Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCA2088070 C
Publication typeGrant
Application numberCA 2088070
PCT numberPCT/US1991/005271
Publication date28 Sep 1999
Filing date24 Jul 1991
Priority date24 Jul 1990
Also published asCA2088070A1, DE69130567D1, DE69130567T2, EP0540682A1, EP0540682A4, EP0540682B1, US5374261, US5392787, US5407423, US5439457, US5484426, US5514085, US5599292, US5700239, US5733252, US6277089, US6602218, US20010025155, WO1992001433A1
Publication numberCA 2088070, CA 2088070 C, CA 2088070C, CA-C-2088070, CA2088070 C, CA2088070C, PCT/1991/5271, PCT/US/1991/005271, PCT/US/1991/05271, PCT/US/91/005271, PCT/US/91/05271, PCT/US1991/005271, PCT/US1991/05271, PCT/US1991005271, PCT/US199105271, PCT/US91/005271, PCT/US91/05271, PCT/US91005271, PCT/US9105271
InventorsInbae Yoon
ApplicantInbae Yoon
Export CitationBiBTeX, EndNote, RefMan
External Links: CIPO, Espacenet
Multifunctional devices for endoscopic surgical procedures
CA 2088070 C
Abstract
A multifunctional device 916) for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the multifunctional device (16) is introduced to the operative site through the narrow portal. The multifunctional device is formed of an absorbent material (18), preferably expandable, having a substantially rigid dry state prior to introduction to the operative site and a soft, flexible wet state after absorbing fluids. The absorbent material can be formed with a spine (20) therein of either a continuous or a discontinuous, segmented construction, and the spine can be branched and tubular or solid.
The absorbent material can have portions or segments thereof expandable to different sizes to produce rounded protuberances to facilitate manipulation at the operative site and can have predetermined, non-straight configurations in the wet state.
Claims(60)
1. A device for use in an endoscopically performed operative procedure of the type where a narrow portal in a patient's body is used to access an operative site in the patient's body and the device is introduced to the operative site through the narrow portal, said device comprising a length of absorbent material having at least a first portion and a second portion, said first portion being capable of expanding in any direction to a first size when fluid is absorbed by said absorbent material and said second portion being capable of expanding in any direction to a second size, greater than said first size, when fluid is absorbed by said absorbent material.
2. A device as recited in claim 1, wherein said absorbent material has a dry state prior to absorbing fluid and prior to introduction to the operative site and a wet state after absorbing fluid upon introduction at the operative site, said absorbent material being straight and rigid in said dry state and said absorbent material being soft and flexible in said wet state.
3. A device as recited in claim 2, wherein said first portion includes a plurality of first segments expandable to said first size and said second portion includes a plurality of second segments expandable to said second size, greater than said first size, said first and second segments being arranged in alternating sequence.
4. A device as recited in claim 3, wherein said device has a predetermined external configuration in said wet state and said absorbent material has discontinuous spine segments therein having shapes to control said predetermined external configuration of said device in said wet state.
5. A device as recited in claim 3, wherein said device has a predetermined external configuration in said wet state and said absorbent material has a continuous spine extending therethrough to control said predetermined external configuration of said device in said wet state.
6. A device as recited in claim 5, wherein said spine is tubular.
7. A device as recited in claim 4, wherein said spine segments are disposed in said second segments, respectively.
8. A device as recited in claim 3, wherein said second segments have rod-shaped configurations in said dry state and spherical configurations in said wet state, and said first segments have rod-shaped configurations in said dry and wet states.
9. A device as recited in claim 3, wherein said first segments form connecting segments connecting said second segments in alternating sequence, and said second segments form protuberances in said wet state extending laterally beyond said first segments.
10. A multifunctional device for use in an endoscopically performed operative procedure of the type where a narrow portal in a patient's body is used to access an operative site in the patient's body and the device is introduced to the operative site through the narrow portal, said device comprising a length of absorbent material and an elongate spine carried by and extending along said absorbent material, said spine having a normally non-straight predetermined configuration, said spine being maintained by said absorbent material in a substantially straight configuration, different from said normally non-straight predetermined configuration, when said absorbent material is in a dry state prior to absorbing fluid and returning to said normally non-straight predetermined configuration when said absorbent material is in a wet state after absorbing fluid.
11. A multifunctional device as recited in claim 10, wherein said spine is tubular and includes holes therein for passage of fluid.
12. A multifunctional device as recited in claim 11, and further comprising a tubular connector having a distal end communicating with said tubular spine and a proximal end for positioning externally of the patient's body, and a valve disposed at said proximal end for controlling fluid flow through said spine and said connector.
13. A multifunctional device as recited in claim 10, wherein said spine includes a trunk and branches extending from said trunk.
14. A multifunctional device as recited in claim 10, wherein said spine includes a continuous member having said normally non-straight predetermined configuration, said continuous member being maintained by said absorbent material in said substantially straight configuration when said absorbent material is in said dry state and said continuous member returning to said normally non-straight predetermined configuration when said absorbent material is in said wet state.
15. A multifunctional device as recited in claim 10, wherein said spine is formed of spaced segments to be discontinuous.
16. A device for packing an internal operative site in an endoscopically performed operative procedure, said device comprising a length of absorbent material having a longitudinal axis, a dry state prior to absorbing fluid, a wet state after absorbing fluid, a uniform profile when in said dry state and at least first and second portions capable of expanding in any direction to different first and second sizes, respectively, in said wet state to form at least one rounded external protuberance disposed outwardly of said axis.
17. A device as recited in claim 16, wherein said absorbent material forms a plurality of rounded protuberances in said wet state.
18. A device as recited in claim 17, wherein said absorbent material is rigid in said dry state and is soft and flexible in said wet state.
19. A device as recited in claim 18, wherein said absorbent material has a straight configuration in said dry state and a predetermined non-straight configuration in said wet state.
20. A device for use in an endoscopically performed operative procedure in combination with a portal sleeve establishing communication with an internal operative site from externally of a patient's body for introducing said device to the operative site and for withdrawing said device from the operative site through said portal sleeve, said portal sleeve comprising a structural sleeve, said device comprising a sponge having a rigid, substantially straight configuration in a dry state to facilitate introduction through said sleeve and having a soft, curved configuration in a wet state after absorbing fluid upon introduction at the operative site, said curved configuration defining a recess for supporting tissue at the operative site in a cupping manner and a tubular spine extending longitudinally through said sponge for maintaining said curved configuration of said sponge in said wet state and for passing fluid therethrough
21. A device for use in an endoscopically performed operative procedure in combination with a portal sleeve establishing communication with an internal operative site from externally of a patient's body for introducing said device to the operative site and for withdrawing said device from the operative site through said portal sleeve, said portal sleeve comprising a structural sleeve, said device comprising a sponge and a spine extending longitudinally through said sponge, said sponge having a rigid, substantially straight configuration in a dry state to facilitate introduction through said sleeve and having a soft, curved configuration in a wet state after absorbing fluid upon introduction at the operative site, said curved configuration defining a recess for supporting tissue in a cupping manner, said spine including opposing sides, said sponge including first and second wings disposed on said opposing sides, respectively, of said spine, said first and second wings being rolled up in said dry state and being unrolled to extend in curved opposite directions from said spine in said wet state.
22. A device as recited in claim 21, wherein said first and second wings have a length and are rolled up to abut one another along said length in said dry state.
23. A device as recited in claim 21, wherein said first wing is rolled up in a first direction and said second wing is rolled up in a second direction around said first wing after said first wing has been rolled up in said first direction.
24. A device for use in an endoscopically performed operative procedure in combination with a portal sleeve establishing communication with an internal operative site from externally of a patient's body for introducing said device to the operative site and for withdrawing said device from the operative site through said portal sleeve, said portal sleeve comprising a structural sleeve, said device comprising a sponge having a substantially straight configuration in a dry state prior to introduction at the operative site, said sponge assuming a predetermined non-straight configuration in a wet state after absorbing fluid upon introduction at the operative site, said sponge having a configuration in said wet state circumscribing a pair of adjacent, side by side lumens.
25. A device for use in an endoscopically performed operative procedure in combination with a portal sleeve establishing communication with an internal operative site from externally of a patient's body for introducing said device to the operative site and for withdrawing said device from the operative site through said portal sleeve, said portal sleeve comprising a structural sleeve, said device comprising a sponge having a substantially straight configuration in a dry state prior to introduction at the operative site, said sponge assuming a predetermined non-straight configuration in a wet state after absorbing fluid upon introduction at the operative site, a tubular spine disposed in said sponge for maintaining said configuration of said sponge in said wet state and for flow of liquids therethrough and a tubular connector communicating with said spine for extending through said sleeve to terminate at a proximal end adapted to extend external of the patient's body.
26. A device as recited in claim 25, wherein said sponge has a coiled configuration in said wet state.
27. A device as recited in claim 25, wherein said sponge has a serpentine configuration in said wet state.
28. A device as recited in claim 25, wherein said sponge has a spiral configuration in said wet state.
29. A device as recited in claim 25, wherein said sponge has a circular configuration circumscribing a lumen in said wet state.
30. A device as recited in claim 25, wherein said sponge has a configuration circumscribing a pair of adjacent, side-by-side lumens in said wet state.
31. A multifunctional device in combination with an energy transmitting probe for use in an endoscopically performed operative procedure of the type where a narrow portal in a patient's body is used to access an operative site in the patient's body and the device is introduced to the operative site through the narrow portal, said energy transmitting probe including an electrical energy transmitting probe and said multifunctional device including a sponge for absorbing fluid after introduction to the operative site and a passage extending entirely through said sponge and receiving said probe for treating tissue at the operative site with energy supplied by said probe.
32. A multifunctional device for use in an endoscopically performed operative procedure of the type where a narrow portal in a patient's body is used to access an operative site in the patient's body and the device is introduced at the operative site through the narrow portal, said multifunctional device including a sponge having a peripheral surface and a tubular member in said sponge, said tubular member being made of electrically conductive material and having a plurality of branches extending therefrom and terminating at tips on said peripheral surface of said sponge whereby said tubular member is adapted to receive an electrosurgical probe to provide coagulation at said tips.
33. A multifunctional device as recited in claim 32, wherein said sponge has a wet state after absorbing fluid and a configuration in said wet state mating with the configuration of a body cavity in which the sponge is introduced.
34. A multifunctional device as recited in claim 10, wherein said spine includes a tubular portion extending entirely through said absorbent material and further comprising an energy transmitting probe disposed in said tubular portion for introduction at the operative site through said tubular portion.
35. A multifunctional device as recited in claim 34, wherein said probe includes a laser instrument.
36. A multifunctional device as recited in claim 34, wherein said probe includes an electrosurgical instrument.
37. A multifunctional device in combination with a biopsy instrument for use in an endoscopically performed operative procedure of the type where a narrow portal in a patient's body is used to access an operative site in the patient's body and the device is introduced at the operative site through the narrow portal, said biopsy instrument including a biopsy needle and said multifunctional device including a sponge for absorbing fluid after introduction at the operative site and a passage extending entirely through said sponge and receiving said biopsy needle for collecting a tissue specimen at the operative site
38. A device for use in an endoscopically performed operative procedure of the type where a narrow portal in a patient's body is used to access an operative site in the patient's body and the device is introduced to the operative site through the narrow portal, said device comprising an elongate sponge having a configuration in a compressed dry state to pass through the narrow portal and an expanded configuration in a wet state after absorbing fluid following passage through the portal, and a spine disposed in said sponge including a trunk extending longitudinally through said sponge and a plurality of branches extending from said trunk, said branches being positioned in substantially parallel alignment with said trunk when said sponge is in said dry state and said branches moving outwardly from said trunk when said sponge is in said wet state.
39. A device as recited in claim 38, wherein said trunk has a length and said branches are connected with said trunk at respective locations along said length of said trunk.
40. A device as recited in claim 38, wherein said branches are connected with a distal end of said trunk.
41. A multifunctional device for use in an endoscopically performed operative procedure in combination with a portal sleeve establishing communication with an operative site in a patient's body from externally thereof and the device is introduced to the operative site through said portal sleeve, said portal sleeve comprising a structural sleeve having a lumen extending longitudinally entirely therethrough, said device comprising a sponge having a first configuration in a dry state prior to use to pass entirely through said lumen and a second configuration, different from said first configuration, in a wet state after absorbing fluid following introduction at the operative site, said sponge being straight in said first configuration and being curved in said second configuration to define a recess for receiving tissue such that said sponge in said second configuration cups tissue at the operative site, and a tubular manipulator having a distal end fixed to said sponge and extending through said portal sleeve to a proximal end adapted to extend external of the patient's body, said manipulator moving said sponge in the patient's body and being adapted to cooperate with equipment external of the patient's body to fix the position of said sponge in the patient's body.
42. A multifunctional device as recited in claim 41, wherein said manipulator includes a rigid member fixed to said sponge.
43. A multifunctional device as recited in claim 41, wherein said manipulator includes a flexible member fixed to said sponge.
44. A multifunctional device as recited in claim 43, wherein said sponge includes a distal end and a proximal end and said manipulator includes a member attached to said proximal end of said sponge to fix the position of said sponge at the operative site.
45. A multifunctional device as recited in claim 41, wherein said manipulator is bendable to fix the position of said sponge at the operative site.
46. A multifunctional device as recited in claim 41 and further comprising a tubular spine disposed in said sponge and a tubular connector communicating with said spine and passing through said manipulator.
47. A device for use in an endoscopically performed operative procedure of the type where a narrow portal in a patient's body is used to access an operative site in the patient's body and the device is introduced to the operative site through the narrow portal, said device comprising a sponge having a first cross sectional size in a dry state and a second cross sectional size, greater than said first cross sectional size, in a wet state after absorbing fluid, said sponge being rigid in said dry state and being soft and flexible in said wet state, an elastic membrane surrounding said sponge, and a tubular member communicating with said sponge, said elastic membrane being stretchable to accommodate said sponge as said sponge expands to said second cross sectional size in said wet state after absorbing fluid supplied to said sponge through said tubular member.
48. A packing device for packing an internal operative site in a patient's body in an endoscopically performed operative procedure in combination with a portal sleeve establishing communication with an internal operative site from externally of a patient's body, said portal sleeve having a distal end for being disposed in the patient's body, a proximal end for being disposed externally of the patient's body and a lumen between said distal and proximal ends, said packing device comprising a delivery tube received in said lumen, an elongate strip of absorbent material having a rigid dry state prior to absorbing fluid and a soft, flexible wet state after fluid is absorbed by said strip of material, said strip of material being disposed in said delivery tube in said dry state, and a rod attached to said strip of material and extending externally of the patient's body when said delivery tube is received in said lumen, said rod being movable distally and proximally relative to said portal sleeve while remaining attached to said strip of material to force said strip of material from said delivery tube and said portal sleeve to introduce said strip of material at the operative site and to manipulate said strip of material at the operative site once said strip of material has been forced from said portal sleeve.
49. A packing device as recited in claim 48, wherein said strip of material has a rod-shaped configuration in said dry state.
50. A packing device as recited in claim 48, wherein said strip of material expands when body fluid is absorbed thereby.
51. A packing device for packing an operative site in a patient's body in an endoscopically performed operative procedure of the type where a narrow portal in the patient's body is used to access the operative site and the device is introduced at the operative site through the narrow portal, said packing device comprising an elongate strip of absorbent material having a dry state prior to absorbing fluid and a wet state after absorbing fluid, said strip of material having a uniform cross section in said dry state and a non-uniform, predetermined cross section in said wet state and indicia carried by said strip of material providing an indication of said non-uniform predetermined cross section while said strip of material is still in said dry state.
52. A packing device as recited in claim 51, wherein said packing device further includes a string having opposite ends, one of said ends being attached to said strip of material and the other of said ends carrying said indicia.
53. A packing device as recited in claim 52, wherein said indicia comprises a coloured marking on said other end of said string.
54. A packing device as recited in claim 48, wherein said strip of material has a proximal end and said rod includes a portion passing centrally through said strip of material and a portion extending from said proximal end of said strip of material to be disposed externally of the patient's body when said delivery tube is received in said lumen.
55. A packing device as recited in claim 54, wherein said rod is tubular and defines a hollow drain coupled with said strip of material for collecting and removing fluid from the operative site.
56. A packing device as recited in claim 52, wherein said string is tubular and defines a hollow drain coupled with said strip of material for collecting fluid at the operative site and for draining the collected fluid from the patient's body.
57. A packing device as recited in claim 51 and further comprising a support attached to said strip of material and having a normally non-straight predetermined configuration, said support being maintained by said strip of material in a substantially straight configuration, different from said normally non-straight predetermined configuration, when said strip of material is in said dry state and returning to said normally non-straight predetermined configuration when said strip of material is in said wet state.
58. A packing device as recited in claim 57, wherein said support has spring-like properties.
59. A packing device as recited in claim 57, wherein said support has shape memory.
60. A packing device as recited in claim 48 and further comprising means for constraining said strip of material to assume a predetermined external configuration in said wet state, said predetermined external configuration being different from the external configuration of said strip of material in said dry state.
Description  (OCR text may contain errors)

MULTIFUNCTIONAL DEVICES FOR
ENDOSCOPIC SURGICAL PROCEDURES
FIELD OF THE INVENTION:
The present invention pertains to multifunctional devices for use at an operative site for increased visualization of the operative field, manipulation of tissue, exposure and isolation of tissue, absorbtion of body fluids and/or treatment of tissue, and, more particularly, to such devices for use in endoscopically performed operative procedures and methods therefor.
DISCUSSION OF THE PRIOR ART:
Endoscopically performed operative procedures are preferred for surgery on the human body due to their least invasive nature and reduced trauma and tissue damage as compared with open surgery. There are many common endoscopically performed operative procedures including, for example, laparoscopy (pelviscopy), gastroentroscopy, laxyngobronchoscopy thoracosopy, anrthorscopy, and the like. While endoscopically performed operative procedures are preferred, there are obstacles to expanding endoscopy 1 S to include the various procedures currently performed with open surgery.
One of the obstacles is that packing of the internal operative site has not been able to be accomplished in the past due to the fact that access to the operative site is available only through a narrow portal normally including a cylindrical sleeve positioned by means of a puncturing instrument. Without packing, endoscopic procedures are much more difficult and dangerous to perform, even with the use of insufflation and instruments particularly useful in endoscopy, such as laser and electrosurgical instruments, since the tissue or organ structure cannot be adequately exposed and manipulated, the surrounding tissue and organ structure is not protected during the procedure and body fluids cannot be removed from the operative site without the use of expensive and cumbersome suction equipment.
Effective exposure of diagnostic and surgical sites is vitally important in order to carry out successful procedures.

_...
Many presently performed endoscopic procedures are implemented with the use of electrosurgical or laser instruments for coagulation and cutting which presents the opportunity for accidental contact or scarring of tissue not intended to be treated if the operative site is not adequately packed to expose and isolate the tissue to be treated and if vision is impaired by blood or other fluids. Accordingly, while laser and electrosurgical probes can be introduced through narrow portals to permit various types of procedures to be performed endoscopically, great care is required to assure that adjacent tissue is not inadvertently damaged, thus resulting in increased time to complete the surgery. In most endoscopic procedures, there is very little space in which to manoeuvre instruments; and, in many cases, tissue surrounding the operative site must be retracted or re-positioned to facilitate the procedure. During open surgery, sponges or other absorbent materials are used to isolate and expose the operative site, and clear vision can be achieved by absorbing or aspirating body fluids, such as blood or the like, due to the large access area to the operative site. Fore closed or endoscopic surgery, however, access to the operative site is limited, and facilitating procedures cannot be achieved, such as, for example, cleaning and wiping of the tissue during coagulation and cutting, manipulation of the tissue during coagulation and cutting, lysis of adhesion, and irrigation and/or aspiration for cases where cystic fluid has been released.
Preferably, electric or laser coagulation and cutting is performed with simultaneous manipulation of tissue, cleaning and wiping of tissue, irrigation andlor aspiration, and biopsy and culture procedures; however, these functions could not be provided during endoscopic procedures in the past. Where coagulation of large surfaces is required, such as cystic cavity coagulation or endometrial ablation, endoscopic procedures have the disadvantages of requiring substantial time and increasing the chance for accidental scarring or contact.
There is a great need to expand the types of procedures that can be endoscopically performed in order to decrease trauma and recovery time for patients while simultaneously reducing medical costs. Accordingly, much effort has been expended in the development of endoscopic instruments for specific procedures; however, to date, no adequate system has been devised to permit adequate exposure during endoscopically performed operative procedures. the use of gas and liquid insufflation is presently the only option available to expose diagnostic and surgical sites but is not adequate for many procedures and has disadvantages due to the high pressure in the body which can cause pulmonary problems, such as asymptomatic diaphragmatic hernias.
SUMMARY OF THE INVENTION:
Accordingly, it is a primary object of the present invention to provide multifunctional devices for use in endoscopically performed operative procedures to expand the types of procedures that can be performed endoscopically while increasing patient safety and exposure of operative sites in endoscopic procedures presently being performed.
Another object of the present invention is to overcome the above mentioned disadvantages in endoscopic procedures utilizing electric or laser coagulation and cutting by providing the availability of simultaneous tissue manipulation, cleaning and wiping of tissue, irrigation and/or aspiration and vision enhancement.
A further object of the present invention is to increase visualization of operative fields or sites and to expose and isolate operative sites with the use of packing devices having shapes and configurations facilitating positioning of the devices in the body and use with specific organ structures and procedures.
Another obj ect of the present invention is to provide a sponge-like, fluid absorbing device having a substantially rigid dry state allowing passage through a narrow endoscopic portal, such as a trocar sleeve, a cannula, an endoscope operating channel or the like, and permitting tissue manipulation and precise positioning at an internal operative site to expose tissue and organ structures to be treated, absorb body fluids and protect adjacent tissue and organ structures.
A further object of the present invention is to pack an internal operative site through a narrow endoscopic portal, that is a narrow portal for performing procedures with visualization through an endoscope, using a length of absorbent material having a rigid, dry state prior to use and a soft flexible, wet state when exposed to body fluids.
Yet an additional object of the present invention is to endoscopically pack an internal operative site using a length of absorbent material having a relatively straight ..

configuration in a dry state and assuming a non-straight configuration in a wet state to allow the material to have a predetermined configuration when positioned at the operative site to absorb body fluids.
The present invention is generally characterized in a multifunctional device for use in an endoscopically performed operative procedure of the type where a narrow portal is established through the skin to provide access to an operative site and the multifunctional device is introduced to the operative site through the narrow portal. The multifunctional device is formed of an absorbent material, preferably expandable, having a substantially rigid dry state prior to introduction to the operative site and a soft, flexible wet state after absorbing fluids. The absorbent material can be formed with a spine therein of either a continuous or a discontinuous, segmented construction, and the spine can be branched and tubular or solid. The absorbent material can have portions or segments thereof expandable to different sizes to produce rounded protuberances to facilitate manipulation at the operative site and can have predetermined, non-straight configurations in the wet state, the predetermined configurations being controlled by the spine in the absorbent material or the method of forming the absorbent material. The multifunctional device can have a passage therethrough to accommodate laser, electrosurgical, biopsy, or culturing instruments. Some of the advantages of the present invention over the prior art are that precise packing at an internal operative site is accomplished via a narrow portal thereby expanding the types of procedures that can be performed endoscopically and, further, increasing safety and efficacy in endoscopic procedures in general, that use of the devices provides improved exposure of the operative site, protects irrigation and/or aspiration or drainage with a cleansing effect to minimize the opportunity for inadvertent or catastrophic complications, that the devices are sufficiently rigid or stiff in a dry state to allow precise placement thereof as well as manipulation of tissue, that the device facilitates removal of infected fluids, such as pus, and abnormal fluids, such as cystic fluids, that the packing devices serve as a culturing medium to identify specific infected organisms or specific malignant cells, that the device can be used to apply medicaments to tissue and can contain specific medications for specific purposes, such as antiseptics, antibiotics, chemotherapeutic agents, or anti-adhesive agents, or radiopacque materials for identification or location purposes, and that, when a plurality of packing devices are used in an endoscopic procedure, each packing device is individually identified externally to confirm the number of packing devices and the location of each packing device.
Other objects and advantages of the present invention will become apparent from the following description of the preferred embodiments taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS:
Figure 1 is a top plan view of a multifunctional device in combination with a trocar sleeve in accordance with the present invention;
Figure 2 is a broken top plan view of the multifunctional device of Figure 1 in a dry state;
Figure 3 is a broken top plan view of the multifunctional device of Figure 2 in an expanded, wet state;
Figure 4 is a broken view of a multifunctional device according to the present invention having a hook-shape in an expanded state;
Figures 5 and 7 are perspective and sectional view, respectively, illustrating the forming of the multifunctional device shown in Figure 4 to have a compressed rigid dry state as illustrated in Figure 6;
Figure 8 is a perspective view of a multifunctional device according to the present invention having a trough-like configuration;
Figures 9 and 10 are end views of the multifunctional device of Figure 8 illustrating the formation of the configuration in the dry state;
Figure 11 is a broken view of a multifunctional device according to the present invention in a dry state;
Figure 12 is a perspective view of the multifunctional device of Figure 11 in a wet state;
Figure 13 is a plan view of a branched tubular spine for use in a multifunctional device according to the present invention;

_ '~~A
Figure 14 is a broken sectional view of a multifunctional device according to the present invention having a tubular spine with branches and adapted to receive an electrosurgical or laser probe;
Figure 15 is a plan view of a spine having branches extending therefrom in a particular configuration to conform to an anatomical cavity or surface;
Figure 16 is a top plan view of a multifunctional device according to the present invention having a serpentine configuration in the wet state;
Figure 17 is a perspective view of a multifunctional device according to the present invention having a coiled configuration;
Figure 18 is a perspective view of a multifunctional device according to the present invention having a helical configuration;
Figure 19 is a top plan view of a multifunctional device according to the present invention having a circular configuration to produce a lumen therein;
Figure 20 is a top plan view of a multifunctional device according to the present invention having a figure "8" configuration to form a pair of lumens therein;
Figure 21 is a top plan view of a multifunctional device according to the present invention having a spiral configuration;
Figure 22 is a perspective view of a multifunctional device according to the present invention having a square configuration in cross-section;
Figure 23 is a perspective view of a multifunctional device according to the present invention having a spoon-like configuration;
Figure 24 is a top plan view of a spine for a multifunctional device according to the present invention having a plurality of branches extending from the distal end thereof;
Figures 25, 26, and 27 are perspective views of the spine configuration of Figure 24 for producing linear, curved, and circular configurations, respectively;
Figure 28 is a perspective view of a tag for use with the multifunctional device according to the present invention;
Figure 29 is a broken top plan view of a multifunctional device according to the present invention having a spine with closed loop segments;

"_ Figure 30 is a broken top plan view of the multifunctional device of Figure 29 in a wet state;
Figure 31 is a sectional view of a multifunctional device according to the present invention covered by an elastic membrane;
Figure 32 is a sectional view of the multifunctional device of Figure 31 in a wet state;
Figure 33 is a top plan view of a multifunctional device according to the present invention in a trocar sleeve with a bendable manipulator;
Figures 34 and 35 are broken views, partly in section, illustrating use of the multifunctional devices of the present invention;
Figure 36 is a broken view, partly in section, of a multifunctional device according to the present invention utilized with a biopsy instrument.
DESCRIPTION OF THE PREFERRED EMBODIMENTS:
A multifunctional device in combination with a trocar sleeve in accordance with the present invention is shown in Figure 1. The trocar sleeve 10 terminates at its proximal end at a hub 12 having a valve 14 therein forming a passage that can be opened to permit instruments to pass through sleeve 10. The trocar sleeve, hub and valve form a conventional trocar assembly commonly used in laparoscopy wherein a trocar, not shown, passes through sleeve 10 and is used to puncture a pneumoperitoneum and is thereafter withdrawn leaving the sleeve in place for form a portal to gain access to an internal operative site. The term "operative site" as used herein refers to any diagnostic, surgical or treatment site or field in the body. The multifunctional device 16 of the present invention can be used with any type of narrow portal providing access to an internal operative site, with or without a sleeve, a cannula or the operating channel of an endoscope;
and, the trocar sleeve 10 is exemplary only. The terms "endoscopic portal" and "narrow portal" as used herein mean any small opening providing access to internal operative sites regardless of whether the opening is formed as a structural channel, such as a sleeve, a cannula or the operating channel of an endoscope, or a narrow incisional or natural entry opening.

The multifunctional device 16 is formed of an elongate length of absorbent, preferably expandable, material 18 having a rod-like, substantially straight configuration in a dry state, as shown in Figure 2, and a tubular spine 20 is disposed in the material. The material 18 can be any type of medical grade absorbent material that can absorb body fluids and, preferably, expand substantially from its size in a dry state, the expansion being dependent upon the procedure being performed and the size of the endoscopic portal. The material is relatively rigid or stiff in the dry state to allow introduction to the operative site through the portal and its use to manipulate tissue prior to absorption of body fluids;
however, some flexibility may be desired dependent upon the configuration of the endoscopic portal and the procedure to be performed. While an expandable material is preferred to facilitate packing and tissue exposure, if desired, the absorbent material can be non-expandable as long as the material becomes soft and pliant in the wet state after absorption of body fluids. That is, the material should have the characteristics, when wet, of being soft enough to bend freely and repeatedly without breaking and of being malleable and flexible. Sponge materials have been found to be the most effective for the device.
Examples of materials 18 include compressed cellulose sponge, natural sponge, synthetic sponge made of a reaction product of polyvinyl alcohol and formaldehyde, hydrophillic cross-linked polyurethane foam as disclosed in United States patent No.
3,369,544 to CROCKFORD, No. 3,903,232 to WOOD et al, No. 4,098,728 to ROSENBLATT and No.
4,553,966 to KORTEWEG, and compacted gauze or cotton. In the dry state, the multifunctional device must be sufficiently rigid to allow the device to be manipulated in a fashion to be positioned adjacent an operative site to expose and isolate tissue or organ structure to be visualized and/or treated, the rigid nature of the device 16 also allowing the device to be used to contact and move or position tissue and organ structures to facilitate the procedure to be endoscopically performed. In the dry state, the device is essentially a sponge stick. The length and width or lateral size of the device will depend upon the procedure to be endoscopically performed; and, as shown in Figure 1, the device has a length longer than the length of the trocar sleeve and hub.
The construction of the device 16 is dependent upon the type of absorbent material employed and the procedure to be performed including the force required to remove the device after the procedure is completed. To this end, the spine 20 can pass centrally through the material 18, as shown, to form a core-like support attached to the material along the length thereof or can extend through or along material 18 at any position, or the material can have no spine. A connector 22 is fixed to the proximal end of material 18 and has sufficient tensile strength to prevent breakage when the device is pulled from the body by grasping the connector or tag 24 fixed to the end of the connector. The connector can be flexible, rigid and/or bendable, as will be explained hereinafter, and the spine and connector can be integrally made of one-piece and be hollow or solid. When the spine passes through the material, it can be radiopacque to enhance visualization thereof, and the material 18 can also be radiopacque and can have medicaments therein. The tag 24 can also be radiopacque and, preferably, carries indicia for identifying each device, the indicia taking the form of different colors and/or alpha-numeric labelling. As shown in Figure 28, the tag 24 can have an adhesive coating 23 covered by removable release paper 25 to permit the tag to be secured to equipment external of the body.
The device 16 is shown in Figure 3 after contact with body fluids which are absorbed by material 18 to cause the material to expand and become soft and flexible to facilitate use of the swollen device to pack the operative site. The spine 20 and connector 22, as shown, are made integrally as one piece and are tubular, and spine 20 has lateral holes 26 therein and an open distal end 27. Adjacent tag 24 is a valve or stop cock 28 communicating with connector 22 and having a coupling 30 adapted to communicate with a source of suction or with a source of irrigating fluid for supply to the operative site. The holes or perforations 26 allow selective or continuous drainage of body fluids through spine 20 and connector 22 when the device is wet. Additionally, medicaments or other therapeutic substances can be introduced to the operative site via connector 22, spine 20 and material 18.
The spine 20, whether tubular or solid, can be formed of any suitable material such as string, plastic or metal. In accordance with a particularly advantageous embodiment of the present invention, spine 20 has resilient, spring-like properties and has a normal, non-straight configuration designed for a particular operative procedure. For example, spine 20 can have vaxious simple or complex curved or partially straight shapes in the normal state.

..._ To this end, the spine can be made of spring metal to have a predetermined non-straight, normal configuration; and, when the device is manufactured, the spine is straightened and the absorbent material 18 is attached to the spine, for example with adhesive, such that the dry, stiff condition of material 18 maintains the spine in a substantially straight configuration. Accordingly, the device 16 can be inserted in a straight or linear path through the portal; and, once the device is in the body, material 18 will absorb body fluids to become soft and allow the spine to return to its normal configuration producing a predetermined configuration for use in specific procedures. The shape memory of the packing device can be accomplished in other suitable manners, some of which are described hereinafter, and spine 20 can be disposed within material 18 or externally along an outer edge of material 18.
Another manner in which device 16 can be manufactured to have shape memory to assume a predetermined configuration when in a wet state is shown in Figures 4, 5, 6, and 7. The sponge is initially molded or cut from a cured sheet of sponge material to have a hook-like, distal end configuration 32 as shown in Figure 4 with a relatively stable shape, and the soft cured sponge is placed in a substantially straight recess 34 in a two-part fixture 36. The sponge 18 is dried by heating and via fluid withdrawn through manifold 38; and, as the sponge shrinks, a bladder 40 is forced against the sponge 18 to maintain a substantially straight configuration. The dried sponge will, thus, have the shape shown in Figure 6 and will retain this rod or stick-like shape in the dry state. In use, then the device is introduced into the body via a portal, the sponge 18 will absorb body fluids and, when wet, will return to the expanded hook-like shape shown in Figure 4.
A multifunctional device 41 having a trough-lie configuration is illustrated in Figure 8, the device having a tapered proximal end 41 and a tubulax spine 44 running centrally therethrough with lateral and end holes therein as described above with respect to spine 20.
The configuration illustrated in Figure 8 is assumed once the device 41 has been introduced into the body at the operative site, and the configuration of device 41 makes it particularly useful in supporting tubular organ structures in the trough-like recess. In order for the device 41 to have a configuration in a dry state to be introduced through a narrow portal, the portions or wings 46 and 48 on opposite sides of spine 44 can be rolled up to produce ..

longitudinally abutting spiral configurations as illustrated in Figure 9 where the wings 46 and 48 are shown in their wet or expanded state in phantom. Another manner in which the device 41 can be configured in its dry state is to roll up wing 46 initially as illustrated at ( 1 ) in Figure 10, and thereafter, wind wing 48 around rolled up wing 46 as illustrated at (2). In use, the multifunctional device 41 in the dry state configuration of either Figures 9 or 10 is introduced through the portal to the operative site; and, once the sponge material of the device absorbs body fluids, the wings 46 and 48 will unroll or unwind to produce the configuration illustrated in Figure 8 thereby allowing the device 41 to be rigid and manipulate organ structure while the device is being properly positioned and thereafter to unfurl to provide an enveloping packing for the organ structure. By predetermining the size and curvature of the multifunctional device 41, the configuration of the device can be particularly designed to cup a tubular organ structure in the body, such as a bowel, an appendix or a fallopian tube. The device 41 is shown in Figure 8 using a non-expanding material 18; however, an expanding material can be used if desired.
Another multifunctional device 50 according to the present invention is illustrated in Figure 11 in its dry state and is formed of a sponge material 52 with a solid spine 54 extending therethrough and continuing from the proximal end to form a connector 56 terminating at a spherical end member 58. The spine and connector can be flexible or semi-flexible or bendable such that positioning of a connector 56 either with a bend or by securing end member 58 to equipment external of the body allows positioning of the multifunctional device 50 to be fixed. The sponge material 52 is formed of alternating segments 60 and 62 with segments 60 having a cell or pore density substantially greater than the cell or pore density of segments 62. In this manner, when the device 50 is in the wet state after introduction into the body as illustrated in Figure 12, the device 50 will have a plurality of protuberant segments to facilitate handling within the body and proper positioning of the device 50 at the operative site. By gradually varying the density of the cells or pores within segments 60, spherical protuberances 60' can be formed in the wet state with the protuberances 60' interconnected by smaller rod-like segments 62' corresponding to segment 62 shown in Figure 11, segments 62 not expanding to the same size as segments 60 due to the reduced cell or pore density thereof. If it is desired for the multifunctional device 50 to have a general overall configuration, such as circular or hook-shaped, the spine 54 can be a continuous member provided with such configuration in its normal state or, curved spine segments can be disposed at spaced positions in the sponge material only at particular areas, such as in the lower density segments 62, to provide a discontinuous spine. In this manner, the protuberances 60' formed in the wet state will have no spine therein while the connecting segments 62' will have a spine segment therein controlling the overall configuration of the device 50 in the wet state. A
circular shape for the overall configuration of the multifunctional device is particularly advantageous for use in surrounding tissue to be treated, such as, for example, the ovary, the fallopian tube or the appendix.
A modification of a spine for use in the multifunctional devices according to the present invention is illustrated in Figure 13 wherein the spine 63 is formed of a tubular trunk 66 with tubular branches 68 extending therefrom at an acute angle to the distal direction with the branches being flexibly or movably mounted to allow the branches to be compressed to be in substantial alignment with the trunk, as indicated in phantom, when the multifunctional device is in a dry state and the sponge material, not shown, is compressed around the spine and to allow the branches to move outwardly when the device is in the wet state. The branched spine 63 can be either tubular or solid or the branches 68 can be solid with only the trunk 66 tubular. Additionally, the spine can have a normal, non-straight configuration, as discussed above, such that when the device is in a wet state the device will assume a predetermined, non-straight configuration.
Additionally, the predetermined configuration can be determined by forming the sponge material in the manner described above with respect to Figures 4 through 7.
A branched spine 70 is illustrated in a multifunctional device 72 according to the present invention in Figure 14 and includes a tubular electrically conductive trunk 74 with electrically conductive solid branches 76 extending angularly therefrom and terminating at tips at the peripheral surface of sponge material 78 when in the wet state.
With the embodiment of Figure 14, an electrosurgical probe 80 can be passed through the portal and through the tubular trunk 74 such that a unipolar electrosurgical device is produced with multiple electrodes defined at the peripheral surface of the sponge. The multifunctional .~

.~-device 72 can, therefore, be efficiently utilized to coagulate large surface areas such as cystic cavities or the endometrium of the uterus. The sponge material 78 will be formed with a specific configuration to conform to the cavity wall to be cauterized thereby substantially decreasing the time require for endometrial ablation, for example, while also assuring complete tissue contact and ablation. A spine 65 is shown in Figure 15 having branches 67 extending from a trunk 69 in a particular arrangement for use with a sponge material configured to mate with an anatomical cavity.
Figures 16 through 21 show various multifunctional configurations particularly advantageous for use with specific procedures at the operative site. The multifunctional device 81 illustrated in Figure 16 has a serpentine configuration to produce a zig-zag shape changing gradually from the distal end to the proximal end and is particularly useful for abscess drainage. The coiled configuration shown in multifunctional device 82 in Figure 17 is self coiling which allows the device 82 to coil around tissue and lift or otherwise manipulate the tissue to position the tissue in the most advantageous position for treatment.
The coiled device 82 is particularly useful in procedures requiring packing or manipulation of the ovary, the gall bladder or the appendix, and the soft nature of the sponge material in the wet state produces gentle positioning of the tissue requiring no contact of the tissue with rigid positioning instruments. The increasing diameter coiled spiral configuration of the multifunctional device 84 illustrated in Figure 18 is particularly advantageous for insertion within an organ, such as the ovary or the fimbrial end, to absorb and/or aspirate body fluid therefrom without leakage into the body cavity.
The circular shape of the multifunctional device 86 illustrated in Figure 19 is particularly advantageous due to the lumen therein for encircling or surrounding tissue such as the ovary, the fallopian tube of the appendix. The double-lumen configuration of the multifunctional device 88 illustrated in Figure 20 is particularly useful for positioning organ structures adjacent one another to facilitate a procedure. As illustrated, the device 88 has a figure "8" shape in the wet state to define lumens 90 and 92 therethrough for surrounding the organ structures. For example, limen 90 can be utilized to surround an ovarian follicle while lumen 92 can surround the fimbrial end to position the fimbrial end and the ovarian follicle side-by-side. The spiral, single pane configuration of multifunctional device 94 _ . ..~

.._.
illustrated in Figures 21 produces a pad or mat-like large surface area which can be flat or slightly concave and is particularly useful to hold the ovary and collect body fluid during ovarian fluid aspiration with the bowl-shaped embodiment collecting the fluid to assure complete aspiration. All of the configurations discussed above will have a substantially straight, rod-like configuration in the dry state and the predetermined configurations in the wet state can be produced in any desirable manner for example by utilizing spines having such configurations in their normal shape or by forming the devices in the manner discussed above with respect to Figure 4 through 7.
A multifunctional device 96 is illustrated in Figure 22 as having a substantially square or rectangular shape in cross-section and is exemplary of various cross-sectional configurations that can be utilized with multifunctional devices according to the present invention when the devices are in the wet state. It is preferred that, in the dry state, the devices have smoothly curved surfaces such as that provided by a cylindrical or rod-like configuration.
A multifunctional device 98 is illustrated in Figure 23 having a spoon-like configuration in that the device 98 has a recessed shape in the wet state with a wide curved mouth 100 tapering to a more narrow proximal portion. A branched spine 104 is disposed within the sponge material 106 and is preferably tubular to facilitate aspiration and/or irrigation due to the primary use of device 98 for cupping and lifting organ structures in a soft manner.
When the multifunctional devices are used primarily for tissue manipulation rather than packing, the devices can advantageously include a spine 108 as illustrated in Figure 24 having a trunk 110 terminating at its distal end at a plurality of angularly extending branches 112. The spine 108 is shown as being entirely tubular; however, it will be appreciated that the spine can have any completely tubular, solid or partly tubular configuration. The arrangement of the branches 112 when the sponge material, not shown, surrounding the spine is in a wet state can have any desired configuration.
For example, the branches 112 can be aligned in a straight line as shown in Figure 25, can be arranged to form a curved or concave alignment as shown in Figure 26 or can have a circular arrangement as shown in Figure 27. The fan-shaped arrangement of branches 112 allows the multifunctional devices to be configured as particularly desired to gently engage tissue and organ structure to properly manipulate and position the tissue and organ structure for a particular procedure.
In a multifunctional device 114 shown in Figure 29, the spine is formed or segments of closed loops 116 with the loop compressed when the sponge material is in the dry state.
When the device 114 is in the wet state, as illustrated in Figure 30, the segments 116 return to their normal configuration to define the shape of the protuberances 118 on the device.
The loops 116 are shown as being circular in Figure 30; however, the loops can have any desired closed configuration, such as triangular, rectangular or polygonal.
In the multifunctional device 120 illustrated in Figures 31 and 32 in the dry and wet states, respectively, the sponge material 122 is surrounded by an elastic, stretchable membrane 124, such a silicone rubber, and the spine 126 has a branched configuration with a tubular trunk and tubular branches as previously described with respect to Figure 13.
With the use of the membrane 124, the device 120 can utilize a non-medically accepted sponge material 122, and the expansion of the sponge once introduced into the body through the portal can be achieved by forcing a high viscosity, medical grade, non-toxic fluid, such as 32% dextrose, from a source through the tubular connector and spine to cause the sponge material to expand.
Figure 33 illustrates a multifunctional device 128 according to the present invention particularly designed for manipulating and positioning tissue and organ structures within the body, the device 128 passing through a trocar sleeve 130. The multifunctional device 128 has a hook or half circle configuration at its distal end formed of a sponge material 132 with a tubular spine therein, not shown. A tubular, substantially rigid manipulator 134 has a distal end fixed to the proximal end of the sponge material 132 and terminates at is proximal end adjacent a stop cock 136. If a spine is utilized in the sponge material 132, it can extend concentrically within manipulator 134 to communicate with the valve cock 136 and a coupling 138. Since the multi-functional device 128 is particularly designed for manipulating tissue, the manipulator 134 is preferably bendable such that, after introduction into the body via a portal, the sponge material 132 can be utilized to engage tissue or organ structure after assuming its wet curbed configuration. Once the tissue or organ structure ..~ _ n is engaged with the hook-shaped end of the device 128, the manipulator 134 can be retracted through the sleeve 130 to position or retract the engaged tissue or organ structure.
Once the tissue or organ structure is precisely positioned, the manipulator 134 is bent as illustrated at 140 in phantom to engage equipment external of the body and prevent the device 128 from moving internally. Accordingly, manipulator 134 provides the functions of moving the distal end of the device as required to engage and position tissue and also holding the distal end of the device and the engaged tissue in a selected position.
Use of a multifunctional device 142 in accordance with the present invention is illustrated in Figure 34 wherein the device has been passed through a sleeve 146 that extends through the skin and muscle of the abdomen 148, and the device 142 is positioned between the gall bladder 150 and the bowel 152. The device 142 will preferably have an elongated, spoon-like configuration in the wet state to cup and support the gall bladder for use in performing a cholecystectomy.
use of multifunctional devices 154 and 156 according to the present invention is illustrated in Figure 35 to isolate and expose the fallopian tube 158. Device 154 has protuberances 160 and is structured to form a circle to surround and support the fallopian tube 158 which extends through the lumen formed thereby. The device 156 has a spoon-like configuration similar to device 98 shown in Figure 23 and is utilized to manipulate and position the fallopian tube. The devices 154 and 156 are illustrated passing through separate trocar sleeves 162 and 164, respectively.
By forming the multifunctional devices according to the present invention with a tubular spine, the devices are particularly useful for introducing tissue treating probes such as electrosurgical, laser, biopsy and culturing instruments, in that the sponge material protects the probes from inadvertent contact with tissue other than that intended to be treated as well as providing cleaning, wiping and fluid absorption functions.
The tubular spine is shown with passage of a biopsy needle therethrough in Figure 36. The biopsy needle has a sharp distal end 166 adj acent a lateral opening 168; and, due to the use of sponge material 170, the device can be positioned immediately adjacent tissue to be sampled. Movement of an inner member 172 against the bias of a spring 174 allows an opening 176 in the inner member to be aligned with lateral opening 168 to permit communication with a squeeze bulb 178 to collect a biopsy specimen. A laser or electrosurgical probe can similarly be passed through the tubular spine 180 to allow protected use thereof.
From the above, it should be appreciated that endoscopic procedures performed in accordance with the present invention are substantially improved with the multifunctional devices described above. By combining the various features of the multifunctional devices described above, devices can be designed for specific operative procedures to be performed and to provide specific functions for use with instruments used in the procedure. For example, the configurations of the devices in the wet state can be controlled or predetermined, or the devices can remain flexible along the full length thereof. The flexibility or rigidity of the devices in the wet state can be controlled by varying cell or pore density when the sponge material is compressed with rigidity increasing with increasing cell or pore density. In this manner, the rigidity or flexibility of a device can be constant or can vary at portions along the device to facilitate positioning of the device between around or under tissue. The spine can be rigid or flexible, solid, such as a rod or string, or tubular, continuous or discontinuous (i.e.: interrupted or segmented) dependent upon intended use of a device. The use of a tubular spine defines a longitudinal passage through the device to receive various instruments such as electrosurgical and laser probes, endoscopes and aspirating and biopsy needles. The sponge material surrounding the distal portion of the instrument allows simultaneous manipulation of tissue, cleaning and wiping of tissue, and aspiration and/or irrigation at the operative site to increase visualization and facilitate precise positioning and use of the instrument. By providing a conductive path from the tubular trunk to the distal tips of conductive branches extending from the trunk and positioning the distal tips at the peripheral surface of the sponge, electrosurgical coagulation of large sources, such as in cavity or other pathological or non-pathological surfaces, can be accomplished simultaneously with a single device in a safe protected environment. To this end, the sponge and branches are configured to mate with the surface or cavity, and portions of the trunk are insulated to control the flow of electricity. The connector extending from the sponge and through the portal can be tubular or solid and flexible, rigid or bendable dependent upon use for the sponge. When the device is ~. . 1--...-~

. __ ~.~"
primarily used to manipulate tissue, the connector will normally be rigid and, preferably, bendable to fix the device in a retracted position; and, by using the geometrical shapes for the proximal end member, the end member can be secured to equipment to fix the device in a retracted position. The tags on the proximal end can be used for identification and can be adhesively secured to equipment or surgical drapes. The devices can have recesses or cavities in the distal ends or the sides of the sponges, and a conical shape for the sponge can be achieved by gradually varying the cell or pore density of the sponge.
Use of the multifunctional devices of the present invention in endoscopic operative procedures, and in many cases in open procedures, allows increased visualization of the operative site, exposure and isolation of the operative site to protect surrounding tissue, manipulation and retraction or positioning of tissue, separation of adhering tissue (lysis of adhesion), obtaining cultures with a soft material so as not to damage tissue, absorbtion and aspiration of body fluids, and introduction of medicaments such as antiseptics, anticoagulants, anti-adhesive agents, anti-chemotherapeutic agents and culture media for aerobic and anaerobic organisms by impregnating the medicaments in the sponge to leak out during the procedure or delivering the medicaments to the sponge via the tubular spine and connector.
Inasmuch as the present invention is subject to many modifications, variations and changes in detail, it is intended that all subject matter discussed above or shown in the illustrative drawings be interpreted as illustrative only and not to be taken in a limiting sense.

Classifications
International ClassificationA61B17/42, A61B17/32, A61B17/22, A61M29/00, A61M29/02, A61B18/14, A61F2/958, A61B10/00, A61F13/00, A61B19/00, A61B1/00, A61B17/02, A61F2/00, A61B17/00, A61F13/20, A61B17/34, A61F13/38, A61B17/12, A61B17/28
Cooperative ClassificationA61B2090/0815, A61B90/00, A61B90/39, A61B2090/0816, A61B2090/306, Y10S604/904, A61B17/4241, A61F2002/30092, A61B17/1214, A61B17/0057, A61B2017/320012, A61B17/3498, A61B2017/3484, A61B2017/3486, A61M25/1002, A61B17/42, A61M25/10, A61B17/1219, A61B18/14, A61M2025/1093, A61B2017/00557, A61B17/00234, A61B2017/2837, A61B17/12163, A61B2017/3492, A61B2017/2927, A61M25/1011, A61F2210/0014, A61B17/12022, A61B17/3462, A61B2017/22062, A61M29/02, A61B17/0281, A61B17/3421, A61B17/3439, A61B17/3478, A61B17/0218, A61B17/12099, A61B10/0045
European ClassificationA61B17/12P7S, A61B17/12P7Z3, A61B17/12P7C, A61B17/12P5, A61M25/10D, A61B17/34G4, A61M29/02, A61M25/10, A61B17/02L, A61B17/42M, A61B17/34G4H, A61B17/34V, A61B17/00P, A61B19/00, A61B17/02E, A61B17/34H, A61B17/00E, A61B17/12P
Legal Events
DateCodeEventDescription
25 Aug 1995EEERExamination request
24 Jul 2002MKLALapsed