitation and organ preservation device and method for performing the same
US08/069,916 1993-06-01

Publications (1)

Publication Number Publication Date
CA2163891A1 true CA2163891A1 (en) 1994-12-22

Family

ID=22092001

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002163891A Abandoned CA2163891A1 (en) 1993-06-01 1994-05-23 Brain resuscitation and organ preservation device and method for performing the same

Country Status (8)

Country Link
US (1) US5395314A (en)
EP (1) EP0701459A1 (en)
JP (1) JPH08511021A (en)
KR (1) KR960702759A (en)
AU (1) AU674973B2 (en)
CA (1) CA2163891A1 (en)
SG (1) SG55168A1 (en)
WO (1) WO1994028960A1 (en)

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584804A (en) * 1990-10-10 1996-12-17 Life Resuscitation Technologies, Inc. Brain resuscitation and organ preservation device and method for performing the same
US5827222A (en) * 1990-10-10 1998-10-27 Life Resuscitation Technologies, Inc. Method of treating at least one of brain and associated nervous tissue injury
US6110168A (en) * 1993-02-10 2000-08-29 Radiant Medical, Inc. Method and apparatus for controlling a patient's body temperature by in situ blood temperature modifications
US6620188B1 (en) * 1998-08-24 2003-09-16 Radiant Medical, Inc. Methods and apparatus for regional and whole body temperature modification
US6849083B2 (en) * 1993-02-10 2005-02-01 Radiant Medical, Inc. Method and apparatus for controlling a patients's body temperature by in situ blood temperature modification
US6033383A (en) * 1996-12-19 2000-03-07 Ginsburg; Robert Temperature regulating catheter and methods
US5837003A (en) * 1993-02-10 1998-11-17 Radiant Medical, Inc. Method and apparatus for controlling a patient's body temperature by in situ blood temperature modification
DE19527734A1 (en) * 1995-07-28 1997-01-30 Hubert Verhaag Method and device for preserving tissues and organs, in particular transplant tissues and organs
US6627738B2 (en) * 1995-09-15 2003-09-30 Duke University No-modified hemoglobins and uses therefor
US6911427B1 (en) 1995-09-15 2005-06-28 Duke University No-modified hemoglobins and uses therefore
US6197745B1 (en) * 1995-09-15 2001-03-06 Duke University Methods for producing nitrosated hemoglobins and therapeutic uses therefor
US6855691B1 (en) * 1995-09-15 2005-02-15 Duke University Methods for producing and using S-nitrosohemoglobins
EP0910423A4 (en) * 1996-03-08 1999-12-29 Life Resuscitation Tech Liquid ventilation method and apparatus
US5843024A (en) 1996-05-17 1998-12-01 Breonics, Inc. Solution and process for resuscitation and preparation of ischemically damaged tissue
US8409846B2 (en) 1997-09-23 2013-04-02 The United States Of America As Represented By The Department Of Veteran Affairs Compositions, methods and devices for maintaining an organ
US6471717B1 (en) * 1998-03-24 2002-10-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6585752B2 (en) * 1998-06-23 2003-07-01 Innercool Therapies, Inc. Fever regulation method and apparatus
US6491716B2 (en) 1998-03-24 2002-12-10 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6238428B1 (en) 1998-01-23 2001-05-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method employing turbulence-inducing element with curved terminations
US6383210B1 (en) 2000-06-02 2002-05-07 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using cooling catheter
US6464716B1 (en) * 1998-01-23 2002-10-15 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6719779B2 (en) * 2000-11-07 2004-04-13 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US6379378B1 (en) 2000-03-03 2002-04-30 Innercool Therapies, Inc. Lumen design for catheter
US6843800B1 (en) 1998-01-23 2005-01-18 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US6096068A (en) * 1998-01-23 2000-08-01 Innercool Therapies, Inc. Selective organ cooling catheter and method of using the same
US6251129B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6558412B2 (en) * 1998-01-23 2003-05-06 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US7371254B2 (en) * 1998-01-23 2008-05-13 Innercool Therapies, Inc. Medical procedure
US6251130B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Device for applications of selective organ cooling
US6991645B2 (en) 1998-01-23 2006-01-31 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US6491039B1 (en) 1998-01-23 2002-12-10 Innercool Therapies, Inc. Medical procedure
US6325818B1 (en) 1999-10-07 2001-12-04 Innercool Therapies, Inc. Inflatable cooling apparatus for selective organ hypothermia
US6245095B1 (en) 1998-03-24 2001-06-12 Innercool Therapies, Inc. Method and apparatus for location and temperature specific drug action such as thrombolysis
US6254626B1 (en) 1998-03-24 2001-07-03 Innercool Therapies, Inc. Articulation device for selective organ cooling apparatus
US6231595B1 (en) * 1998-03-31 2001-05-15 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
US6051019A (en) * 1998-01-23 2000-04-18 Del Mar Medical Technologies, Inc. Selective organ hypothermia method and apparatus
US6261312B1 (en) 1998-06-23 2001-07-17 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6312452B1 (en) 1998-01-23 2001-11-06 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6042559A (en) * 1998-02-24 2000-03-28 Innercool Therapies, Inc. Insulated catheter for selective organ perfusion
US6736790B2 (en) 1998-02-25 2004-05-18 Denise R. Barbut Method and system for selective or isolated integrate cerebral perfusion and cooling
US6485450B1 (en) 1998-03-16 2002-11-26 Life Science Holdings, Inc. Brain resuscitation apparatus and method
US6224624B1 (en) 1998-03-24 2001-05-01 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6576002B2 (en) 1998-03-24 2003-06-10 Innercool Therapies, Inc. Isolated selective organ cooling method and apparatus
US6599312B2 (en) 1998-03-24 2003-07-29 Innercool Therapies, Inc. Isolated selective organ cooling apparatus
US6551349B2 (en) 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US6905494B2 (en) 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6685732B2 (en) 1998-03-31 2004-02-03 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6602276B2 (en) * 1998-03-31 2003-08-05 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7001378B2 (en) * 1998-03-31 2006-02-21 Innercool Therapies, Inc. Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US7291144B2 (en) 1998-03-31 2007-11-06 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6458150B1 (en) 1999-02-19 2002-10-01 Alsius Corporation Method and apparatus for patient temperature control
US6716236B1 (en) 1998-04-21 2004-04-06 Alsius Corporation Intravascular catheter with heat exchange element having inner inflation element and methods of use
US6126684A (en) 1998-04-21 2000-10-03 The Regents Of The University Of California Indwelling heat exchange catheter and method of using same
US6149670A (en) * 1999-03-11 2000-11-21 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
US6338727B1 (en) 1998-08-13 2002-01-15 Alsius Corporation Indwelling heat exchange catheter and method of using same
US6682551B1 (en) 1999-03-11 2004-01-27 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
WO2000009200A1 (en) 1998-08-12 2000-02-24 Coaxia, Inc. Intravascular methods and apparatus for isolation and selective cooling of the cerebral vasculature during surgical procedures
US6620189B1 (en) 2000-02-28 2003-09-16 Radiant Medical, Inc. Method and system for control of a patient's body temperature by way of a transluminally insertable heat exchange catheter
US6673098B1 (en) * 1998-08-24 2004-01-06 Radiant Medical, Inc. Disposable cassette for intravascular heat exchange catheter
JP2002525290A (en) 1998-09-29 2002-08-13 オーガン リカヴァリー システムス インコーポレイテッド Apparatus and method for maintaining and / or restoring organ viability
US6673594B1 (en) 1998-09-29 2004-01-06 Organ Recovery Systems Apparatus and method for maintaining and/or restoring viability of organs
US6977140B1 (en) * 1998-09-29 2005-12-20 Organ Recovery Systems, Inc. Method for maintaining and/or restoring viability of organs
US7749693B2 (en) * 1998-09-29 2010-07-06 Lifeline Scientific, Inc. Method of determining that an organ is not suitable for transplantation and using it for testing substances
US6869440B2 (en) * 1999-02-09 2005-03-22 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering agents
US6830581B2 (en) 1999-02-09 2004-12-14 Innercool Therspies, Inc. Method and device for patient temperature control employing optimized rewarming
US6460544B1 (en) 1999-03-11 2002-10-08 Alsius Corporation Method and apparatus for establishing and maintaining therapeutic hypothemia
US6365385B1 (en) 1999-03-22 2002-04-02 Duke University Methods of culturing and encapsulating pancreatic islet cells
US6303355B1 (en) 1999-03-22 2001-10-16 Duke University Method of culturing, cryopreserving and encapsulating pancreatic islet cells
US6726710B2 (en) 1999-08-16 2004-04-27 Alsius Corporation Method and system for treating cardiac arrest using hypothermia
US6726708B2 (en) 2000-06-14 2004-04-27 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US20070213793A1 (en) 2001-08-06 2007-09-13 Radiant Medical, Inc. Use of endovascular hypothermia in organ and/or tissue transplantations
WO2003015672A1 (en) * 2001-08-15 2003-02-27 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering
US6683066B2 (en) 2001-09-24 2004-01-27 Yanming Wang Composition and treatment method for brain and spinal cord injuries
US6641572B2 (en) * 2002-01-24 2003-11-04 Michael Cherkassky Interstitial space saturation
US7572622B2 (en) * 2002-08-14 2009-08-11 Transmedic, Inc. Heart preservation chamber
US8361091B2 (en) 2002-08-23 2013-01-29 Organ Recovery Systems, Inc. Cannulas, cannula mount assemblies, and clamping methods using such cannulas and cannula mount assemblies
US20040170950A1 (en) * 2002-09-12 2004-09-02 Prien Samuel D. Organ preservation apparatus and methods
US7179279B2 (en) * 2002-09-30 2007-02-20 Medtronic Physio Control Corp. Rapid induction of mild hypothermia
US7087075B2 (en) * 2002-09-30 2006-08-08 Medtronic Emergency Response Systems, Inc. Feedback system for rapid induction of mild hypothermia
US20040064169A1 (en) * 2002-09-30 2004-04-01 Briscoe Kathleen E. User interface for medical device
US7056282B2 (en) * 2002-12-23 2006-06-06 Medtronic Emergency Response Systems, Inc. Coolant control for rapid induction of mild hypothermia
US7300453B2 (en) * 2003-02-24 2007-11-27 Innercool Therapies, Inc. System and method for inducing hypothermia with control and determination of catheter pressure
WO2004089085A2 (en) * 2003-04-04 2004-10-21 Organ Recovery Systems, Inc. Device for separating gas from a liquid path
US7691622B2 (en) * 2003-04-04 2010-04-06 Lifeline Scientific, Inc. Method and apparatus for transferring heat to or from an organ or tissue container
US7897327B2 (en) * 2003-06-02 2011-03-01 Organ Recovery Systems, Inc. Method and apparatus for pressure control for maintaining viability of organs
US20050027173A1 (en) * 2003-07-31 2005-02-03 Briscoe Kathleen E. Brain injury protocols
US20050136125A1 (en) * 2003-10-22 2005-06-23 Roth Mark B. Methods, compositions and devices for inducing stasis in cells, tissues, organs, and organisms
WO2005041656A2 (en) 2003-10-22 2005-05-12 Fred Hutchinson Cancer Research Center Methods, compositions and devices for inducing stasis in tissues and organs
US20050170019A1 (en) * 2003-10-22 2005-08-04 Fred Hutchinson Cancer Research Center Methods, compositions and devices for inducing stasis in cells
US20050153271A1 (en) * 2004-01-13 2005-07-14 Wenrich Marshall S. Organ preservation apparatus and methods
US7504201B2 (en) 2004-04-05 2009-03-17 Organ Recovery Systems Method for perfusing an organ and for isolating cells from the organ
WO2005117778A1 (en) * 2004-05-26 2005-12-15 Ardiem Medical, Inc. Apparatus and method for inducing suspended animation using rapid, whole body, profound hypothermia
US20060136023A1 (en) * 2004-08-26 2006-06-22 Dobak John D Iii Method and apparatus for patient temperature control employing administration of anti-shivering agents
US7651835B2 (en) 2004-10-07 2010-01-26 Transmedics, Inc. Method of timing pulsatile flow of normothermic perfusate to the heart
US8304181B2 (en) 2004-10-07 2012-11-06 Transmedics, Inc. Method for ex-vivo organ care and for using lactate as an indication of donor organ status
US9301519B2 (en) * 2004-10-07 2016-04-05 Transmedics, Inc. Systems and methods for ex-vivo organ care
US7789846B2 (en) * 2005-01-25 2010-09-07 Thermopeutix, Inc. System and methods for selective thermal treatment
JP2008538569A (en) * 2005-04-20 2008-10-30 フレッド ハッチンソン キャンサー リサーチ センター Methods, compositions, and articles of manufacture for enhancing the viability of cells, tissues, organs, and organisms
WO2007005285A2 (en) * 2005-06-22 2007-01-11 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Emergency preservation and resuscitation methods
US9078428B2 (en) 2005-06-28 2015-07-14 Transmedics, Inc. Systems, methods, compositions and solutions for perfusing an organ
WO2007078463A1 (en) * 2005-12-22 2007-07-12 The Trustees Of Columbia University In The City Of New York Systems and methods for intravascular cooling
DK1942726T3 (en) * 2006-04-19 2017-04-10 Transmedics Inc METHODS FOR EX VIVO ORGANIC CARE
US20080145919A1 (en) * 2006-12-18 2008-06-19 Franklin Thomas D Portable organ and tissue preservation apparatus, kit and methods
US9457179B2 (en) 2007-03-20 2016-10-04 Transmedics, Inc. Systems for monitoring and applying electrical currents in an organ perfusion system
US10750738B2 (en) * 2008-01-31 2020-08-25 Transmedics, Inc. Systems and methods for ex vivo lung care
US8608696B1 (en) * 2009-02-24 2013-12-17 North Carolina State University Rapid fluid cooling devices and methods for cooling fluids
EP2480069A1 (en) 2009-09-25 2012-08-01 Board of Regents, The University of Texas System Fluidics based pulsatile perfusion preservation device and method
US9867368B2 (en) 2011-03-15 2018-01-16 Paragonix Technologies, Inc. System for hypothermic transport of samples
US9253976B2 (en) 2011-03-15 2016-02-09 Paragonix Technologies, Inc. Methods and devices for preserving tissues
US11178866B2 (en) 2011-03-15 2021-11-23 Paragonix Technologies, Inc. System for hypothermic transport of samples
US8828710B2 (en) 2011-03-15 2014-09-09 Paragonix Technologies, Inc. System for hypothermic transport of samples
CA2830225C (en) 2011-03-15 2020-03-24 Paragonix Technologies, Inc. Apparatus for oxygenation and perfusion of tissue for organ preservation
US9426979B2 (en) 2011-03-15 2016-08-30 Paragonix Technologies, Inc. Apparatus for oxygenation and perfusion of tissue for organ preservation
JP6029650B2 (en) 2011-04-14 2016-11-24 トランスメディクス,インコーポレイテッド Organ protection solution for mechanical perfusion in ex-vivo of donor lung
US9642625B2 (en) 2011-04-29 2017-05-09 Lifeline Scientific, Inc. Cannula for a donor organ with or without an aortic cuff or patch
US8828034B2 (en) 2011-04-29 2014-09-09 Lifeline Scientific, Inc. Cannula
JP5938753B2 (en) 2011-06-09 2016-06-22 ライフライン サイエンティフィック インコーポレイテッドLifeline Scientific, Inc. Data records for organ transport and / or storage, including biomarkers and event information
RU2487704C2 (en) * 2011-10-17 2013-07-20 Федеральное государственное бюджетное учреждение "Саратовский научно-исследовательский институт травматологии и ортопедии" Министерства здравоохранения Российской Федерации (ФГБУ "СарНИИТО" Минздрава России) Method for prevention of reperfusion injuries of donor organs
US9259562B2 (en) 2012-07-10 2016-02-16 Lifeline Scientific, Inc. Cannula
US9560846B2 (en) 2012-08-10 2017-02-07 Paragonix Technologies, Inc. System for hypothermic transport of biological samples
US8785116B2 (en) 2012-08-10 2014-07-22 Paragonix Technologies, Inc. Methods for evaluating the suitability of an organ for transplant
US9278023B2 (en) 2012-12-14 2016-03-08 Zoll Circulation, Inc. System and method for management of body temperature
US10420337B2 (en) 2013-03-15 2019-09-24 Lifeline Scientific, Inc. Transporter with a glucose sensor for determining viability of an organ or tissue
US20140278468A1 (en) 2013-03-15 2014-09-18 I.D. Therapeutics Llc Apparatus and method for optimizing treatment using medication compliance patterns and glucose sensor
WO2015182019A1 (en) * 2014-05-30 2015-12-03 Sbiファーマ株式会社 Organ preservation solution
CA2950759C (en) 2014-06-02 2023-02-21 Transmedics, Inc. Ex vivo organ care system
USD765874S1 (en) 2014-10-10 2016-09-06 Paragonix Technologies, Inc. Transporter for a tissue transport system
WO2017044465A1 (en) 2015-09-09 2017-03-16 Transmedics, Inc Aortic cannula for ex vivo organ care system
WO2018097227A1 (en) * 2016-11-25 2018-05-31 テルモ株式会社 Preservative solution for live cells or composition comprising live cells
EP3527077A4 (en) * 2016-11-25 2020-05-06 Terumo Kabushiki Kaisha Preservative solution for live cells or composition comprising live cells
CA3066625A1 (en) 2017-06-07 2018-12-13 Paragonix Technologies, Inc. Apparatus for tissue transport and preservation
CN110433377B (en) * 2019-08-12 2021-07-06 杭州市红十字会医院 Department of respiration is with supplementary respiratory device
US11632951B2 (en) 2020-01-31 2023-04-25 Paragonix Technologies, Inc. Apparatus for tissue transport and preservation
US20230092486A1 (en) 2021-09-23 2023-03-23 Lifeline Scientific, Inc. Low fluid level detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657532A (en) * 1985-07-19 1987-04-14 Thomas Jefferson University Intra-peritoneal perfusion of oxygenated fluorocarbon
US4393863A (en) * 1980-04-14 1983-07-19 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US5085630A (en) * 1980-04-14 1992-02-04 Thomas Jefferson University Oxygenated fluorocarbon nutrient solution
US4378797A (en) * 1980-04-14 1983-04-05 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US5149321A (en) * 1990-10-10 1992-09-22 Klatz Ronald M Brain resuscitation device and method for performing the same

Also Published As

Publication number Publication date
JPH08511021A (en) 1996-11-19
US5395314A (en) 1995-03-07
WO1994028960A1 (en) 1994-12-22
KR960702759A (en) 1996-05-23
SG55168A1 (en) 1998-12-21
AU6964794A (en) 1995-01-03
EP0701459A1 (en) 1996-03-20
AU674973B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US5395314A (en) Brain resuscitation and organ preservation device and method for performing the same
US5584804A (en) Brain resuscitation and organ preservation device and method for performing the same
US5827222A (en) Method of treating at least one of brain and associated nervous tissue injury
CA2043131C (en) Brain resuscitation device and method for performing the same
WO1996023544A9 (en) Brain resuscitation and organ preservation device and method for performing the same
US5927273A (en) Combined liquid ventilation and cardiopulmonary resuscitation method
US6485450B1 (en) Brain resuscitation apparatus and method
US5130230A (en) Blood substitute
US4923442A (en) Blood substitute
USRE36460E (en) Method of providing circulation via lung expansion and deflation
USRE34077E (en) Blood substitute
US5653685A (en) Method of providing circulation via lung expansion and deflation
KR19980047626A (en) Treatment of living tissue
MATLOFF et al. Hyperbaric oxygenation and renal ischemia
WO1989010746A2 (en) Blood substitute
CN1185278A (en) Treatment of living tissue
Menon Reanimate the Dead to Life by practicing Cryo Techniques
JPH0616501A (en) Method and device for carrying organ and pump for organ-carrying device

Legal Events

Date Code Title Description
FZDE Discontinued