CA2141118C - Improved electrophysiological mapping and ablation catheter and method - Google Patents

Improved electrophysiological mapping and ablation catheter and method Download PDF

Info

Publication number
CA2141118C
CA2141118C CA002141118A CA2141118A CA2141118C CA 2141118 C CA2141118 C CA 2141118C CA 002141118 A CA002141118 A CA 002141118A CA 2141118 A CA2141118 A CA 2141118A CA 2141118 C CA2141118 C CA 2141118C
Authority
CA
Canada
Prior art keywords
electrode
catheter
platinum
thermal conductivity
ablation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002141118A
Other languages
French (fr)
Other versions
CA2141118A1 (en
Inventor
David Lipson
Marc Jensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiac Pacemakers Inc
Original Assignee
Cardiac Pacemakers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardiac Pacemakers Inc filed Critical Cardiac Pacemakers Inc
Publication of CA2141118A1 publication Critical patent/CA2141118A1/en
Application granted granted Critical
Publication of CA2141118C publication Critical patent/CA2141118C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0215Silver or silver chloride containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array

Abstract

A mapping and ablating catheter having a short distal tip electrode comprising a bio-compatible outer surface and a thermal dissipating mass for dissipating heat received by the electrode. The outer surface may be formed by plating a thin layer of gold or platinum on the dissipating mass, or the entire electrode may be formed of a homogenous material such as a gold alloy that is bio-compatible thereby forming the outer surface with the mass itself.
An alloy having a thermal conductivity greater than pure platinum is used so that the ablation procedure can be completed before exceeding the temperature limits. In one case, the entire electrode was formed of a 88% gold 12% nickel alloy. The electrical feed to the electrode is oversized to also dissipate heat received by the electrode. The electrode is no greater than five mm in length yet produces an ablation volume equal to or greater than longer electrodes.
One or more band electrodes may also include thermal dissipating masses.

Description

1 Docket No. 35118 s IMPROVED ELECTROPHYSIOLOGICAL MAPPING AND ABLATION
CATHETER AND METHOD
BACKGROUND
The invention relates generally to mapping and ablating tissue, and more particularly, to an improved system and method for mapping and ablating cardiac tissue with the same electrode.
In many cases, damaged tissue interferes with the proper functioning of an organism. As one example, the sinus and AV nodes provide the electrical control signals that cause the correct movement of the heart in pumping the blood to the body. Damage to tissue between such nodes may cause the control signals to be disrupted resulting in cardiac arrhythmias.
While there are different treatments for cardiac arrhythmias, including the application of anti-arrhythmia drugs, ablation of such damaged tissue has been found in many cases to restore the correct operation of the heart. Such ablation may be performed during open heart surgery; however, a preferred therapeutic procedure is percutaneous ablation. In this procedure, a catheter is percutaneously introduced into the patient and directed through an artery to the atrium or ventricle of the heart to perform single or multiple diagnostic, therapeutic, and/or surgical procedures. These catheter devices typically include five or six lumina used for different purposes such as carrying electrical wires, body fluids, or drugs.
A steerable electrophysiological ("EP") catheter may be used to position an electrode or electrodes for systematically scanning selected endocardial sites within the heart to detect the propagation of wave electrical impulses as they propagate across the heart during each contraction. Through the detection of _ 21~~.~.~
2 Docket No. 35118 irregular electrical impulses, the locations of damaged cells may be revealed.
Once these damaged cells have been located, the physician may use an ablation '- procedure to destroy the damaged cells in an attempt to remove the depolarization wave obstruction and restore normal heart beat. Characteristics required of a percutaneous EP catheter include small size and flexibility.
Before the damaged tissue can be ablated, it must be located with some precision so that the ablation energy can be accurately directed. Ablation of undamaged tissue is undesirable as is only partial ablation of the damaged tissue. Numerous types of EP catheters have been developed for more accurately locating the damaged tissue. As indicated above, selected endocardial sites may be successively scanned or mapped to locate damaged tissue. A desirable characteristic of the mapping device is small size. The smaller the size, the higher the resolution that can be obtained in identifying damaged tissue. Larger scanning electrodes contact more surface area and therefore have lower resolution. Mapping electrodes of one millimeter in length have been disclosed.
Another characteristic desired of an EP catheter is the ability to perform both the mapping procedure and an ablation procedure without having to withdraw the catheter and re-introduce it or a different one into the patient.
It is undesirable to have to replace a mapping catheter with a separate ablation catheter because of the increased trauma caused the patient and the difficulty of locating the replacement catheter exactly in the position of the replaced catheter. Thus, EP catheters have been developed that are capable of performing both mapping and ablation procedures without removing them from the patient once positioned.
A typical EP catheter includes an electrical connector at its proximal extremity that is coupled to the appropriate equipment to conduct the mapping and ablation procedures. For example, during mapping the electrical lines connected to the catheter electrodes will be connected through the connector to analysis equipment comprising computer controlled electrical signal sensors.
3 Docket No. 35118 During the ablation procedure, the electrical line or lines connected to one or more of the catheter electrodes, preferably the distal tip electrode, will be connected through the connector to a power box for supplying up to 100 watts of power at a frequency between 100 kHz to 30 mHz with variable or fixed impedance.
A typical EP catheter is shown in FIG. 1 and is described in further detail below. The catheter 10 includes an active electrode 12 at the distal tip 14 of the catheter tube 20 and ring electrodes 16 around the diameter of the tube spaced proximally from the distal electrode 12. The electrodes are connected to the proximal end of the catheter 18 with thin, flexible wires.
After the endocardium has been mapped and damaged tissue identified, ablation of the damaged tissue can be performed. Many EP catheters use radio frequency (RF) technology to destroy the damaged endocardial cells. The use of radio frequency energy for cardiac ablation has gained widespread acceptance and success in treating arrhythmias. Thermal tissue damage and ablation occur as a result of the application of radio frequency energy to cardiac tissue.
In practice, the catheter distal tip 14 is fitted with an electrode 12 used both for mapping and for emitting RF energy to destroy the target damaged cells. Such an active electrode is the source of an electrical or electromagnetic field that causes heating of the contacting and neighboring tissue. To be most effective, the electrode at the distal end of an RF ablation catheter is placed in intimate contact with the target endocardial tissue in order to avoid leaving a gap in which concentrated energy might boil the blood in the intracardial volume. However, even though the electrode is pressed into intimate contact with the endocardium, typically a portion of the electrode will be in contact with the blood. This is true in both the unipolar and bipolar approaches.
In the approach commonly referred to as "unipolar," a large surface area electrode is placed on the chest of the patient to serve as a return for completing the electrical ablation circuit with one of the catheter electrodes.
4 Docket No. 35118 In a bipolar approach, typically two electrodes on the catheter are used to complete the electrical circuit. This circuit may include the tip electrode and a band electrode located proximal to the tip. In the bipolar approach, the flux traveling between the two electrodes of the catheter enters the endocardium to cause ablation. In the bipolar system, as in the unipolar system, portions of the active electrodes typically are in contact with the blood so that boiling can occur if those electrodes reach an excessive temperature.
The temperature boundary between viable and non-viable tissue is approximately 48 ° Centigrade. Tissue heated to a temperature above 48 ° C
becomes non-viable and defines the ablation volume. For therapeutic effectiveness, the ablation volume must extend a few millimeters into the endocardium and must have a surface cross-section of at least a few millimeters square. The objective is to elevate the tissue temperature, . generally at 37° C, fairly uniformly to the ablation temperature above 48°C, keeping the hottest tissue temperature below 100°C. At approximately 100°C
charring and boiling of the blood take place. Charring is particularly troublesome at the surface of the catheter electrode because the catheter must be removed and cleaned before the procedure can continue. Additionally, charring and boiling of the blood seriously modify the electrical conductivity of blood and tissue and cause an increase in the overall electrical impedance of the electrical heating circuit and a drop in the power delivery to the tissue.
Too great a rise in impedance can result in sparking and thrombus formation within the heart, both of which are undesirable.
Even though no significant amount of heat is generated in the RF
energy electrode itself, . adjacent heated endocardial tissue heats the electrode via heat conduction through the tissue. As mentioned above, part of the active electrode will be in contact with the blood in the heart and if the electrode temperature exceeds 90-100°, it can result in blood boiling and clotting on the electrode. The application of RF energy must then be stopped. However, shutting the RF generator off due to the temperature rise may not allow Docket No. 35118 su~cient time to complete the entire ablation procedure. Providing an ablation electrode capable of applying higher amounts of power for a longer period of time to ablate the damaged tissue to an acceptable depth is a goal of current ablation catheter electrode design. It has been found that higher power for longer time periods results in a higher probability of success of the ablation procedure.
Numerous studies have been performed on means to obtain greater ablation depths with an ablation electrode. For example, see Langberg, Lee, Chin, Rosenqvist, Radiofrequency Catheter Ablation: The Effect Of Electrode Size On Lesion Volume In Vivo, PACE, Oct. 1990, pages 1242-1248; Kuck and Schluter, Radiofrequency Catheter Ablation of Accessory Pathways, PACE, Vol. 15, Sep. 1992, pages 1380-1386; and Langberg, Gallagher, Strickberger, Amirana, Temperature-Guided Radiofreqnency Catheter Ablation With Very Large Distal Electrodes, Circulation, Vol. 88, No. 1, July 1993, pgs 245-249. In each of these cases, the conclusion appears to favor a larger electrode; for example 8 mm in length. As a result, many EP catheter manufacturers have increased the size of the ablation electrode to obtain an increased ablation depth referred to in these papers. However, larger size electrodes are more difficult to steer into and position in the cardiac site and additionally, are not as desirable for mapping purposes. The electrode selected for ablation is usually mounted on the distal tip of the catheter and that location is excellent for mapping procedures. Increasing the size of that electrode not only makes it more di~cult to steer into the mapping and ablation sites, but also provides lowered resolution in the mapping procedure as pointed out above. A larger electrode results in less sensitivity or resolution to determine the exact location of the aberrant tissue. It is thought by many skilled in the art that an eight mm length results in an electrode unsuitable for mapping purposes due to this lack of resolution.
However, reducing the size of the electrode is discussed in these references as resulting in a lower power handling capability with less desirable 21411 ~.
Docket No. 35118 ablation patterns. For example, the Kuck and Schliiter paper points out that the ablation success rate was significantly increased by use of a 4 mm length -- tip electrode over a 2 mm length electrode (page 1383, right column). Since that publication date of KucY and Schluter, the Langberg papers discuss that 8 mm tips provide improved results. The inventors believe that these publications are representative of the current state of the art in which larger electrode lengths are used for ablation regardless of their degraded mapping performance.
The inventors believe that most, if not all, ablation electrodes currently in use are constructed of pure platinum or a platinum iridium alloy, typically "platinum 10 iridium" (90 % platinum 10 % iridium). Platinum has a relatively low thermal conductivity of approximately or less than:
0.165 cal x cm sx~Cxcm2 where cal = calories, cm = centimeters, s = seconds, and C = Centigrade (ASM Metals Handbook Desk Ed., pgs. 1-52, 1985). While the platinum or platinum 10 iridium alloy is desirable because of it bio-compatibility, its low thermal conductivity decreases its ability to dissipate heat. Consequently, if the electrode is too small, it will provide poor dissipation of the heat accumulating in itself from its contact with the heated tissue. This poor heat dissipation may not be rapid enough and early termination of the ablation procedure would be required to avoid blood boiling and coagulation. If the ablation procedure is terminated too early; it will not be complete, the ablation procedure may not be successful, and must be repeated.
To avoid this undesirable situation, manufacturers are making platinum 10 iridium ablation electrodes larger so there will be greater surface area of the electrode in contact with the tissue to be ablated, larger amounts of power can be applied, and ablation will take a shorter time. Additionally, the larger size of the electrode will assist in heat dissipation. Disadvantages of larger Docket No. 35118 electrodes as discussed above include lowered accuracy as a mapping electrode, less localization of the ablation energy, and di~culty in introducing -- and positioning the electrode in a patient. Not only do smaller electrodes map better, they also better focus the RF energy to the damaged tissue site thereby limiting ablation of undamaged tissue.
Some manufacturers provide electrodes that are smaller in size than the above-discussed ablation electrodes and are formed out of pure platinum, which has a higher thermal conductivity than platinum 10 % iridium.
However, to the inventors' knowledge, these electrodes are specified by the manufacturer for mapping purposes, not ablation. While pure platinum has a higher thermal conductivity than platinum 10 iridium, it is still relatively low when compared to other materials and heat build up in an electrode formed of pure platinum when used for ablation is still of substantial concern.
Another concern related to EP catheters is the ability to monitor the ablation electrode temperature. Knowing when that temperature is approaching and then finally reaching 90-100° can greatly assist a physician in successful control over the,procedure. However, the thermal conductivity of the materials surrounding the temperature sensor can affect its accuracy, especially in the case where the sensor is located internally in the ablation electrode.
It has been noted in came cases where the ablation electrode is formed of platinum 10 iridium and the sensor is located internal to the electrode as opposed to being mounted on the outer surface of the electrode, that the temperature at the outer surface of the electrode can be higher than the temperature at the sensor due to the slower thermal conduction of the material.
There is thus a time lag and hence, the temperature indicated by the temperature sensor signal is suspect.
Hence, those skilled in the art have recognized the need for an electrode small enough to provide increased resolution when used for mapping purposes, yet large enough to perform a complete ablation procedure without exceeding temperature limits. Additionally, the electrode has to be formed of a bio-21411~.~
Docket No. 35118 compatible material for the internal use with a patient. Furthermore, those skilled in the art have recognized the need to provide an ablation electrode small enough for increased maneuverability in the patient, that requires less ablation energy to ablate the target tissue, and that localizes the ablation energy to avoid ablating undamaged tissue. Additionally, an electrode design that enhances the ability to obtain more accurate temperature sensor signals is desirable. The present invention fulfills these needs and others.
. SUMMARY OF THE INVENTION
Briefly and in general terms, the invention is directed to a catheter and a method for mapping and ablating biological tissue, the biological tissue being located in a biological structure in which fluids flow past the tissue to be ablated. The catheter has a size such that it can be percutaneously introduced and positioned at the tissue to be mapped and ablated. Additionally, the catheter comprises an electrode mounted at the distal end of the catheter body member, the electrode having a size suitable for accurate and relatively high resolution mapping and a shape and length such that when positioned against the tissue to be ablated, a portion of the electrode will be exposed to the fluids in the biological structure for communicating heat to those fluids thereby cooling the electrode.
The electrode comprises an outer surface and a thermal dissipating mass for rapidly conducting heat received by the electrode to the fluids surrounding the electrode. The outer surface is formed of a biologically compatible material and the thermal dissipating mass has a thermal conductivity exceeding that of pure platinum and of platinum 10 iridium.
In a more detailed aspect in accordance with the invention, the outer surface of the electrode is formed by intimately bonding an outer layer of bio-compatible material to the thermal dissipation mass. The outer layer of material is formed of a pure substance or an alloyed substance for contact with the tissue to be ablated while the thermal dissipation mass is formed of a 9 Docket No. 35118 material having a high thermal conductivity. The outer layer is relatively thin so that its effect on the overall thermal conductivity of the electrode will be relatively small. Its purpose is to provide an electrically conductive and bio-compatible outer surface. The material selected for the thermal dissipation mass can therefore be selected more on its thermal conductivity than on its bio-compatibility. For example, silver or copper or an alloy of each coated with a gold or platinum outer layer may be considered. The material chosen for the thermal dissipation mass has a thermal conductivity greater than pure platinum.
In yet a further detailed aspect in accordance with the invention, the outer surface of the electrode is selected from the group of bio-compatible materials consisting of gold and its alloys, e.g., 14 karat gold, platinum, titanium, tungsten, stainless steel, and cobalt based bio-compatible materials.
In another aspect, the electrode is formed entirely of a homogenous bio-compatible material having a thermal conductivity exceeding pure platinum.
In a more detailed aspect, the homogenous material is selected from the group of bio-compatible materials consisting of gold alloy; pure titanium, and pure tungsten. The ; homogenous electrode therefore provides both the bio-compatible surface and the thermal dissipation mass.
In a more detailed aspect, the catheter further comprises an electrical conductor connected to the electrode and extending to the proximal end of the body member of the catheter, the electrical conductor being formed of a material having a thermal conductivity at least as great as copper or copper alloys such as copper alloyed for tensile strength, and having a larger diametrical size than the size needed to conduct the amount of electricity to the electrode for ablation. Because of its increased size, the electrical conductor forms a part of the thermal dissipating mass and conducts heat away from the electrode.
In further aspects, the electrode has a generally cylindrical shape with a rounded end and the length of the electrode is no greater than five millimeters.

2~411~.
Docket No. 35118 In the method in accordance with the invention, biological tissue Located in a biological structure in which fluids flow past the tissue is mapped and ablated. The method comprises the steps of forming an electrode of a biologically compatible material having a size suitable for accurate and 5 relatively high resolution mapping, a thermal conductivity exceeding that of pure platinum, and having a thermal dissipating mass, mounting the electrode at the distal end of a percuaneous catheter, percutaneously positioning the electrode so that it makes contact with the tissue to be mapped, positioning the electrode so that it makes contact with the tissue to be ablated such that a 10 substantial portion of the electrode is positioned for contact with the fluids in the biological structure, applying ablation energy to the electrode to cause heating of the tissue to be ablated to a level where the tissue is non-viable, and conducting heat from the electrode to the fluids in the chamber thereby cooling the electrode during the ablation process.
In a more detailed aspect of the method in accordance with the invention, the step of forming an electrode comprises the steps of intimately bonding an outer~Layer of bio-compatible material to the thermal dissipation mass where the outer layer is relatively thin so that its effect on the overall thermal conductivity of the electrode will be relatively small.
Yet a flsrther detailed method step relating to the step of intimately bonding the outer surface to the inner core comprises plating the outer surface to the thermal dissipating mass and forming the thermal dissipating mass of a material having a thermal conductivity exceeding pure platinum.
In the step of forming an electrode, a more detailed aspect comprises the step of selecting the material for the outer surface from the group of bio-compatible materials consisting of gold and its alloys, e.g., 14 karat gold, platinum, titanium, tungsten, stainless steel, and cobalt based bio-compatible materials.
In yet a further detailed method aspect, the step of forming an electrode comprises the step of forming the electrode entirely of a homogenous bio-11 Docket No. 35118 compatible material having a thermal conductivity exceeding pure platinum.
In a more detailed aspect, the homogenous material is selected from the group of bio-compatible materials consisting of gold alloy; pure titanium, and pure tungsten.
A further detailed aspect comprises forming an electrical conductor of a material having a thermal conductivity at least as great as a copper alloy, and having a larger diametrical size than the size needed to conduct the amount of electricity to the electrode for ablation, connecting the electrical conductor to the electrode and extending the conductor to the proximal end of the percutaneous catheter, and conducting away heat received by the electrode with the electrical conductor.
In a further detailed aspect, the step of forming an electrode comprises the step of forming the electrode with a generally cylindrical and having a rounded end and having a length no greater than five mm.
In yet a further aspect, one or more band electrodes includes a biv-compatible outer surface and a thermal dissipation mass. A temperature sensor may also be included in such band electrode. The thermal dissipation mass of the band electrode is formed of a material having a thermal conductivity exceeding pure platinum.
Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the features of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of a prior art EP catheter connected to analysis and power equipment showing the connection to an active tip electrode formed of platinum 10 iridium;
FIGS. Z and 3 present cross-section and end views respectively of details of temperature sensor mounting in an ablation electrode;

21~~:11 12 Docket No. 35118 FIG. 4 presents a first embodiment of the distal end of a mapping and ablation catheter in accordance with the principles of the invention showing an electrode usable for both mapping and ablation and having an outer layer of bio-compatible material over a thermal dissipating mass;
FIG. 5 presents an electrode formed entirely of a bio-compatible material, the material forming both the bio-compatible surface and the thermal dissipating mass; and FIG. 6 presents a further embodiment in which the tip electrode and a band electrode include thermal dissipating masses and bio-compatible outer surfaces.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the following description, like reference numerals will be used to refer to like or corresponding elements in the different figures of the drawings.
Referring now to the drawings and particularly to FIGURE 1, there is shown a typical electrical catheter 10 with an active distal tip electrode 12. The active electrode 12 is used for mapping and for applying ablation energy to selected cardiac tissue. A plastic catheter tube 20 connects the distal tip active electrode 12 to a connector 22 at the proximal end 18. An electrical wire 24 electrically connects the active electrode 12 to the connector 22. Ring electrodes 16 are also mounted to the catheter tube 20 for mapping purposes.
Although not shown, flexible electrical wires are also connected between the ring electrodes and the connector 22.
The connector 22 is used to provide electrical connections between the electrode wires and the appropriate external equipment for mapping and ablation procedures. For example, in FIG. l, a switching device 26 selectively connects the electrodes between a mapping analyzer 28 and a power device 30, such as an RF power supply for generating RF energy to be conducted to the active electrode 12 for ablation of target tissue. To maintain flexibility, the 21~~~.~.8 13 Docket No. 35118 connecting wire 24 is relatively thin with a typical size of twenty-eight gauge copper wire with a 0.4 millimeter (mm) diameter.
-- The connection of the catheter to the electrical power source 30 can be between two electrodes on the catheter (bipolar arrangement) or between one catheter electrode and a large neutral external skin electrode (unipolar arrangement - not shown). A unipolar power supply connection is discussed herein and shown in FIG. 1. Mapping analyzers 28, RF energy sources 30, and switching devices 26 are well known to those skilled in the art and no further details are presented here.
The objective of the thermal design of the electrode of FIG. 1 is to heat a controlled volume of tissue to an ablation temperature while at the same time assuring that the peak temperature is away from the electrode surface 12 so that charring does not foul the active electrode surface and blood boiling does not occur. The distal end of the active electrode 12 provides a bare metal interface to the tissue and generates a heating pattern in the tissue due to the transmission of RF power into the tissue. In operation, power is typically increased in ordet~to increase the ablation volume until an impedance change is noticed due to the onset of charring or the temperature limit of the electrode is exceeded. However as discussed above, the thermal conductivity of the materials used in the electrode 12 can affect the time that ablation energy can be applied to the tissue as well as the accuracy of any temperature sensor mounted in the electrode.
In FIGS. 2 and 3 there is shown a catheter distal tip electrode 32 having a temperature sensor 34 mounted internally in the electrode. A chamber 36 has been bored into the electrode to contain the sensor 34. The sensor 34 may take different forms, two of which are a thermistor or a thermocouple.
Different techniques for mounting the sensor are known to those skilled in the art and no further details are presented here. The sensor wire 38 is connected to the appropriate monitoring equipment as is well known to monitor electrode temperature.

214~.~~~
14 Docket No. 35118 Referring now to FIG. 4, an electrode design incorporating principles of the invention is shown. The distal end of the catheter 14 includes a distal -- tip electrode 40 having an outer surface 42 and a thermal dissipation mass 44.
In the embodiment shown, the outer surface 42 comprises a cap or layer 46 that covers the thermal dissipating mass 44 and extends over a part of the catheter tube 20, in this case approximately 0.25 mm. For mounting purposes, the thermal dissipating mass 44 includes a stem 48 having annular mounting rings 50 shaped as barbs. The stem 48 with its rings 50 is pressed into the distal end of the catheter tube 20 and because of the shape of the barb rings, the tip electrode 40 remains in place with a large pull-out force required for disassembly. The stem also includes a crimping device 52 for receiving the conductor 54 of the electrical wire 56 connecting the tip electrode 40 to a main connector located at the proximal end of the catheter (not shown) similar to the arrangement shown in FIG. 1. The crimp device 52 forms an intimate electrical and thermal contact with the wire conductor 54 as will be discussed in more detail below.
To avoid .possible injury to the patient, both the outer surface of the tube 20 and the outer layer 46 of the tip electrode 40 are formed of bio-compatible materials. They are chemically inert or passivated and are bio compatible. For example, the outer surface of the tip electrode 40 is formed of a gold alloy. Because the thermal dissipating mass 44 is not exposed to the patient, it may be formed of a material not necessarily bio-compatible but having a high thermal conductivity. For example, the thermal dissipating mass 44 may be formed of copper or silver. The outer layer 46 would then be intimately bonded to the thermal dissipating mass 44 by means well known to those skilled in the art. For example, the layer 46 can be held in place by thermally conductive epoxy, by brazing, swaging, crimping, press forming or other means.
While gold is desirable as the outer layer 46 due to its bio-compatibility and its relatively high thermal conductivity, it may be alloyed to increase its 2141 ~ ~
15 Docket No. 35118 hardness and to ease machining into the proper shape. Although the inventors have found that in many cases alloying a relatively high thermal conductivity w metal with another for strength causes the thermal conductivity to decrease dramatically, such an effect has been offset somewhat by making the volume of the outer layer 46 very small in comparison to the volume of the thermal dissipating mass 44. Thus the decrease in thermal conductivity caused by alloying the outer layer gold with 12 % nickel will be relatively small when compared to the electrode 12 volume as a whole. For example, in the case of a seven French tip electrode that is four mm long with a machined or stamped cap 46 bonded to the thermal dissipating mass 44 (FIG. 3), the cap was 0.08 mm (0.003 in) thick and made up only fourteen percent ( 14 % ) of the entire volume of the electrode. The outer layer may be formed by means such as separately manufacturing a cap and bonding it to the thermal mass 44, plating, vapor deposition, or electro-depositing gold or gold alloy over a silver or copper thermal dissipation mass. And when deposition is used, the volume of the outer layer as compared to the volume of the electrode as a whole may even be smaller than the above example. Techniques for plating and electro-deposition of gold on other substances are well known to those skilled in the art and are not discussed in further detail here.
Also forming a part of the thermal dissipation mass is the stem 48 used to mount the electrode 40 firmly into the catheter tube 20. It likewise is formed of a material having a high thermal conductivity and will dissipate heat received by the electrode 40. In this case, the stem is integral with the thermal dissipation mass 44, although other arrangements are possible. As a further means of dissipating heat, the electrical conductor 54 used to electrically connect the ablation electrode 40 to the proximal catheter connector is a larger size than that needed to conduct just the electrical power for ablation. It is made of copper or a copper alloy having a relatively high thermal conductivity and is therefore available to dissipate heat. As is well known, copper may be 2I~~.~~.~
16 Docket No. 35118 alloyed to increase its tensile strength. Copper beryllium is one common example also usable here.
-- During the ablation process, the distal electrode 40 will be positioned in contact with the cardiac tissue to be ablated. Because of 1tc QPnPrallv cylindrical shape with a rounded distal end, a substantial surface area of the electrode will be available to make contact with the blood flowing past the electrode in the heart. The electrode 40 is designed to have a high thermal conductivity and much of the heat received by the electrode from the heated . tissue will be rapidly conducted through the electrode along to the flowing blood thereby assisting in cooling the electrode. Additionally, heat will be conducted through the stem 48 and electrical conductor 54 for dissipation.
Because of the electrode's efficient thermal dissipation characteristics, it can handle a greater amount of power resulting in a larger ablation volume.
Additionally, this efficiency in heat dissipation permits the electrode to be made smaller than prior electrodes. In one embodiment, a six French size electrode formed of 88 % gold, 12 % nickel having a length of two mm achieved an ablation volume twice as large as the ablation volume created by a six French, two mm length electrode formed of pure platinum. As used . herein, the length of the electrode refers to the portion distal to the distal end of the catheter body 20. The length of the electrode is commoniv cterPn";nP~
by the length of exposed electrode surface and in FIG. 4, is indicated by numeral 57. Because of the efficiency of heat dissipation provided by the electrode shown in FIG. 4, such electrodes having five mm in length or less may be used for ablation.
Referring now to FIG. 5, a second embodiment of an electrode 58 in accordance with the principles of the invention is shown. In this case. the entire electrode 58 is formed of a homogenous alloy having a thermal conductivity exceeding pure platinum and platinum 10 iridium. The alloy must be bio-compatible because no outer protective layer exists. In one embodiment, the electrode was formed entirely of an 88 % gold 12 % nickel 17 Docket No. 35118 alloy which achieves a higher thermal conductivity than pure platinum and approximately four times greater thermal conductivity than platinum 10 iridium even though its thermal conductivity is only approximately one-half that of pure gold. While alloying a material can dramatically reduce its thermal conductivity, nevertheless, alloying may be required many times for improving structural strength. For example, machining pure gold accurately and repeatably can be difficult due to its softness. Alloying gold with nickel greatly improves its hardness while still resulting in a high thermal conductivity. As pointed out, its thermal conductivity is greater than pure platinum. While alloying gold is preferred, it is not required and a solid gold electrode may be used instead. It has been found that a 12 % alloy with nickel only lowers the thermal conductivity of the gold by approximately 50 % .
While lowered thermal conductivity is undesirable, its increased producibility offsets the loss. On the other hand, prior electrodes formed of platinum 10 1 S iridium experienced a loss of approximately 50 % to 60 % of thermal conductivity when compared to pure platinum.
The thermal conductivity of gold/nickel alloy is greater than pure platinum and the gold alloy of the electrode 58 will act also as the thermal dissipating mass in addition to providing the bio-compatible outer surface. As in the previous embodiment, a crimping device 60 and enlarged conductor electrical 62 of a wire 64 are used to increase thermal dissipation. The embodiment of FIG. 5 also permits the use of a two mm electrode to obtain a substantial ablation volume. As in FIG. 4, the efficiency in heat dissipation provided by the electrode shown in FIG. 5 permits electrodes of five mm or less in length to be used for ablation.
While gold has been discussed above as the preferred material for the electrode, or in the first embodiment, the outer layer, other materials may also function acceptability. It has been found that materials having a thermal conductivity exceeding pure platinum can also function acceptably.

18 Docket No. 35118 The use of a high thermal conductivity .material as the heat dissipating mass will also increase temperature sensor accuracy. Because the electrode material transmits thermal energy so rapidly, the temperature of the outer surface of the electrode will be closer to the temperature of an internal sensing point and accuracy will improve. Such is the result in a catheter design in accordance with the principles of the invention.
Referring now to FIG. 6, a catheter 66 is shown having a distal tip electrode 68 and at least one band electrode 70 mounted at its distal end proximal to the distal tip electrode. Both of these electrodes 68 and 70 include thermal dissipating masses 76 and 78 formed of high thermal conductivity material. Additionally, a temperature sensor 34 is positioned in the distal tip electrode 68 as described previously. Although the sensor wire is shown terminating at the band electrode 70, this is for clarity in the drawing. In practice, the wire would extend to the proximal end of the catheter for connection to particular equipment.
The tip electrode 68 and the band electrode 70 may be formed with outer layers of bio~ compatible material in a manner shown in FIG. 4 or may be constructed entirely of a homogenous bio-compatible material in the manner shown in FIG. 5. In another arrangement, one electrode may be constructed in a manner consistent with FIG. 4 while the other is constructed consistent with FIG. 5. The two electrodes 68 and 70 may be used for bipolar ablation or may be used separately in unipolar ablation procedures. When used in a unipolar ablation procedure, the second electrode results in a back-up system in the event that the first electrode becomes unusable.
Also shown in FIG. 6 is a second temperature sensor 72 for monitoring the temperature of the band electrode 70. As in the case of the fret temperature sensor 34, the wire 74 of the second temperature sensor 72 is terminated in the drawing for the purpose of retaining clarity in the figure.
Although only one band electrode 70 is shown having a thermal dissipating mass 78, additional band electrodes may likewise include such 19 Docket No. 35118 masses and additional temperature sensors. Additionally, as with the distal tip electrode, the band electrode that includes a bio-compatible outer layer and a '_. thermal dissipation mass may also be five mm or less in length.
Therefore in accordance with the invention, there has been provided a distal tip electrode small enough to provide high resolution mapping yet large enough to provide an ablation volume comparable to much larger electrodes.
Because of its small size, maneuverability is increased as is the ability to focus ablation energy better. The thermal dissipation mass permits the application of a smaller amount of ablation energy than that used with larger electrodes yet achieves a satisfactory ablation volume. It is estimated that only 8 to 50 watts of power will be needed to achieve the same ablation volume that an 8 mm electrode tip would achieve with 60 to 100 watts. In two cases, ablation volumes achieved with a catheter constructed in accordance with the invention were compared with ablation volumes achieved with larger catheters. It was found that a six French, two mm length electrode of gold alloy resulted in an ablation volume that was twice the size of that created with a six French two mm length pure platinum electrode. In the second comparison, a seven French four mm length gold alloy electrode achieved an ablation volume twice that of a seven French four mm platinum alloy electrode. The lower power requirement is also beneficial in that the patient is not exposed to larger power levels with the possibility of harm.
It will be apparent from the foregoing that, while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention.
Accordingly, it is not intended that the invention be limited, except as by the appended claims.

Claims (17)

1. A catheter for mapping and ablating biological tissue, the biological tissue being located in a biological structure in which fluids flow past the tissue to be ablated, the catheter comprising:
a body member having a size such that it can be percutaneously introduced to a patient and having a distal end and a proximal end; and a tip electrode mounted at 0the distal end of the body member, the electrode having a size such that it can provide relatively nigh resolution mapping and a shape and a length such that when positioned against the tissue for ablation a portion of the elect rode is not in contact with the t issue and extends into contact with the fluids in the biological struc-tune for communicating heat to the fluids thereby cooling the electrode;
wherein the tip electrode is formed of a chemically inert, biologically compatible and homogeneous material having a thermal conductivity exceeding pure platinum.
2. The catheter of claim 1 wherein the material of the tip electrode is selected from the group consisting of:
gold and gold alloys;
pure titanium; and pure tungsten.
3. A catheter for mapping and ablating biological tissue, the biological tissue being located in a biological structure in which fluids flow past the tissue to be ablated, the catheter having a size such that it can be percutaneously positioned at the tissue to be ablated, the catheter comprising:
a body member having a size such that it can be percutaneously introduced to a patient and having a distal end and a proximal end; and a tip electrode mounted at the distal end of the body member with a distal tip extending distally from the body member, the distal tip having a size such that it can provide relatively high resolution mapping and a shape and a length such that when positioned against the tissue for ablation, a portion of the distal tip is not in contact with the tissue arid extends into contact with the fluids in the biological structure for communicating heat to the fluids thereby cooling the tip electrode, the tip electrode comprising:
an outer surface formed of a biologically compatible material with a thermal conductivity at least as great as platinum 10 iridium that completely covers the distal tip; and a thermal dissipating mass formed of a material having a thermal conductivity greater than pure platinum, said mass extending into the distal tip and having a stem extending into and engaging the body member the stem adapted to firmly mount the tip electrode to the body member, the portion extending inter the distal tip being completely covered by the outer surface for dissipating heat received by the tip electrode and the stem not covered by the outer surface.
4. The catheter of claim 3 wherein the outer surface of the tip electrode comprises a layer of biologically compatible material intimately bonded to the thermal dissipating mass, the material of the outer layer selected to have a thermal conductivity at least as great as that of platinum 10 iridium.
5. The catheter of claim 4 wherein the material of the outer layer of the tip electrode is selected from a biolog-ically compatible material in the group consisting of:
gold and gold alloys;
platinum and platinum alloys;
titanium;
tungsten;
stainless steel; and cobalt based biologically compatible materials.
6. The catheter of claims 3 through 5 wherein the stem includes at least one barb that grips an internal surface of the body member to firmly mount the tap electrode to the body member.
7. The catheter of claims 3 through 6 further comprising:
an electrical conductor connected to the tip electrode and extending to the proximal end of the body member;
wherein the electrical conductor is formed of a material having a thermal conductivity greater than platinum, and has a larger diametrical size than the size needed to conduct the amount of electricity to the tip electrode for ablation;
wherein the electrical conductor conducts heat away from the tip electrode;
wherein the stem includes a crimp device for receiving the conductor and forming an electrical and thermal contact with the conductor.
8. The catheter of claims 1 through 7 wherein the tip electrode is formed of a material having a thermal conductivity exceeding:

where:C =centigrade cal =calories cm =centimeters s =seconds
9. The catheter of claims 1 through 8 wherein the tip electrode has a rounded shape and a length of not more than five millimeters.
10. The catheter of claims 1 through 6, 8, and 9 further comprising:
an electrical conductor connected to the tip electrode and extending to the proximal end of the body member;
wherein the electrical conductor is formed of a material having a thermal conductivity greater than platinum, and has a larger diametrical size than the size needed to conduct the amount of electricity to the tip electrode for ablation;
wherein the electrical conductor conducts heat away from the tip electrode.
11. The catheter of claims 7 and 10 wherein the electrical conductor is formed of a copper alloy.
12. The catheter of claims 1 through 11 further comprising a temperature sensor mounted on the tip electrode for sensing the temperature at the tip electrode.
13. The catheter of claims 1 through 12 further comprising a band electrode mounted at the distal end of the body member proximal from the tip electrode, the band elec-trode being formed of a biologically compatible material with a thermal conductivity at least as great as platinum 10 iridium and having a thermal dissipating mass formed of a material having a thermal conductivity greater than pure platinum.
14. The catheter of claim 13 wherein the band electrode is formed of a chemically inert, biologically compatible, and homogeneous material having a thermal conductivity exceeding pure platinum.
15. The catheter of claims 13 and 14 wherein the material of the band electrode is selected from the group consisting of:
gold and gold alloys;
pure titanium; and pure tungsten.
16. The catheter of claim 13 wherein the band electrode comprises an outer surface comprising a layer of biologically compatible material intimately bonded to a thermal dissipating mass, the material of the outer layer selected to have a thermal conductivity at least as great as that of platinum 10 iridium and the thermal dissipating mass formed of a material having a thermal conductivity greater than pure platinum for dissipating heat received by the electrode.
17. The catheter of claims 13 through 15 further comprising a temperature sensor mounted to the band electrode for sensing the temperature of the band electrode.
CA002141118A 1994-01-28 1995-01-25 Improved electrophysiological mapping and ablation catheter and method Expired - Fee Related CA2141118C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/188,187 US6099524A (en) 1994-01-28 1994-01-28 Electrophysiological mapping and ablation catheter and method
US08/188,187 1994-01-28

Publications (2)

Publication Number Publication Date
CA2141118A1 CA2141118A1 (en) 1995-07-29
CA2141118C true CA2141118C (en) 2002-10-08

Family

ID=22692095

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002141118A Expired - Fee Related CA2141118C (en) 1994-01-28 1995-01-25 Improved electrophysiological mapping and ablation catheter and method

Country Status (4)

Country Link
US (1) US6099524A (en)
EP (1) EP0664990A3 (en)
JP (1) JPH0838501A (en)
CA (1) CA2141118C (en)

Families Citing this family (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897553A (en) 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
DE19507929A1 (en) * 1995-02-24 1996-09-05 Biotronik Mess & Therapieg Electrode system for measuring the monophasic action potential
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
NO304404B1 (en) * 1996-04-02 1998-12-14 Egidija R Nilsen EMG sensor and multi-channel urethral EMG sensor system
DE69716940T2 (en) * 1996-04-02 2003-07-03 Cordis Webster Inc ELECTRO-PHYSIOLOGICAL CATHETER WITH ELECTRODE IN THE FORM OF A BULL EYE
DE19734506A1 (en) * 1997-08-08 1999-02-25 Stockert Gmbh Device for the high-frequency treatment of body tissues
US6231595B1 (en) 1998-03-31 2001-05-15 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
US6251130B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Device for applications of selective organ cooling
US6491039B1 (en) 1998-01-23 2002-12-10 Innercool Therapies, Inc. Medical procedure
US6464716B1 (en) 1998-01-23 2002-10-15 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6379378B1 (en) 2000-03-03 2002-04-30 Innercool Therapies, Inc. Lumen design for catheter
US6719779B2 (en) 2000-11-07 2004-04-13 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US6051019A (en) 1998-01-23 2000-04-18 Del Mar Medical Technologies, Inc. Selective organ hypothermia method and apparatus
US6558412B2 (en) 1998-01-23 2003-05-06 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US7371254B2 (en) 1998-01-23 2008-05-13 Innercool Therapies, Inc. Medical procedure
US6254626B1 (en) 1998-03-24 2001-07-03 Innercool Therapies, Inc. Articulation device for selective organ cooling apparatus
US6383210B1 (en) 2000-06-02 2002-05-07 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using cooling catheter
US6312452B1 (en) 1998-01-23 2001-11-06 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6238428B1 (en) 1998-01-23 2001-05-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method employing turbulence-inducing element with curved terminations
US6471717B1 (en) 1998-03-24 2002-10-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6261312B1 (en) 1998-06-23 2001-07-17 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6585752B2 (en) 1998-06-23 2003-07-01 Innercool Therapies, Inc. Fever regulation method and apparatus
US6251129B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6096068A (en) 1998-01-23 2000-08-01 Innercool Therapies, Inc. Selective organ cooling catheter and method of using the same
US6325818B1 (en) 1999-10-07 2001-12-04 Innercool Therapies, Inc. Inflatable cooling apparatus for selective organ hypothermia
US6576002B2 (en) 1998-03-24 2003-06-10 Innercool Therapies, Inc. Isolated selective organ cooling method and apparatus
US6551349B2 (en) 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US6602276B2 (en) 1998-03-31 2003-08-05 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7291144B2 (en) 1998-03-31 2007-11-06 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6685732B2 (en) 1998-03-31 2004-02-03 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6905494B2 (en) 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
EP2206475A3 (en) * 1998-12-18 2010-11-17 Celon AG Medical Instruments Electrode assembly for a surgical instrument for carrying out an electrothermal coagulation of tissue
US6830581B2 (en) 1999-02-09 2004-12-14 Innercool Therspies, Inc. Method and device for patient temperature control employing optimized rewarming
AU2105901A (en) * 1999-12-15 2001-06-25 Stuart D Edwards Treatment of eustachian tube dysfunction by application of radiofrequency energy
US8517923B2 (en) 2000-04-03 2013-08-27 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US6546935B2 (en) * 2000-04-27 2003-04-15 Atricure, Inc. Method for transmural ablation
US6496712B1 (en) 2000-05-01 2002-12-17 Biosense Webster, Inc. Method and apparatus for electrophysiology catheter with enhanced sensing
US6726708B2 (en) 2000-06-14 2004-04-27 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US6743225B2 (en) 2001-03-27 2004-06-01 Uab Research Foundation Electrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates
US8509913B2 (en) 2001-04-13 2013-08-13 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US8989870B2 (en) 2001-04-13 2015-03-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment
US8457760B2 (en) 2001-04-13 2013-06-04 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US9295828B2 (en) 2001-04-13 2016-03-29 Greatbatch Ltd. Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
CA2482202C (en) 2001-04-13 2012-07-03 Surgi-Vision, Inc. Systems and methods for magnetic-resonance-guided interventional procedures
DE60223794T2 (en) * 2001-04-27 2008-10-30 C.R. Bard, Inc. ELECTROPHYSIOLOGY CATHETERS FOR MAPPING AND ABLATION
US6611699B2 (en) 2001-06-28 2003-08-26 Scimed Life Systems, Inc. Catheter with an irrigated composite tip electrode
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20110207758A1 (en) 2003-04-08 2011-08-25 Medtronic Vascular, Inc. Methods for Therapeutic Renal Denervation
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US20040082947A1 (en) * 2002-10-25 2004-04-29 The Regents Of The University Of Michigan Ablation catheters
EP3097882A1 (en) * 2002-10-31 2016-11-30 Boston Scientific Scimed, Inc. Improved electrophysiology loop catheter
US7844347B2 (en) * 2002-12-06 2010-11-30 Medtronic, Inc. Medical devices incorporating carbon nanotube material and methods of fabricating same
US7258689B2 (en) * 2003-05-19 2007-08-21 Matteo Tutino Silver alloys for use in medical, surgical and microsurgical instruments and process for producing the alloys
US7155294B2 (en) * 2003-06-26 2006-12-26 Medtronic, Inc. Conductor arrangement for multipolar medical electrical leads
US20050283148A1 (en) * 2004-06-17 2005-12-22 Janssen William M Ablation apparatus and system to limit nerve conduction
US20060089637A1 (en) 2004-10-14 2006-04-27 Werneth Randell L Ablation catheter
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
US7468062B2 (en) 2004-11-24 2008-12-23 Ablation Frontiers, Inc. Atrial ablation catheter adapted for treatment of septal wall arrhythmogenic foci and method of use
US7429261B2 (en) 2004-11-24 2008-09-30 Ablation Frontiers, Inc. Atrial ablation catheter and method of use
US20060161147A1 (en) * 2005-01-18 2006-07-20 Salvatore Privitera Method and apparatus for controlling a surgical ablation device
US7828795B2 (en) 2005-01-18 2010-11-09 Atricure, Inc. Surgical ablation and pacing device
EP1895927A4 (en) 2005-06-20 2011-03-09 Medtronic Ablation Frontiers Ablation catheter
US7655003B2 (en) 2005-06-22 2010-02-02 Smith & Nephew, Inc. Electrosurgical power control
US8834461B2 (en) 2005-07-11 2014-09-16 Medtronic Ablation Frontiers Llc Low power tissue ablation system
US8034051B2 (en) * 2005-07-15 2011-10-11 Atricure, Inc. Ablation device with sensor
US20070021803A1 (en) 2005-07-22 2007-01-25 The Foundry Inc. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US20070213754A1 (en) * 2006-03-08 2007-09-13 Olympus Medical Systems Corp. Incision instrument, incision apparatus, and organ incision method
US8903505B2 (en) 2006-06-08 2014-12-02 Greatbatch Ltd. Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
US7515954B2 (en) 2006-06-13 2009-04-07 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
US7729752B2 (en) 2006-06-13 2010-06-01 Rhythmia Medical, Inc. Non-contact cardiac mapping, including resolution map
CA2654759A1 (en) * 2006-06-13 2007-12-21 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
EP2465574B1 (en) 2006-06-28 2015-10-28 Ardian, Inc. Systems for thermally-induced renal neuromodulation
DE102006047366A1 (en) * 2006-10-04 2008-04-10 Celon Ag Medical Instruments Flexible soft catheter for radiofrequency therapy of biological tissue
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8460285B2 (en) * 2006-12-29 2013-06-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter electrode having multiple thermal sensors and method of use
EP2136702B1 (en) * 2007-03-26 2015-07-01 Boston Scientific Limited High resolution electrophysiology catheter
US8641704B2 (en) 2007-05-11 2014-02-04 Medtronic Ablation Frontiers Llc Ablation therapy system and method for treating continuous atrial fibrillation
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
EP2992825B1 (en) 2007-11-26 2017-11-01 C.R. Bard Inc. Integrated system for intravascular placement of a catheter
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US8162934B2 (en) * 2007-12-21 2012-04-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical catheter assembly with deflection pull ring and distal tip interlock
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US9108066B2 (en) 2008-03-20 2015-08-18 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
WO2010008833A1 (en) * 2008-06-23 2010-01-21 Greatbatch Ltd. Frequency selective passive component networks for implantable leads of active implantable medical devices utilizing an energy dissipating surface
EP2313143B1 (en) 2008-08-22 2014-09-24 C.R. Bard, Inc. Catheter assembly including ecg sensor and magnetic assemblies
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US8137343B2 (en) 2008-10-27 2012-03-20 Rhythmia Medical, Inc. Tracking system using field mapping
US8447414B2 (en) 2008-12-17 2013-05-21 Greatbatch Ltd. Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields
US8808345B2 (en) 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8945117B2 (en) 2009-02-11 2015-02-03 Boston Scientific Scimed, Inc. Insulated ablation catheter devices and methods of use
US8095224B2 (en) 2009-03-19 2012-01-10 Greatbatch Ltd. EMI shielded conduit assembly for an active implantable medical device
US9339206B2 (en) 2009-06-12 2016-05-17 Bard Access Systems, Inc. Adaptor for endovascular electrocardiography
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9125578B2 (en) 2009-06-12 2015-09-08 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
EP3391845B1 (en) 2009-06-30 2020-02-12 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
EP2464407A4 (en) 2009-08-10 2014-04-02 Bard Access Systems Inc Devices and methods for endovascular electrography
EP2517622A3 (en) 2009-09-29 2013-04-24 C. R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
WO2011044421A1 (en) 2009-10-08 2011-04-14 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8882763B2 (en) 2010-01-12 2014-11-11 Greatbatch Ltd. Patient attached bonding strap for energy dissipation from a probe or a catheter during magnetic resonance imaging
US20110208175A1 (en) * 2010-02-24 2011-08-25 Medtronic Vascular, Inc. Methods for Treating Sleep Apnea Via Renal Denervation
US8556891B2 (en) 2010-03-03 2013-10-15 Medtronic Ablation Frontiers Llc Variable-output radiofrequency ablation power supply
JP5383565B2 (en) * 2010-03-11 2014-01-08 日本電信電話株式会社 Fiber optic electrode
US8870863B2 (en) 2010-04-26 2014-10-28 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
EP4122385A1 (en) 2010-05-28 2023-01-25 C. R. Bard, Inc. Insertion guidance system for needles and medical components
CN103547229B (en) 2010-08-05 2017-09-26 美敦力Af卢森堡有限责任公司 Cryogenic ablation device, the system and method modulated for renal nerve
CA2806353A1 (en) 2010-08-09 2012-02-16 C.R. Bard Inc. Support and cover structures for an ultrasound probe head
KR101856267B1 (en) 2010-08-20 2018-05-09 씨. 알. 바드, 인크. Reconfirmation of ecg-assisted catheter tip placement
US9186208B2 (en) * 2010-10-19 2015-11-17 Minerva Surgical, Inc. Systems for endometrial ablation
US9084610B2 (en) 2010-10-21 2015-07-21 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
JP6046041B2 (en) 2010-10-25 2016-12-14 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ Devices, systems, and methods for neuromodulation therapy evaluation and feedback
EP3100696B1 (en) 2010-10-25 2023-01-11 Medtronic Ardian Luxembourg S.à.r.l. Catheter apparatuses having multi-electrode arrays for renal neuromodulation
TW201221174A (en) 2010-10-25 2012-06-01 Medtronic Ardian Luxembourg Microwave catheter apparatuses, systems, and methods for renal neuromodulation
US9060755B2 (en) 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US9060754B2 (en) 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US10292754B2 (en) 2010-11-17 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Therapeutic renal neuromodulation for treating dyspnea and associated systems and methods
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10596369B2 (en) 2011-03-01 2020-03-24 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US10272252B2 (en) 2016-11-08 2019-04-30 Greatbatch Ltd. Hermetic terminal for an AIMD having a composite brazed conductive lead
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
CA2832311A1 (en) 2011-04-08 2012-11-29 Covidien Lp Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
CN103930061B (en) 2011-04-25 2016-09-14 美敦力阿迪安卢森堡有限责任公司 Relevant low temperature sacculus for restricted conduit wall cryogenic ablation limits the device and method disposed
AU2012278809B2 (en) 2011-07-06 2016-09-29 C.R. Bard, Inc. Needle length determination and calibration for insertion guidance system
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
CN103917185A (en) 2011-09-14 2014-07-09 波士顿科学西美德公司 Ablation device with ionically conductive balloon
CA2847846A1 (en) 2011-09-14 2013-03-21 Boston Scientific Scimed, Inc. Ablation device with multiple ablation modes
CN104125799A (en) 2011-11-07 2014-10-29 美敦力阿迪安卢森堡有限责任公司 Endovascular nerve monitoring devices and associated systems and methods
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
US9192766B2 (en) 2011-12-02 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation methods and devices for treatment of polycystic kidney disease
WO2013101772A1 (en) 2011-12-30 2013-07-04 Relievant Medsystems, Inc. Systems and methods for treating back pain
US8876817B2 (en) 2012-01-10 2014-11-04 Boston Scientific Scimed Inc. Electrophysiology system and methods
WO2013115941A1 (en) 2012-01-31 2013-08-08 Boston Scientific Scimed, Inc. Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging
AU2013230883A1 (en) 2012-03-07 2014-09-11 Medtronic Af Luxembourg S.A.R.L. Selective modulation of renal nerves
AU2013230893B2 (en) 2012-03-08 2015-12-03 Medtronic Af Luxembourg S.A.R.L. Neuromodulation and associated systems and methods for the management of pain
AU2013230774B2 (en) 2012-03-08 2015-12-03 Medtronic Af Luxembourg S.A.R.L. Gastrointestinal neuromodulation and associated systems and methods
WO2013134472A1 (en) 2012-03-08 2013-09-12 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation methods and systems for treatment of hyperaldosteronism
CA2865242A1 (en) 2012-03-08 2013-09-12 Medtronic Ardian Luxembourg S.A.R.L. Biomarker sampling in the context of neuromodulation devices and associated systems and methods
AU2013230906A1 (en) 2012-03-08 2014-09-18 Medtronic Af Luxembourg S.A.R.L. Neuromodulation and associated systems and methods for the treatment of sexual dysfunction
US9750568B2 (en) 2012-03-08 2017-09-05 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US10258791B2 (en) 2012-04-27 2019-04-16 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies for neuromodulation proximate a bifurcation of a renal artery and associated systems and methods
US9241752B2 (en) 2012-04-27 2016-01-26 Medtronic Ardian Luxembourg S.A.R.L. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US9848950B2 (en) 2012-04-27 2017-12-26 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for localized disease treatment by ablation
WO2013162700A1 (en) 2012-04-27 2013-10-31 Medtronic Ardian Luxembourg Sarl Cryotherapeutic devices for renal neuromodulation and associated systems and methods
US9943354B2 (en) 2012-04-27 2018-04-17 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for localized inhibition of inflammation by ablation
US9861738B2 (en) * 2012-05-07 2018-01-09 St. Jude Medical, Cardiology Division, Inc. Flex tip fluid lumen assembly with termination tube
CA2872189A1 (en) 2012-05-11 2013-11-14 William W. CHANG Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
CN104837413B (en) 2012-06-15 2018-09-11 C·R·巴德股份有限公司 Detect the device and method of removable cap on ultrasonic detector
US8951296B2 (en) 2012-06-29 2015-02-10 Medtronic Ardian Luxembourg S.A.R.L. Devices and methods for photodynamically modulating neural function in a human
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US8612022B1 (en) 2012-09-13 2013-12-17 Invatec S.P.A. Neuromodulation catheters and associated systems and methods
WO2014047071A1 (en) * 2012-09-18 2014-03-27 Boston Scientific Scimed, Inc. Map and ablate closed-loop cooled ablation catheter with flat tip
CN104640513A (en) 2012-09-18 2015-05-20 波士顿科学医学有限公司 Map and ablate closed-loop cooled ablation catheter
US20140110296A1 (en) 2012-10-19 2014-04-24 Medtronic Ardian Luxembourg S.A.R.L. Packaging for Catheter Treatment Devices and Associated Devices, Systems, and Methods
CN104968287B (en) 2012-10-22 2018-05-22 美敦力Af卢森堡有限责任公司 Flexible conduit with improvement
US9044575B2 (en) 2012-10-22 2015-06-02 Medtronic Adrian Luxembourg S.a.r.l. Catheters with enhanced flexibility and associated devices, systems, and methods
EP3598952A3 (en) 2012-11-05 2020-04-15 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone and modulating nerves within the bone
US9095321B2 (en) 2012-11-21 2015-08-04 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
US9017317B2 (en) 2012-12-06 2015-04-28 Medtronic Ardian Luxembourg S.A.R.L. Refrigerant supply system for cryotherapy including refrigerant recompression and associated devices, systems, and methods
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
EP4052673A1 (en) * 2013-03-12 2022-09-07 Baylis Medical Company Inc. Medical device for puncturing tissue
US11937873B2 (en) 2013-03-12 2024-03-26 Boston Scientific Medical Device Limited Electrosurgical device having a lumen
US11154350B2 (en) * 2013-03-13 2021-10-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter having electronic device disposed within a lumen
US20140276051A1 (en) * 2013-03-13 2014-09-18 Gyrus ACM, Inc. (d.b.a Olympus Surgical Technologies America) Device for Minimally Invasive Delivery of Treatment Substance
US9066726B2 (en) 2013-03-15 2015-06-30 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode apposition judgment using pressure elements
EP2968919B1 (en) 2013-03-15 2021-08-25 Medtronic Ardian Luxembourg S.à.r.l. Controlled neuromodulation systems
US9179974B2 (en) 2013-03-15 2015-11-10 Medtronic Ardian Luxembourg S.A.R.L. Helical push wire electrode
EP2996754B1 (en) 2013-05-18 2023-04-26 Medtronic Ardian Luxembourg S.à.r.l. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices and systems
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US9326816B2 (en) 2013-08-30 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation systems having nerve monitoring assemblies and associated devices, systems, and methods
US9339332B2 (en) 2013-08-30 2016-05-17 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters with nerve monitoring features for transmitting digital neural signals and associated systems and methods
US20150073515A1 (en) 2013-09-09 2015-03-12 Medtronic Ardian Luxembourg S.a.r.I. Neuromodulation Catheter Devices and Systems Having Energy Delivering Thermocouple Assemblies and Associated Methods
US9138578B2 (en) 2013-09-10 2015-09-22 Medtronic Ardian Luxembourg S.A.R.L. Endovascular catheters with tuned control members and associated systems and methods
US10433902B2 (en) 2013-10-23 2019-10-08 Medtronic Ardian Luxembourg S.A.R.L. Current control methods and systems
EP3099377B1 (en) 2014-01-27 2022-03-02 Medtronic Ireland Manufacturing Unlimited Company Neuromodulation catheters having jacketed neuromodulation elements and related devices
ES2811323T3 (en) 2014-02-06 2021-03-11 Bard Inc C R Systems for the guidance and placement of an intravascular device
US9901364B2 (en) 2014-02-20 2018-02-27 Gyrus Acmi, Inc. Heat pipe cooled burr including surgical instruments embodying same
US10492842B2 (en) 2014-03-07 2019-12-03 Medtronic Ardian Luxembourg S.A.R.L. Monitoring and controlling internally administered cryotherapy
US10463424B2 (en) 2014-03-11 2019-11-05 Medtronic Ardian Luxembourg S.A.R.L. Catheters with independent radial-expansion members and associated devices, systems, and methods
US9579149B2 (en) 2014-03-13 2017-02-28 Medtronic Ardian Luxembourg S.A.R.L. Low profile catheter assemblies and associated systems and methods
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
WO2015164280A1 (en) 2014-04-24 2015-10-29 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters having braided shafts and associated systems and methods
US10610292B2 (en) 2014-04-25 2020-04-07 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems, and methods for monitoring and/or controlling deployment of a neuromodulation element within a body lumen and related technology
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
WO2016033543A1 (en) 2014-08-28 2016-03-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for assessing efficacy of renal neuromodulation and associated systems and devices
US10368775B2 (en) 2014-10-01 2019-08-06 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for evaluating neuromodulation therapy via hemodynamic responses
US10524684B2 (en) 2014-10-13 2020-01-07 Boston Scientific Scimed Inc Tissue diagnosis and treatment using mini-electrodes
EP3209234B1 (en) 2014-10-24 2023-11-29 Boston Scientific Scimed Inc. Medical devices with a flexible electrode assembly coupled to an ablation tip
EP3943032A1 (en) 2014-11-14 2022-01-26 Medtronic Ardian Luxembourg S.à.r.l. Catheter apparatuses for modulation of nerves in communication with the pulmonary system and associated systems
US10667736B2 (en) 2014-12-17 2020-06-02 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing sympathetic nervous system tone for neuromodulation therapy
WO2016100917A1 (en) 2014-12-18 2016-06-23 Boston Scientific Scimed Inc. Real-time morphology analysis for lesion assessment
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US9119628B1 (en) 2015-01-21 2015-09-01 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
US9113912B1 (en) 2015-01-21 2015-08-25 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10736692B2 (en) 2016-04-28 2020-08-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation and associated systems and methods for the treatment of cancer
US10772566B2 (en) 2016-05-17 2020-09-15 Biosense Weber (Israel) Ltd. Multi-electrode catheter spine and method of making the same
EP3269834B1 (en) 2016-07-15 2019-11-27 Heraeus Deutschland GmbH & Co. KG Gold-based ablation electrode and production method
US11432870B2 (en) 2016-10-04 2022-09-06 Avent, Inc. Cooled RF probes
US10231784B2 (en) 2016-10-28 2019-03-19 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for optimizing perivascular neuromodulation therapy using computational fluid dynamics
US10249415B2 (en) 2017-01-06 2019-04-02 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
US10646713B2 (en) 2017-02-22 2020-05-12 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and associated methods for treating patients via renal neuromodulation to reduce a risk of developing cognitive impairment
US11109909B1 (en) 2017-06-26 2021-09-07 Andreas Hadjicostis Image guided intravascular therapy catheter utilizing a thin ablation electrode
US10188368B2 (en) 2017-06-26 2019-01-29 Andreas Hadjicostis Image guided intravascular therapy catheter utilizing a thin chip multiplexor
US10492760B2 (en) 2017-06-26 2019-12-03 Andreas Hadjicostis Image guided intravascular therapy catheter utilizing a thin chip multiplexor
US11160982B2 (en) 2017-07-05 2021-11-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating post-traumatic stress disorder in patients via renal neuromodulation
US10945788B2 (en) 2017-07-05 2021-03-16 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating depression in patients via renal neuromodulation
US11284934B2 (en) 2017-07-05 2022-03-29 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating sleep disorders in patients via renal neuromodulation
EP3709919A1 (en) 2017-11-17 2020-09-23 Medtronic Ardian Luxembourg S.à.r.l. Systems, devices, and associated methods for neuromodulation with enhanced nerve targeting
US10959669B2 (en) 2018-01-24 2021-03-30 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing the efficacy of neuromodulation therapy
US11478298B2 (en) 2018-01-24 2022-10-25 Medtronic Ardian Luxembourg S.A.R.L. Controlled irrigation for neuromodulation systems and associated methods
US11253189B2 (en) 2018-01-24 2022-02-22 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and methods for evaluating neuromodulation therapy via detection of magnetic fields
US11116561B2 (en) 2018-01-24 2021-09-14 Medtronic Ardian Luxembourg S.A.R.L. Devices, agents, and associated methods for selective modulation of renal nerves
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
US11633120B2 (en) 2018-09-04 2023-04-25 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing efficacy of renal neuromodulation therapy
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
CA3150339A1 (en) 2019-09-12 2021-03-18 Brian W. Donovan Systems and methods for tissue modulation

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33925A (en) * 1861-12-17 Improvement in fastenings for shoulder-straps
US4449528A (en) * 1980-03-20 1984-05-22 University Of Washington Fast pulse thermal cautery probe and method
US4492231A (en) * 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4492731A (en) * 1982-11-22 1985-01-08 E. I. Du Pont De Nemours And Company Trilobal filaments exhibiting high bulk and sparkle
US5230349A (en) * 1988-11-25 1993-07-27 Sensor Electronics, Inc. Electrical heating catheter
US4945912A (en) * 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
US5257635A (en) * 1988-11-25 1993-11-02 Sensor Electronics, Inc. Electrical heating catheter
US5005587A (en) * 1989-11-13 1991-04-09 Pacing Systems, Inc. Braid Electrode leads and catheters and methods for using the same
US5122137A (en) * 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5190539A (en) * 1990-07-10 1993-03-02 Texas A & M University System Micro-heat-pipe catheter
US5156151A (en) * 1991-02-15 1992-10-20 Cardiac Pathways Corporation Endocardial mapping and ablation system and catheter probe
US5231248A (en) * 1991-07-17 1993-07-27 W. L. Gore & Associates, Inc. Sterilizable cable assemblies
DE4125088C1 (en) * 1991-07-29 1992-06-11 Siemens Ag, 8000 Muenchen, De
ATE241938T1 (en) * 1991-11-08 2003-06-15 Boston Scient Ltd ABLATION ELECTRODE WITH INSULATED TEMPERATURE MEASUREMENT ELEMENT
AU2333992A (en) * 1992-02-07 1993-09-03 Interflo Medical, Inc. A thermodilution catheter having a safe, flexible heating element
US5281215A (en) * 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
WO1994002077A2 (en) * 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5348554A (en) * 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5606974A (en) * 1995-05-02 1997-03-04 Heart Rhythm Technologies, Inc. Catheter having ultrasonic device
US5735280A (en) * 1995-05-02 1998-04-07 Heart Rhythm Technologies, Inc. Ultrasound energy delivery system and method
US5755760A (en) * 1996-03-11 1998-05-26 Medtronic, Inc. Deflectable catheter

Also Published As

Publication number Publication date
JPH0838501A (en) 1996-02-13
US6099524A (en) 2000-08-08
CA2141118A1 (en) 1995-07-29
EP0664990A3 (en) 1997-11-19
EP0664990A2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
CA2141118C (en) Improved electrophysiological mapping and ablation catheter and method
US10945625B2 (en) Electrophysiology catheter design
JP6716249B2 (en) Catheter with irrigated tip electrode having porous substrate and high density surface microelectrodes
US7047068B2 (en) Microelectrode catheter for mapping and ablation
EP1343427B1 (en) Apparatus for mapping
US5891138A (en) Catheter system having parallel electrodes
JP4125489B2 (en) Electrophysiology catheter
US20040092806A1 (en) Microelectrode catheter for mapping and ablation
US6312425B1 (en) RF ablation catheter tip electrode with multiple thermal sensors
WO2005104972A2 (en) Electrode and bipolar ablation method using same
EP2679190B1 (en) Irrigated electrodes with enhanced heat conduction
CN112914721A (en) Electrode device, medical catheter and ablation system
CA3019800A1 (en) Catheter with improved temperature response
JP4087251B2 (en) Ablation catheter
US11794004B2 (en) Electroporation with cooling
US20190336206A1 (en) Electrode Tips For Cardiac Ablation
US11857251B2 (en) Flexible circuit for use with a catheter and related manufacturing method
JP2022040096A (en) Proximal electrode cooling

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed