CA1310096C - Call forwarding arrangement - Google Patents

Call forwarding arrangement

Info

Publication number
CA1310096C
CA1310096C CA000582511A CA582511A CA1310096C CA 1310096 C CA1310096 C CA 1310096C CA 000582511 A CA000582511 A CA 000582511A CA 582511 A CA582511 A CA 582511A CA 1310096 C CA1310096 C CA 1310096C
Authority
CA
Canada
Prior art keywords
call
station
forwarded
block
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000582511A
Other languages
French (fr)
Inventor
Mark S. Wuthnow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
American Telephone and Telegraph Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Telephone and Telegraph Co Inc filed Critical American Telephone and Telegraph Co Inc
Application granted granted Critical
Publication of CA1310096C publication Critical patent/CA1310096C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/436Arrangements for screening incoming calls, i.e. evaluating the characteristics of a call before deciding whether to answer it
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/54Arrangements for diverting calls for one subscriber to another predetermined subscriber
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S379/00Telephonic communications
    • Y10S379/911Distinctive ringing

Abstract

IMPROVED CALL FORWARDING ARRANGEMENT

Abstract An improved call forwarding arrangement where forwarded calls receive different terminating treatment from non-forwarded calls, for example providing a readily detectable, distinctive alerting signal for forwarded calls or completing only forwarded calls to a station and denying or forwarding other calls without requiring any customer involvement. The arrangement provides an improved call forwarding service for customers with advanced station display capabilities and, in addition, allows selective answering of only forwarded calls by customers that have conventional, analog station equipment. Both switch-based and station-based implementations are disclosed.

Description

IMPROVED CAI,L FORWARDING ARRANGEMENT
Technical Field This invention relates to telecommunication call processing.
Back~round and Problem As stored program-controlled switching systems have evolved, a wide variety of useful features have been developed to extend the communication capabilities such systems provide. Call forwarding, a feature that allows a customer to receive calls at another location, is particularly popular among business customers who, in a dynamic work environment, are very often on the 10 move in their day-to-day activities. However, consider a customer who is working for a few hours or days at a colleague's desk and has his calls forwarded to thecolleague's directory number. The customer may be seriously inconvenienced by receiving, in addition to his own forwarded calls, many other calls that are intended for his colleague. Since answering such calls frequently results in being 15 asked to take messages or provide information, the customer is forced to choose between interrupting his own work or refusing the requests and very likely offending a calling party. The problem is alleviated with the customer station display capabilities described in the AT&T SESSrM Switch ISDN Basic Rate Interface Specification (5E4 Generic Program), where, in addition to a ringing 20 signal to alert a customer to incoming calls, a call type is displayed that identifies calls that have been forwarded from another station. An observant customer can determine the call type by glancing at the display and selectively answer only forwarded calls. However, modification of the normal human response of answering a ringing telephone is difficult, particularly for customers that use call 25 forwarding only infrequently. In addition, a large majority of customer stations do not have advanced display capabilities.
In view of the foregoing, a recognized problem in the art is the substantial communication station cost and relatively high degree of human involvement necessary to control the answering of only forwarded calls by reading 30 a call type on an advanced station display.

I 3 1 ~ 6 Solution The foregoing problem is solved and a technical advance is achieved in accordance with the principles of the invention in an improved call forwarding arrangement where forwarded calls receive different terminating treatment from 5 non-forwarded calls, for example providing a readily detectable, distinctive alerting signal for forwarded calls or completing only forwarded calls to a station and denying or forwarding other calls to another station without re~uiring any customer involvement. Although the arrangement provides an improved call forwarding service for customers with advanced station display capabilities, more 10 importantly, it solves the problem of selective answering of only forwarded calls for the many customers that have conventional, analog station equipment.
A call to a communication station is processed in accordance with a method of the invention by first determining whether the call is a forwarded call.
If it is determined that the call is a forwarded call, an alerting signal is generated 15 that is distinctive from an alerting signal for a non-forwarded call. Alternatively, only forwarded calls are completed to the station, with or without distinctive alerting, and non-forwarded calls are denied or forwarded to another communication station, e.g., a message center.
In an illustrative embodiment described herein, the call processing is 20 performed by a switch connected via a line to the communication station. The switch effects the generation of the distinctive alerting signal by first determining whether the station is an ISDN station. If the station is found to be an ISDN
station, the switch transmits a message on the line to the station defining the distinctive alerting signal. In addition, if the ISDN station has display capability, 25 a display is generated defining the call as a forwarded call and also defining the calling and redirecting numbers. If the station is not an ISDN station, the switch applies a power ringing signal to the line distinctive from a power ringing signal for a non-forwarded call.
To determine whether a call that is incoming from a second switch is 30 a forwarded call, the first switch checks a message received from the second switch to determine whether a redirecting number is present. Such redirecting number is conventionally included in inter-switch call forwarding messages.
In a second illustrative embodiment, the call processing to effect call forwarding is performed by the forwarding communication station rather than the 35 switch.

~ ` 13100q6 In a related, improved call forwarding arrangement, referred to herein as DN-specific call forwarding, only calls from a first directory number and/or to a second directory number are forwarded. Using the DN-specific call forwarding feature, a set of people that move among a set of communication stations receive only calls to their own directory numbers.
In accordance with one aspect of the invention there is provided a call processing method comprising determining whether a call to a communication station is a forwarded call and completing said call to said station only in response to a determination that said call is a forwarded call, wherein said station is connected to a switch and wherein said method is performed by said station.

, --.. ., ~, . .

1 31 OOq6 , - 3a -Drawing Descnption FIG. 1 is a diagrarn of a comrnunication equipment configuration implementing an illustrative call forwarding arrangement in accordance with the present invention;
FIG. 2 is a dia~,ram of memo~y facilities included in an ISDN switch in the configuration of FIG. l;
FIG. 3 is a message seg.uence diagrarn for a call between two ISDN
stations in the configuration of FIG. l;
FIGS. 4 and 5 comprise a flow chart of a call processing program used to effect call forwarding in the configuration of FIG. l;
FIG. 6 is a diagram of an illustrative station-based implementation of a call forwarding arrangement in accordance with the invention; and FIG. 7 is a flow chart of a call processing program used for call forwarding in the station-based implementation of FIG. 6.
Detailed DescriPtion - The principles of the present invention are described in the context of an integrated services digital network (ISDN) switch l000 (FIG. l), although it is important to note that the invcntion is applicable to convendonal analog stored program-controlled switching systems as well. An integrated services digital network is defined as a network evolved from the telephony integrated digital network that provides end-to-end digital connectivity to support a wide range ofservices, including voice and non-voice services, to which users have access by a limited set of standard multipurpose customer interfaces. One example of ISDN
switch l000 is the integrated packet switching and circuit switching system disclosed in U. S. Patent 4,592,048 issued to M. W. Beckner et al. on May 27, 1986. Switch l000 includes a switching network l0l0, which represents, in the above-referenced exemplary integrated packet switching and circuit switching system, a plurality of dme-slot interchange units and a dme-muldplexed switch toprovide circuit-switched connecdons, and a plurality of packet switching units (interconnected via the dme-slot interchange units and dme-multiplexed switch) to , .. . .. .
_:;
, .. ,~,, ,. ,.. ,,-, .:

--"` t 3 t 00~6 provide packet-switched connections. Switch 1000 further includes a control arrangement 1020 which represents the control portion of the above-referenced exemplary switching system, including a central control and a plurality of control units that intercornmunicate via predetermined channels of the time-multiplexed 5 switch and a control distribution unit. For simplicity, the distributed control, multiple processor control arrangement 1020 is represented in FIG. 1 as a singleprocessor 1021 and associated memory 1022.
Also shown in FIG. 1 are two ISDN user stations 130 and 140, connected to switch 1000 via associated user access lines (digital subscriber 10 lines) 131 and 141, and two conventional analog stations 110 and 120, connected to switch 1000 via analog lines 111 and 121. Although only two ISDN stations and two analog stations are explicitly shown, it is to be understood that switch 1000 interconnects a larger plurality of ISDN and analog stations.
Each ISDN station, e.g., 130, transmits information to and receives 15 inforrnation from switch 1000, over what is referred to as a basic rate interface, in two 64 kilobits per second channels referred to as B-channels and in one 16 kilobits per second channel referred to as a D-channel. In the present embodiment, one B-channel is used to convey digitized voice samples at the rate of 8000, eight-bit samples per second and the other B-channel is used to convey 20 data at a rate of 64 kilobits per second. (However, each B-channel could be used for either voice or data traffic.) Each B-channel is separately circuit-switched by switching network 1010 to other station equipment (either ISDN or analog). The D-channel is used both to convey signaling packets to effect message signaling between ISDN user stations and control arrangement 1020, and to convey data 25 packets between different ISDN user stations. The D-channel is packet-switched by switching network 1010 either to other ISDN user stations, or to control arrangement 1020 which controls the establishment of both circuit-switched and packet switched calls within switch 1000.
In the present exemplary embodiment, information is conveyed 30 between an ISDN user station, e.g., 130, and switch 1000 via a four-wire, user access line 131 using one pair of wires for each direction of transmission. Useraccess line 131 transmits a serial bit stream at the rate of 192 kilobits per second which comprises 144 kilobits per second for the above-mentioned two 64 kilobits per second B-channels and one 16 kilobits per second D-channel and which 35 further comprises 48 kilobits per second used for a number of functions including ,.. . .. . .

~` 0 6 framing, DC balancing, control and maintenance. User access line 131 represents what is referred to by the International Telegraph and Telephone Consultative Committee (CCITT) as the T-interface. The use of the T-interface is only exemplary, however, as the invention is equally applicable to systems using other 5 access methods.
Signaling packets are conveyed between the ISDN user sta~ions and control arrangement 1020 enclosed in level 2 (linlc-level) frames in accordance, for example, with the standard LAPD protocol. The exemplary signaling messages used for the control of circuit-switched voice calls are in accordance with CCITT
10 Recommendation Q.931.
Signaling between analog stations 110 and 120 and switch 1000 is performed using well-known stimulus signaling methods, for example the detection of dial pulses and on-hookloff-hook station states and the transmission of power ringing signals to the stations.
Switch 1000 is also connected via a 1.544 megabits per second digital transmission facility 151 to an ISDN private branch exchange (PBX) 150.
Pacility 151 implements what is referred to as a primary rate interface comprising twenty three, 64 kilobits per second B-channels and a single 64 kilobits per second D-channel. Switch 1000 is also connected via a digital transmission 20 facility 161 to an ISDN switch 2000. Signaling for calls between switches 2000 and 1000 is effected out-of-band via a common channel signaling network 500, for example a CCS7 network, and a signaling link 171 In the present example, switch 2000 is a local switch and is connected to a plurality of analog and ISDNstations, with analog station 210 and ISDN station 220 being specifically shown in 25 FM. 1, However, switch 2000 could also be a tandem or toll switch. Further, the connection between switches 1000 and 2000 could be implemented as a primary rate interface.
The message signaling used for the establishment of a typical voice call between two ISDN user stations is illustrated by the following example A
30 user at station 130 goes off-hook by lifting the handset. Station 130 transmits a SETUP message (FIG. 3) to switch 1000. The SETUP message includes a call reference (CR) selected by station 130 The selected CR is included in all subsequent signaling messages between terminal 130 and switch 1000 concerning the particular call. Control arrangement 1020 of switch 1000 includes 35 memory 1022 (FIG. 2) for storing both static and dynamic data needed for ~ ,~, ................................. .

- , :
. .
, 1 3~ n~q6 processing calls as well as a number of call processing programs. Control alTangement 1020 stores the received CR in a call record stored in a data table or relation in the dynamic data section of memory 1022. Switch 1000 then returns a SETUP ACK message (FIG. 3) to station 130. The user at station 130 then enters 5 via a keypad the destination directory number, for example DN4, and station 130 transmits a sequence of INFO messages each including one or more digits of the directory number. (Alternatively, all of the directory number digits may be included in the SETUP message.) Switch 10û0 uses the received directory number as a key to translation data stored in memory 1022 and determines the 10 identity of the terminating line 141 for the call. Switch 1000 selects a CR for use in identifying the call in the signaling messages to be conveyed between switch 1000 and station 140 and stores the selected CR in the call record of memory 1022. (Note that the CRs used for control communication with the originating and terminating stations are in general different.) Switch 1000 also15 reads network 1010 path data stored in memory 1022 and, if a network 1010 path is available to be assigned to the call, switch 1000 transmits a SETUP message informing station 140 of the incoming call. The SETUP message includes calling party identity information, e.g., a directory number DN3 assigned to station 130or, alternatively the name of the calling party if such information is available to 20 switch 1000. Station 140 visually displays such calling party identity information Switch 1000 also returns a CALL PROC message to station 130 indicating that a call is being set up in response to the received directory number. In response to the SETUP message, station 140 enters an alerting state and begins ringing.
Station 140 then returns an ALERTING message to switch 1000, which message 25 is also conveyed back to originating station 130. Subsequently when the handset is lifted to answer the call, station 140 transmits a CONNECT message to switch 1000, which effects the completion of the assigned network 1010 path and then transmits the CONNECT message on to station 130. Switch 1000 also returns a CONNECT ACK message to station 140. The two parties can now 30 communicate.
A flow chart for a call processing program stored in memory 1022 and executed by processor 1021 to implement an exemplary, improved call forwarding arrangement in accordance with the invention is shown in FIGS. 4 and 5. Execution of the program is initiated either in response to a call 35 origination from a station (analog or ISDN) on switch 1000, or to receipt of a message from another switch concerning an incoming inter-switch call. Examples of a message for an incoming inter-switch call include a SETUP message from PBX 150, or an initial address message (IAM) from network 500 concerning a call from switch 2000. Execution begins in response to a SETUP or IAM
S message with decision block 3020, where the SETUP or IAM message is checked to determine whether a redirecting number information element (or a redirecting number parameter) is present indicating that the incoming call has been previously forwarded. If a redirecting number is present, execution proceeds to block 3030 where the value of a variable k is set to one. The variable k defines whether a 10 call is a forwarded (k=l) or non-forwarded (k=0) call. If the check performed in block 3020 indicates that no redirecting number is present, execution proceeds from block 3020 to block 3040, and the value of the variable k is set to zero.
Program execution begins in response to a call origination from a station on switch 1000 with block 3060, where the value of the variable k is set to zero.
15 Execution proceeds from any one of the blocks 3030, 3040 or 3060 to block 3070, where the translation data stored in memory 1022 is read to determine the terminating station for the call. Once the terminating station has been determined, execution proceeds to decision block 3080, where the station feature activation data stored in memory 1022 is read to determine whether the call forwarding 20 feature has been activated for the terminating station. If call forwarding has been activated, execution proceeds from block 3080 to block 3090, where the value of the variable k is set to one, and then to block 3100, where the forwarding of the call to the forward-to DN defined in memory 1022 is initiated. Execution is returned to block 3070 where the forward-to DN is translated and processing of 25 the call continues.
If the check made in block 3080 indicates that call forwarding has not been activated for the terminating station, execudon proceeds from block 3080 toblock 3110, where the station busy/idle data stored in memory 1022 is read to dehrmine whether the terminating station is idle. If the terminating station is 30 found to be busy, execution proceeds to block 3120 where busy treatment is provided. However, if the terminating station is found to be idle, execPtion proceeds from block 3110 to block 3115, where the network path data stored in memory 1022 is read to determine whether there is a network path available for the call. If no network path is available, execution proceeds to block 3120, where 35 busy treatment is provided. If an available network path is found, execution , ~
, ,~ :
`-~

~3t~96 proceeds from block 3115 to block 3130, where a determination is made of whether the call being processed is a forwarded call or a non-forwarded call. The determination is based on the value of the variable k. If the determination in block 3130 indicates that the call is a non-forwarded call (k=0), execution 5 proceeds from block 3130 to block 3140, and call processing continues to complete the call to the terminating station~ However, if the determination madein block 3130 indicates that the call is a forwarded call (k=l), execution proceeds from block 3130 to block 3150, where the station data stored in memory 1022 is read to determine whether the terminating station is an ISDN set. If the station10 data indicates that the terminating station is not an ISDN set, execution proceeds from block 3150 to block 3160. In block 3160, control arrangement 1020 effects the transmission by switching network 1010 of a power ringing signal distinctivefor a forwarded call.
Returning to block 3150, if it is determined that the terminating 15 station ;s an ISDN set, execution proceeds to decision block 3170 where the station data stored in memory 1022 is read to determine whether the terminating station has a display. If the terminating station has a display, execution proceeds from block 3170 to block 3180, where a display information element is defined.
The display information element includes the originating and redirecting numbers20 for the forwarded call, as well as a call type defining the call as a forwarded call.
After the display information element has been defined, execution proceeds to block 3190, where a signal information element is defined specifying an alertingpattern that is distinctive for forwarded calls. Block 3190 is also executed and a signal information element is defined after a deterrnination in decision block 3170 25 that the terminating station does not have a display. Execution proceeds fromblock 3190 to block 3200, where a SETUP message is transmitted to the terminating station. The SETUP message includes the defined signal information element and, for stations having a display, the defined display informadon element. The terminating station generates a distinctive ringing signal in response 30 to the received signal information element.
Although in most cases, an audible ringing signal is used to alert a customer to the presence of an incoming call, other alerting signals, including flashing lamps or displays or ringing bells are contemplated. As used herein, the term alerting signal refers to any signal used to attract the attention of a customer 35 to an incoming call at a communication station. The term does not refer to a ... . ....................... . .

.

conventional character display defining an incoming call type.
The operation of the improved call forwarding program of F~GS. 4 and 5 is illustrated herein by two call processing examples. For the first example, assume that a user at analog station 110 dials the directory number DN4 5 associated with ISDN station 140 and that a user at station 140 has activated call forwarding to the forward-to DN, DN3, associated with ISDN station 130.
Execution of the program begins with block 3060 (FIG. 4), where the value of thevariable k is set to zero. In block 3070, the dialed directory number DN4 is translated to determine the terminating station 140. The check performed in 10 block 3080 indicates, however, that call forwarding has been activated for station 140. The value of the variable k is set to one in block 3090 and call forwarding to the forward-to DN, DN3, is initiated in block 3100. A translation of DN3 in block 3070 determines that the new terminating station for the call isstation 130. Assuming that call forwarding has not also been activated for 15 station 130, execution proceeds from block 3080 to block 3110 and, further assuming that station 130 is idle and that is there is an available network 1010path for the call, execution continues on through blocks 3110 and 3115 to block 3130. Since the variable k has a value of one indicadng that the call is aforwarded call, execution proceeds from block 3130 to block 3150. A reading of 20 the station data for station 130 indicates that station 130 is an ISDN station having a display. Accordingly, execution proceeds from block 3150 to block 3170 and on to block 3180. In block 3180, a display inforrnation element is defined including the originating number, DNl, the redirecting number, DN4, and a call type defining the call as a forwarded call. In block 3190, a signal information 25 element is defined specifying an alerting pattern that is distinctive for forwarded calls, for example continuous ringing for forwarded calls in contrast with on/off ringing cycles for non-forwarded calls, or one ringing cycle for forwarded callsand another for non-forwarded calls. In ~lock 3200, a SETUP message including the defined display and signal information elements is transmitted to station 130.
30 Station 130 responds by generating the distinctive alerting signal for forwarded calls as well as the defined display.
For the second example, assume that a user at ISDN station 220 enters the directory number DN5 associated with analog station 210 and that a user at station 210 has activated call forwarding to the forward-to DN, DN2, 35 associated with analog station 120. Switch 2000 determines that the call is to be forwarded to switch 1000 and effects the transmission of an IAM message, defining the originating number DN6 and the redirecting number DN5, via network 500 and link 171 to control arrangement 1020 of switch 1000. In response to the IAM message, execution of the program of FIGS. 4 and 5 begins 5 with block 3020 where the IAM message is checked to determine whether a redirecting number is present. Since the redirecting number DN5 is found, execution proceeds to block 3030 and the value of the variable k is set to one. A
translation of the forward-to DN, DN2, in block 3070 determines that the new terminating station for the call is station 120. Assuming that call forwarding has 10 not also been activated for station 120, execution proceeds from block 3080 to block 3110 and, further assuming that station 120 is idle and that there is a network 1010 path available for the call, execution continues on to block 3130.
Since the variable k has a value of one indicating that the call is a forwarded call, execution proceeds from block 3130 to block 3150. A reading of the station data 15 for station 120 indicates that station 120 is not an ISDN station. Accordingly, execution proceeds from block 3150 to block 3160 and network 1010 transmits to station 120 a power ringing signal that is distinctive for forwarded calls.
S~veral alternative program blocks are indicated by dashed lines in FMS. 4 and 5. Rather than continuing to process non-forwarded calls as in 20 block 3140, all non-forwarded calls could instead be denied (block 3141).
Alternatively, all non-forwarded calls could in turn be forwarded to a message center (block 3142), for example, at station 140. In either case, a user working at a colleague's desk and having the user's calls forwarded to the colleague's directory number is freed from the interruption and inconvenience of receiving the 25 colleague's calls.
A related alternative is to modify the call forwarding feature such that only calls from a first directory number and/or to a second directory number areforwarded. This feature, referred to herein as DN-specific call forwarding, is implemented using the alternative program block 3081 rather than block 3080.
30 Using the DN-specific call forwarding feature, a large set of people can moveamong a corresponding set of stations and are still able to receive only calls to their own DNs. For example, suppose that the user normally at station 140 moves to station 110 and the user normally at station 110 moves to station 120. DN-specific call forwarding is activated at station 140 such that only calls having a 35 called DN of DN4 are forwarded to DNl. DN-specific call forwarding is activated at station 110 such that only calls having a called DN of DNI are forwarded to DN2. Thus the user who has moved to station 110 will receive all calls having a called DN of DN4, and the user who has moved to station 120 will receive all calls having a called DN of DNl.
Rather than implementing the improved call forwarding arrangements in the switch, such arrangements may also be implemented in the communication station. A configuration including an ISDN switch 8000 and a communication station 8001 including a processor 8002 and associated memory 8003 is shown in FIG. 6. A flow chart for a call processing program stored in memory 8003 and 10 executed by processor 8002 to implement a station-based call forwarding arrangement in accordance with the invention is shown in FIG. 7. Program execution begins in response to receipt by station 8001 of a SETUP message for an incoming call from switch 8000. In decision block 9010, a check is made to determine whether call forwarding has been activated for station 8001. If the 15 check indicates that call forwarding has been activated, execution procéeds from block 9010 to block 9020 and the call is for varded by appropriate message signaling from station 8001 to switch 8000. If the check made in block 9010 indicates that call forwarding has not been activated, execudon proceeds from block 9010 to decision Uock 9030. In block 9030, the received SETUP message 20 is inspected to determine whether the incoming call is a forwarded call. In the station-based call forwarding arrangement, the SETUP messages transmitted to station 8001 for forwarded calls include a redirecting number information element.
If the received SETUP message does not include a redirecting number information element, the call is a non-forwarded call, execution proceeds from block 9030 to25 block 9050 and call processing continues to complete the call to station 8001. If the received SETUP message does include a redirecting number information element, the ca11 is a forwarded call and execution proceeds from block 9030 to block 9040. In block 9040, processor 8002 contro1s the generation of an alertingsignal distinctive for forwarded calls.
Rather than continuing processing of non-forwarded calls, such calls ~; may be denied (block 9051) or forwarded (block 9052) to another communication ~ station, e.g., a message center.

',,',-'~: :

Claims (5)

1. A call processing method comprising determining whether a call to a communication station is a forwarded call and completing said call to said station only in response to a determination that said call is a forwarded call, wherein said station is connected to a switch and wherein said method is performed by said station.
2. A method in accordance with claim 1 further comprising in response to a determination that said call is a non-forwarded call, forwarding said call to another communication station.
3. A method in accordance with claim 1 further comprising in response to a determination that said call is a non-forwarded call, denying said call.
4. A method in accordance with claim 1 further comprising in response to said determination that said call is a forwarded call, effecting generation of an alerting signal distinctive from an alerting signal for a non-forwarded call.
5. A method of processing a call to a communication station comprising determining whether said call is a forwarded call;
in response to a determination that said call is a forwarded call, performing at least one of the following steps (A), and (B): (A) effecting generation of an altering signal distinctive from an alerting signal for a non-forwarded call, and (B) completing said call to said station; and in response to a determination that said call is a non-forwarded call, performing one of the following steps (C) and (D): (C) denying said call, and (D) forwarding said call to another communication station;
wherein said first-mentioned station is connected to a switch and wherein said method is performed by said first-mentioned station.
CA000582511A 1987-12-17 1988-11-08 Call forwarding arrangement Expired - Fee Related CA1310096C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US134,649 1987-12-17
US07/134,649 US4893336A (en) 1987-12-17 1987-12-17 Call forwarding arrangement

Publications (1)

Publication Number Publication Date
CA1310096C true CA1310096C (en) 1992-11-10

Family

ID=22464318

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000582511A Expired - Fee Related CA1310096C (en) 1987-12-17 1988-11-08 Call forwarding arrangement

Country Status (2)

Country Link
US (1) US4893336A (en)
CA (1) CA1310096C (en)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134645A (en) * 1989-06-30 1992-07-28 Berken James J Automatic and sustained association of users with communications paths
US5271058A (en) * 1989-11-27 1993-12-14 Unifi Communications Corporation Switchless automatic call distribution system used with a combination of networks
JPH0442645A (en) * 1990-06-08 1992-02-13 Oki Electric Ind Co Ltd Method and circuit for both speech information remote registration and registration speech information transmission and automobile telephone circuit device
US5317630A (en) * 1990-09-10 1994-05-31 At&T Bell Laboratories Interface for a data telephone and data terminal in a digital telephone system
JPH05176050A (en) * 1991-02-18 1993-07-13 Matsushita Electric Ind Co Ltd Automatic answering telephone system
US5325424A (en) * 1991-04-22 1994-06-28 Motorola, Inc. Method of automatically establishing a communication path between two devices
US5315636A (en) * 1991-06-28 1994-05-24 Network Access Corporation Personal telecommunications system
US5416834A (en) * 1991-12-30 1995-05-16 At&T Corp. Redirection of calls by a communication terminal
JP3198351B2 (en) * 1992-04-24 2001-08-13 富士通株式会社 Call transfer control method
US5442689A (en) * 1993-01-29 1995-08-15 At&T Corp. Apparatus and method for providing services prior to call completion in a telecommuncation system
TW282608B (en) * 1993-03-05 1996-08-01 At & T Corp
US5553129A (en) * 1993-07-02 1996-09-03 At&T Corp. Method and apparatus for treating calls based on receipt of telecommunications carrier code indications
US6169904B1 (en) 1993-07-08 2001-01-02 Qwest Communications International Inc. System and method for automatically distributing communications to selected locations
FI97934C (en) * 1994-05-04 1997-03-10 Nokia Telecommunications Oy Call transfer method and arrangement for a mobile station in connection with a terminating call
CA2148384C (en) * 1994-06-27 2003-03-18 Charles Clifford Hallock Methods for performing intelligent network services with an isdn network terminator located at a subscriber's premise
USRE38596E1 (en) * 1994-06-27 2004-09-21 International Business Machines Corporation Methods for performing intelligent network services with an ISDN network terminator located at a subscriber's premise
US6330323B1 (en) 1995-01-09 2001-12-11 Mci Communications Corporation Enhanced overflow call processing
US5661791A (en) * 1995-03-29 1997-08-26 Bell Atlantic Network Services, Inc. Method and apparatus for enhanced distinctive call redirection
US5583564A (en) * 1995-04-24 1996-12-10 Lucent Technologies Inc. Intelligent call forwarding with videophone display of forwarding destination
US5592541A (en) * 1995-05-31 1997-01-07 Southwestern Bell Technology Resources, Inc. Apparatus and method for forwarding incoming calls
KR0184472B1 (en) * 1995-11-30 1999-05-15 김광호 Multi-subscriber implementation method in keyphone system
US5815563A (en) * 1995-12-15 1998-09-29 Lucent Technologies Inc. Telecommunication system with remote call pick-up capabilities
US5892819A (en) * 1996-02-23 1999-04-06 Siemens Information And Communication Networks, Inc. Call forward managed rerouting
US5930351A (en) * 1996-03-18 1999-07-27 Lappen; William Ascher Remote telephone ringer controller
US5839065A (en) * 1996-04-23 1998-11-17 Ericsson Inc. Validation of a forward-to-number by a mobile station
US5966653A (en) * 1996-06-24 1999-10-12 Ericsson Inc. Validating a forward-to-number within a mobile telecommunications system
US5878338A (en) * 1996-07-31 1999-03-02 Ericsson Inc. System and method of restricting incoming calls by comparing the forwarded-from directory number to a directory number stored within the network
DE19637859A1 (en) * 1996-09-17 1998-03-19 Philips Patentverwaltung Telecommunication system with call forwarding
US5918181A (en) * 1996-10-15 1999-06-29 Tatung Telecom Corporation Method and apparatus for tracking location of wireless terminals in a nanocellular digital cordless terminal network coupled to a local exchange
US5818920A (en) * 1996-12-04 1998-10-06 Telefonaktiebolaget Lm Ericsson Apparatus for controlling communication connections based on local time
FI980991A (en) * 1998-05-05 1999-11-06 Nokia Networks Oy Forwarded by transmitted phone calls
US6088433A (en) 1998-07-09 2000-07-11 Sbc Technology Resources, Inc. System and method for forwarding call from disconnected telephone number to new telephone number
US7103167B2 (en) * 2002-05-20 2006-09-05 Callwave, Inc. Systems and methods for call screening
US7555110B2 (en) * 1999-04-01 2009-06-30 Callwave, Inc. Methods and apparatus for providing expanded telecommunications service
EP1166540A2 (en) * 1999-04-01 2002-01-02 Callwave Inc. Method and apparatus for providing expanded telecommunications service
US7822188B1 (en) 1999-04-01 2010-10-26 Callwave, Inc. Methods and apparatus for providing expanded telecommunications service
US6631186B1 (en) * 1999-04-09 2003-10-07 Sbc Technology Resources, Inc. System and method for implementing and accessing call forwarding services
US7688958B2 (en) 2000-03-31 2010-03-30 Callwave, Inc. Methods and apparatus for providing expanded telecommunications service
US6831974B1 (en) * 2000-10-30 2004-12-14 Sprint Communications Company L.P. System and method for providing a caller identification to a called party for calls relayed through a call center
US6738461B2 (en) 2001-11-01 2004-05-18 Callwave, Inc. Methods and apparatus for returning a call over a telephony system
US6879677B2 (en) 2001-11-01 2005-04-12 Callwave, Inc. Methods and systems for telephony call completion
US7839987B1 (en) 2001-11-01 2010-11-23 Callwave, Inc. Methods and systems for creating a dynamic call log and contact records
US8705710B2 (en) 2001-11-01 2014-04-22 Callwave Communications, Llc Methods and systems for telephony call completion
US6817530B2 (en) * 2001-12-18 2004-11-16 Digimarc Id Systems Multiple image security features for identification documents and methods of making same
US7824029B2 (en) 2002-05-10 2010-11-02 L-1 Secure Credentialing, Inc. Identification card printer-assembler for over the counter card issuing
US6954524B2 (en) * 2002-06-07 2005-10-11 Sbc Properties, L.P. System and method for implementing and accessing call forwarding services
US20040052350A1 (en) * 2002-09-13 2004-03-18 Jon Jaroker System and method for delivering enhanced voice and data services in parallel with an incumbent phone company
US20040114747A1 (en) * 2002-12-12 2004-06-17 Trandal David S. Systems and methods for call processing
US7239690B2 (en) * 2003-09-05 2007-07-03 Sbc Knowledge Ventures, L.P. System and method for identifying redirected calls
US7742589B2 (en) * 2003-11-10 2010-06-22 At&T Intellectual Property I, Lp Distinctive call waiting based on a redirecting number
US7480065B1 (en) 2004-03-05 2009-01-20 Callwave, Inc. Facsimile telecommunications system and method
US7474432B1 (en) * 2004-03-05 2009-01-06 Callwave, Inc. Methods and systems for fax routing
US7742586B1 (en) 2004-06-14 2010-06-22 Callwave, Inc. Enhanced service levels for call-processing services
US20050287999A1 (en) * 2004-06-25 2005-12-29 Benco David S Network support for customized call forwarding
US8107609B2 (en) * 2004-12-06 2012-01-31 Callwave, Inc. Methods and systems for telephony call-back processing
US8494504B2 (en) * 2004-12-06 2013-07-23 Callwave Communications, Llc Methods and systems for telephony processing, including location based call transfers
US7409048B2 (en) 2004-12-09 2008-08-05 Callwave, Inc. Call processing and subscriber registration systems and methods
US8000455B1 (en) 2004-12-09 2011-08-16 Callwave, Inc. Methods and systems for call processing
US7852749B2 (en) * 2005-04-06 2010-12-14 Callwave, Inc. Methods and systems for routing telecommunications
US7965825B1 (en) 2005-05-02 2011-06-21 Callwave, Inc. Methods and systems for transferring voice messages and faxes over a network
US7808936B2 (en) * 2005-05-09 2010-10-05 J2 Global Communications, Inc. Systems and methods for facsimile echo cancellation
US8369311B1 (en) 2005-07-01 2013-02-05 Callwave Communications, Llc Methods and systems for providing telephony services to fixed and mobile telephonic devices
US8855107B1 (en) 2005-07-01 2014-10-07 Callwave Communications, Llc Methods and systems for call routing via a telephone number
US8401163B1 (en) 2005-10-18 2013-03-19 Callwave Communications, Llc Methods and systems for call processing and for providing call progress status over a network
US8165572B1 (en) 2006-02-22 2012-04-24 Callwave, Inc. Methods and systems for call processing in a wireline and wireless network
US8270582B1 (en) 2006-04-05 2012-09-18 Callwave, Inc. Methods and systems for routing calls
US8085922B1 (en) 2006-05-01 2011-12-27 Callwave, Inc. Methods and systems for speed dialing
US8121626B1 (en) 2006-06-05 2012-02-21 Callwave, Inc. Method and systems for short message forwarding services
US8548447B1 (en) 2006-10-06 2013-10-01 Callwave Communications, Llc Methods and systems for blocking unwanted telecommunications
US7647283B2 (en) * 2006-12-31 2010-01-12 Ektimisi Semiotics Holdings, Llc Method, system, and computer program product for adaptively learning user preferences for smart services
US7765173B2 (en) * 2006-12-31 2010-07-27 Ektimisi Semiotics Holdings, Llc Method, system, and computer program product for delivering smart services
US8099084B2 (en) 2006-12-31 2012-01-17 Ektimisi Semiotics Holdings, Llc Method, system, and computer program product for creating smart services
US8447285B1 (en) 2007-03-26 2013-05-21 Callwave Communications, Llc Methods and systems for managing telecommunications and for translating voice messages to text messages
US8583746B1 (en) 2007-05-25 2013-11-12 Callwave Communications, Llc Methods and systems for web and call processing
GB2465992B (en) * 2008-12-04 2013-10-09 Metaswitch Networks Ltd Telephone call processing
US8718628B2 (en) * 2011-10-24 2014-05-06 Verizon Patent And Licensing Inc. Intelligent call identification

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1437550A1 (en) * 1964-09-01 1968-10-10 Standard Elek K Lorenz Ag Procedure for identifying calls from telephone connections with call forwarding
US4278844A (en) * 1979-03-26 1981-07-14 Bell Telephone Laboratories, Incorporated Communication system selective call screening arrangement
US4567333A (en) * 1983-02-28 1986-01-28 At&T Technologies Electronic tone ringer with distinctive signaling circuitry
US4646347A (en) * 1985-05-02 1987-02-24 American Telephone And Telegraph Company Ringing signal reformatting circuit
US4723273A (en) * 1985-09-25 1988-02-02 American Telephone And Telegraph Company, At&T Bell Laboratories Discretionary call forwarding

Also Published As

Publication number Publication date
US4893336A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
CA1310096C (en) Call forwarding arrangement
CA1252864A (en) Discretionary call forwarding
US4899358A (en) Call announcement arrangement
US5007076A (en) Call announcement arrangement
US4922490A (en) Telephone station set
US5023868A (en) Automated call handling apparatus
US8457113B2 (en) Branch calling and caller ID based call routing telephone features
US5317630A (en) Interface for a data telephone and data terminal in a digital telephone system
US5608788A (en) Information display provided to calling party
US5309512A (en) Call waiting deluxe feature
US6310939B1 (en) Method and apparatus for screening a call as the call is transmitted to voice mail
CA2238911C (en) Method of accessing a scp in an isup network with partial release
US5309028A (en) Call coverage arrangement in an ISDN switching system
US5815563A (en) Telecommunication system with remote call pick-up capabilities
US4873717A (en) Call coverage arrangement
US4791662A (en) Controlling key-system groups from a distributed control switching system
US5487110A (en) Apparatus and method for virtual private telephone line with automatic ring down
US6711252B2 (en) Method and system for implementing intermediary services in a telecommunication system
EP0385986B1 (en) Method of processing calls
US4873716A (en) Path allocation arrangement for multi-terminal groups
EP0376525B1 (en) Automated call handling apparatus
JP3583565B2 (en) Connection control system and method in communication network and system for establishing prioritized connection in communication network
US5943335A (en) Method for minimizing call setups in ISDN PBX systems
US7215749B1 (en) Time, date and originating number display provided to calling party
JPH03181255A (en) Isdn terminal containing reset shift call function

Legal Events

Date Code Title Description
MKLA Lapsed