CA1280262C - Asymmetric semi-permeable membrane having high salt rejection - Google Patents

Asymmetric semi-permeable membrane having high salt rejection

Info

Publication number
CA1280262C
CA1280262C CA000509817A CA509817A CA1280262C CA 1280262 C CA1280262 C CA 1280262C CA 000509817 A CA000509817 A CA 000509817A CA 509817 A CA509817 A CA 509817A CA 1280262 C CA1280262 C CA 1280262C
Authority
CA
Canada
Prior art keywords
membrane
groups
sulphonated
barium
salt rejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000509817A
Other languages
French (fr)
Inventor
Richard A. Hann
David R. Holmes
John W. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Priority to CA000610679A priority Critical patent/CA1274046A/en
Application granted granted Critical
Publication of CA1280262C publication Critical patent/CA1280262C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones

Abstract

Abstract An Asymmetric Semi-Permeable Membrane Having High Salt Rejection An asymmetric membrane formed from a sulphonated polyarylethersulphone has a salt rejection of at least 99%.
Alternatively, a membrane has a good salt rejection and an acceptable water flux such that the ratio

Description

2~026Z

An A~y~metric Semi-Penmeable_Mbmbrone~ Havin~ ~iqh Salt~ ection Thi~ lnvention rclates to me~branes, more particularly to asymmetric seml-permeable membranes, materials used for the production of such ~embraues, processes for the produceion of such membranes and the use of the membranes for the treatmenc of solutions and suspeQsioQs.
Membranes whicll are useful in separa~ion processes such as ultrafiltraelon and reverse osmosis may be prepared from polymeric materials. Asymmetr~c semi-permeable membranes, whlch can be used for reverse-osmosis, can be prepared by castlng a solution of a film-forming lon-exchange mat~rial on a supporc and then coagulating the film uslng a non-solven~ for the ion-exchange material. Asymmetric semi-permeable membranes are characterlsed by having a thin dense layer uhich funct~ons as the actlve layer oE the membrane and a thlc~er porou3 layer which functions as a relnforcing support for the actlve layer.
British PaCent Specification No 1258851 discloses sulphonated polyarylethersulphones havlng a speclfled structure. These materlals are disclosed as being ion exchange resins and as belng suitable for the production of membranes for a number of appllcations including electrodialysis, fuel cell appllcatlons, osmosis and reverse osmosis.
European Patent Speclfication No 8894 discloses alternative sulphonated polyarylethersulphones which may be prepared by a slmple and readily controlled sulphonatlon technlque and these materials also may be used to produce membranes for desalination and other processes.
In a membrane used for reverse osmosis, a comblnation of high salt reJeceion at a high uater flux is commercially very deslrable but ls difficult to achleve. ~enerally it is found ~hat a membrane glving a high salt reJection provides only a lou uater flux and th~t a membrane giving a high water ~lux provides only a low salt reJection.
In our publ~ished,: ~ ,Pa~tent ~ppl.ic~tion.Publication No.
1,45305~ to R~ a~, publish~ed.~une 19, 1985,.~e hav,e disclosed an asymmetricsemi-permeab.l,e me~bra~e fo~msl frc~ a sulpho~ated polyarylethersulphone and having a salt rejection.and a,flux which are such that the ratio:-~, ~;~8(~Z6~, -2- H.33496 Flux (in m. day . .
100 - % salt re~ection) has a value of at least 0.05 and which may be at least 0.1. In the working examples of European Patent Application Publication No 145305, the highest value of the ratio is 0.66. Such membranes may be obtained from a solution containing the sulphonated polyarylethersulphone, and a divalent metal in a specific solvent mixture and the divalent metal is preferably barium.
We have now obtained membranes having improved properties compared to those disclosed in European Patent Application Publication No 145305.
According to the present invention there is provided an asymmetric semi-permeable membrane wherein the support layer and the active layer are both formed from the same sulphonated polyarylethersulphone and the membrane has a salt rejection of at least 99%O
According to a further aspect of the present invention there is provided an asymmetric semi-permeable membrane wherein the support layer and the active layer are both formed from the same sulphonated polyarylethersulphone wherein the membrane has a salt rejection and flux which are such that the ratio Flux ( in m. day 1) (100 - % salt re;ection) has a value of at least 0.7.
Preferred membranes in accordance with this further aspect of the present invention are those having a salt rejection and flux which are such that the ratio has a value of at least 0.8.
Particularly preferred membranes in accordance with the invention have a salt reiection of at least 39% and a salt rejection l~a~26~
-3- H.33496 and flux which are such that the ratio _ Flux (in m.day (100 - % salt rejection) has a value of at least 0.7. Especially preferred membranes have a salt rejection of 99~ and the ratio has a value of at least 0.8.
The membrane properties are conveniently determined in a reverse osmosis cell using a 0.2% by weight aqueous solution of sodium chloride at a gauge pressure of 41.4 bar (4.14MNm 2 or 500 p.s.i.) and a temperature of 25C.
For convenience hereafter, the relationship Flux (in m.day ~ -_ (100 - ~ salt rejection) will be referred to as the "membrane factor". Membranes in accordance with one aspect of the present invention have a salt rejection of at least 99.3% especially at least 99.4~ and particularly at least 99.5%.
~embranes in accordance with the further aspect of the present invention preferably have a membrane factor of at least 0.9 and especially at least 1Ø
The membranes of the present invention have improved resistance to aggressive materials, for example acid and alkali.
Thus, the membranes of the present invention can be used to treat water containing aggressive materials which cause deterioration of membranes formed from other materials.
The membranes may be of any thickness provided they possess the desired salt rejection and/or membrane factor. It is preferred that the membrane thickness is such that the membrane possesses a salt rejection of 99% and the combination of salt rejection and water flux required to achieve a membrane factor of at least 0.7. The total membrane thickness can be in the range from 20 to 300 micrometres and we have obtained particularly useful properties with membranes of thickness in the range from S0 up to 250 micrometres, especially in the range 75 up to 200 micrometres.

~4~ 128026~ H.33496 The membrane is formed from a sulphonated polyarylether-sulphone (hereinafter simply "sulphonated polysulphone"), particularly from a sulphonated polysulphone containing repeat units of the formula I ~ h - ~ Ph - S0 wherein Ph is a phenylene residue, preferably a para-phenylene residue, wherein at least some of the groups Ph are sulphonated; and m is 1 or 2 and the value of m can differ along the polymer chain.
Whilst the value of m may be either one or two, copolymers in which the value of m is one for some repeat units and is two for other repeat units are particularly preferred, polymers of this type being described, inter alia, in European Patent Specification No 8894.
The preferred polymers have repeat units of the formula:-II ~ Ph - 0 - Ph ~ 0 ~ Ph1 - S0 ~

together with the repeat units of the formula f 1 1 ~_ III ~ Ph - 0 - Ph - S02 ) wherPin Ph represents a phenylene residue, preferably a para-phenylene residue;
Ph represents a phenylene residue, preferably a para-phenylene residue, having one or two groups -S0 M;
M is a hydrogen atom, a metal atom and~or a group NR , wherein the groups M may be the same or different and the proportion of the groups M is sufficient to combine with the unsatisfied valencies of the group -SO ; and R is a hydrogen atom or an alkyl group.
The sulphonated polysulphone may also include a proportion of unsulphonated copolymer having repeat units of the formula IV ~ ph1 _ 0 _ phl _ o - Ph ~ S02 t ,: ...... , - .. .

1;~8~)Z62 -5- H.33496 together with the repeat units of the formulae II and III, wherein Ph is as defined.
In the repeat units of the formula II, when Ph is an ortho- or para- phenylene residue, there is typically only one group -S03M, whereas when Ph is a meta-phenylene residue there are typically two groups -S0 M. Nhen Ph is an ortho-phenylene residue, the -S0 M group is located in a position which is para- to one ether group and meta- to the other ether group, any further sulphonation occurring to locate the -S0 M groups in positions meta-to each other. When Ph is a para-phenylene residue, the -S0 ~
group is located in a position ortho- to one ether group and meta- to the other ether group. Nhen Ph is a meta-phenylene residue, the -S03M groups are located in the positions ortho- to one ether group and para- to the other ether group.
The gr~up M will be dependent on any treatment to which the membrane has been subjected during its preparation or subsequent use and not all of the groups M need be the same. Thus, the group M may be a mixture, for example of hydrogen, sodium and barium atoms.
The sulphonated copolymers may be prepared by sulphonating a copolymer consisting of repeat units III and IV. The sulphonation is readily effected by dissolving the copolymer in concentrated sulphuric acid (98% wtw) at ambient temperature and agitating the mixture for a sufficient time for sulphonation of essentially all of the sub-units -0 - Ph - 0 - in the repeat units of formula IV. The copolymers which are sub;ected to sulphonation suitably have from 1 to 99 mole %
of units IV and correspondingly from 99 to 1 mole % of units III, and especially from 2.5 to 67 mole % of units IV and correspondingly from 97.5 to 33 mole % of units III. Sulphonation is deslrably effected to convert at least 90% of the units IV to the units II. Sulphonation using concentrated sulphuric acid is described in European Patent Specification No 8894.
The sulphonated copolymers used to produce membranes in accordance with the first aspect of the present invention are polymeric materials of high molecular weight such that the reduced viscosity (RV) of the polymer, measured as a 1~ by weight solution of the polymer in dimethylformamide at 25C, is at least 0.2 and -6- ~2802~ H.33496 preferably at least 0.4. The polymer may be such as to give an RV of up to 2.5 but it is generally preferred that the RV of the polymer does not exceed 2Ø
The copolymer which is to be sulphonated is conveniently prepared using a mixture of monomers to produce the desired repeat units III and IV and hence the units III and IV are distributed in a random fashion along the polymer chain. Hence, in the sulphonated copolymer, the units II and III, and IV if present, are also distributed in a random fashion along the polymer chain.
We have found that the membranes can be prepared by casting a solution of a barium salt of the sulphonated polysulphone wherein the barium content is in a specified range.
Hence, as a further aspect of the present invention, there is provided a suLphonated polysulphone derivative containing repeat units of the formula:--V ~ Phl - 0 - Ph3- 0 - Phl - S0 ~

together with the repeat units of the formula III f Ph - 0 - Ph - S0 t and optionally with a minor proportion of repeat units of the formula IV t Ph - 0 - Ph - 0 - Ph - S0 t wherein Ph represents a phenylene residue, preferably a para-phenylene residue;
Ph represents a phenylene residue, preferably a para-phenylene residue, having one or two groups -S0 M ; and each M is a hydrogen or a barium atom, the proportion of M being sufficient to combine with the unsatisfied valencies of the group -S03 and the proportion of barium atoms is sufficient to combine with at least 85%, and not more than 91~, of the unsatisfied valenc:Les of the group -S0 _.

-7- 128oz~2 H. 33496 If units of the formula IV are present, they are preferably present in a molar proportion of not more than 25% molar of the units IV and V and especially not more 10% molar of the units IV and V.
The proportion of the barium atoms is preferably sufficient to combine with at least 86% and not more than 90% of the unsatisfied valencies of the group -S0 Membranes in accordance with the present invention can be prepared from a solution in a solvent mixture containing a sulphonated polyarylethersulphone, and a barium compound wherein the barium compound is present in an amount sufficient to provide barium atoms to combine with at least 85% and not more than 91% of the sulphonic acid groups present in the sulphonated polyarylethersulphone.
More specifically there is provided a solution containing a sulphonated polyarylethersulphone and a barium compound in the proportions hereinbefore specified in a solvent mixture containing at least three components each of which is a liquid or a low melting solid which is a non- solvent or poor solvent for the sulphonated polyarylethersulphone.
A preferred solvent mixture is one containing at least three components each of which is a non-solvent or poor solvent and which are a) a liquid or a low melting solid containing at least one hydroxylic group and having a delta-H with a value of at least 8;
b) a liquid or a low melting solid having a delta-D with a value of at least 8 and a delta-P with a value of not more than 3;
c~ a liquid or a low melting solid having a delta-P with a value of at least 8.5 and a delta-H with a value of not more than 3;
wherein, at least in the presence of the sulphonated polyethersulphone, the solvent mixture forms a slngle liquid phase and none of the components of the solvent mixture reacts or complexes with another of the components of the solvent mixture or with the sulphonated polyarylethersulphone.
Alternatively, the solvent mixture can be as ~L2~3~)262 -8- ~1.33496 described m our ccpcnding Canadian Application 509,815, filed May 23, 1986 entitled "Polymer Solutions". Mbre specifically, this alternative solvent mixture contains at least three components, each of which is a liquid or a low melting solid which is a non-solvent or poor solvent for the sulphonated polyarylethersulphone wherein at least one component of the solvent mixture is a compound which has a delta-H, a delta-P and a delta-D having values such that at least one of conditions (A), (B), (C) and/or (D) is satisfied:-(A) delta-D is less than 8 when delta-P is not MOre than 3.
ro (B) delta-~ is greater than 3 when delta-P is at least 8.5;
and/or (C) delta-~ is less than 8 when the compound contains at least one hydroxylic group;
(D) delta-P is greater than 3 and less than 8.5 and the compound is free of hydroxylLc groups;
and, at least in the presence of the sulphonated polyarylethersulphone, the solvent mixture forms a single liquid phase and none of the components of the solvent mixture reacts or complexes with another of the components of the solvent mixture or with the sulphonated polyarylethersulphone;
The sulphonated polyarylethersulphone is preferably a material as described herein. The sulphonated polyarylethersulphone may be dissolved in the solvent mixture as the barium salt thereof or the barium salt may be formed in the solvent mixture.
By 'low melting solid" in respect of the components of the solvent mixture is meant a material which is solid at ambient temperature and has a melting point of not more than 50C. Mthough solvent mixtures which form a single liquid only on the addition of the sulphonated polyarylethersulphone may be used, we prefer that the components of the solvent mixture form a single liquld phase in the absence of the sulphonated polyarylethersulpho~e.
I~ the solvent mixture, delta-~, delta-D and delta-P are components of the solubility para~eter of the solvent mixtures and of each material which is a component of the solvent mixture, and are related by the expression ~Z802~
.
-9- H.33496 (delta~O) = (delta-H) + (delta-D) + (delta-P) where delta-0 is the solubility parameter and is given by the expression (delta-) ~ ~ EV
~ V J
where E is the molar cohesive energy which approximates to ~ H-RT;
A H is the latent heat of vaporLsation;
R is the gas constant;
T is the absolute temperature; and V is the molar volume.
More specifically, delta-H is the hydrogen bonding component of the solubility parameter, delta-D is the dispersion component of the solubility parameter and delta-P is the polar component of the solubility parameter.
The concept of solubility parameters is discussed in many papers in the scientific literature including, inter alia, a paper by C.~. Hansen in Ind. Eng. Chem. Prod. Res. Dev. 8, March 1969, pages 2 to 11. Other papers in which solubility parameters are considered are, inter alia, Chemical Reviews, 75 (1975), pages 731 to 753 and Kirk-Othmer "Encylopedia of Chemical Technology", Second Edition, Supplemental Volume (1971) pages 889 to 910.
A tabulation of values of delta-H, delta-D and delta-P is given in the Hansen paper and these may be used to determine suitable material~ for use as components (a), (b) and (c) of the solvent mixture or as components of the alternative solvent mixture.
Preferred materials for use as component (a) of the solvent mixture have a delta-H of at least 8 , a delta-D of not more than 8 and a delta-P of at least 6. Especially preferred materials have a delta-H of greater than 10, a delta-D of less than 8 and a delta-P
of at least 6. From the Hansen paper, few materials have a delta-H
of the required value and only diethylene glycol, dipropylene glycol, methanol and water satisfy the requirements for the preferred materials.

~280262 -10- H33~96 Preferred materials for use as component (b) of the solvent mixture have a delta-D wlth a value at least 8, a delta-P of not more than 3 and a delta-H of not more than 4. Materials satisfying the preferred requirements include, inter alia, 1,4-dioxane, and several halohydrocarbons. Furan and tetrahydrofuran have the preferred values of delta-D, delta-P and delta-H but are excluded due to the tendency of these materials to complex with the sulphonated polysulphone. Many hydrocarbons, particularly cyclic hydrocarbons, have the preferred values of delta-D, delta-P and delta-~ but do rot form a single phase mixture with most materials used as components (a) and (c) of the solvent mixture, even in the presence of the sulpbonated polyaryethersulphone.
Preferred materials for use as component (c) of the solvent mixture have a delta-P of at least 8.5 , a delta-~ of not more than 3 and a delta-D of at least 7.5. Materials satlsfying the preferred requirements include inter alia, propylene carbonate, and ethylene carbonate.
The components of the solvent mixture are non-solvents or poor solvents for the sulphonated polysulphone and the barium salt thereof and the polymer is typically soluble ln each of the components in an amount of not more than 5~ by weight preferably less than 1%
by weight, especially less than 0.1% by weight.
The sulphonated polysulphone is ~xefer~bly soluble in t~e solv.~t. ~ture ~rl. an an~t of at least lOX by weight, more preferably at least 15% by weight, especially at least 20~ by weight, for example 25 to 30~ by weight. The quantity of polymer dissolved in the solvent mixture should be such that the resulting solution can be cast into a satisfactory membrane ar,d this will be dependent not only on the components of the solve~t mixture but also on the molecular weight of the polymer and the degree of sulphonation of the polymer.
The solvent mixture is pre~erably one which has a delta-H of value in the range from 4 to 5.5; a delta-PJof value in the range from 4 to 8 and a delta-D of value ln the range from 7.2 to 9.5. The components (a), (b) and (c) of the solvent mixture, and the proportions thereof, are,preferably such that the solvent mixture has a delta-H, delta-P and delta-D in the preferred range.

, .

~28~262 -ll- H33496 A solve~t mixture which may be used is one containing a) R 0~ or R C00~, where R is a hydrogen atom or a hydrocarbyl group;
b) an ether, particularly a cyclic ether; and S c) an alkylene carbonate.
In the solvent mixture, the hydroxylic compound which is component (a) is preferably one in which R is a hydrogen atom or a lower alkyl group, for example an alkyl group containing 1 to 6 carbon atoms. The hydroxylic co~pound ic preferably a compound of the formula R 0~, and ls especially water. We have found that 1,4-dioxane is particuiarly suitable for use as component (b) of the solvent mixture. The alkylene carbonate which is component (c) of the solvent mixture is preferably one in which the alkylene group contains two or three carbon atoms and may be, for example, propylene carbonate or ethylene carbonate.
- Membranes can be formed by casting and coagulating the solutionof the barium 5alt of the sulphonated polysulphone in the solvent mixture and it is preferred that the solvent mixture contains at least one component which has sufficient volatility so that thls component at least partially evaporates during the casting of the solution, prior to immersing the cast film and support in the coagulation bath.
It is also preferred that the barium salt of the sulphonated polysulphone has a reduced solubility in the residual solven~ mixture which results as a consequence of the at least partial evaporation of the volatile component or components.
The solvent mixture may consist of four or more components but, for convenience of preparing the solvent mixture, it is preferred to minimise the number of components and hence the solvent mixture typically consists of three components.
A wide range of solvent mixtures can be used. For sulphonated polyaryletherRulphones contalning repeat uni~s of for~ula II and formula III, and possibly also repeat units of formula IV, and the barium salts thereof, we have obtained a solvent mixture having satisfactory characterlstics from a mixture consisting of propylene carbonate, 1,4- dioxane and water. This mixture suitably contains at least 15~ by weight of propylene carbonate, at least 15~ by weight of ~,, ~2l~{);2662 -12- H.33496 1,4-dioxane, and not ~ore than 25~ by weight of water, the total amounts of the three components aggregating to 100X by weight. We particularly prefer that the mixture contalns 5 to 20Z by weight of water, 20 to 70X by weight of propylene carbonate and 20 ~o 66X by weight of 1,4-dioxane, the total amounts of the three componeats aggregating to 100~ by weight. A useful solvent mixture consists of propylene carbonate, 1,4-dioxane and water and the ~eight ratios of 5:3:1.
The suïta~ility of solvent for any-particular sulphonated material~epends not only on the basic polymer structure, that ls the unsulphonated material, but also upon the sulphonation ratio of the polymer and also the nature of the barium salt produced.
By sulphonation ratio we mean the ratio of the number of sulphonated phenylene residues in the sulphonated polymer to the number of unsulphonated phenylene residues in the sulphonated polymer. The sulphonation ratio is preferably determined by C13 n.m.r., but infra-red techniques may also be used. W2 have found that titration (which gives a measure of the ion-exchange capacity of the polymer) ! generally indicates a lower degree of sulphonation than is found by n.m.r. or infra-red. Accordingly, although titratiou can be used, it is not the preferred technique for determinlng the sulphonation ratio.
In general,polymers having lower sulphonation ratios require solvent mixtures in which the value of delta-a and delta-P for the solvent mixture is reduced. Preferably the polymers used in the process of the pre~sent invention have a sulphonation ratio of less than 1:5, particularly 1:7 or less. The sulphonation ratio i8 preferablynot les~ than 1:20, especially not less than 1:15. Satisfactory results have been obtained using a polymer haviag a sulphonation ratio of about 1:10.
The solution may be prepared by dissolving the sulphonated polysulphone, including the barium salt thereof, in any suitable form, for example powder, chips, granules, in the solvent mixture to form a solution containing from lQX to 40% by weight of the sulphonated polysulphone. Dissolution of the polymer may be e~fected at ambient temperature but lower or higher temperatures may ~e used if desired.
aowever, it will be apprecisted that the temperature should be below~
the boiling point of any of the components of the solvent mixture.

-13- 128026~ H.33496 The polymer whlch is dlssolved i~ the solve~c mlxture ~ay be added as the pr~-formed barlum salt chereoE. However, the barlum salts are not readily soluble, or are insoluble in the solve~t mixture~ Solutions of such salts ca~ be obtained by dlssolvl~g the sulphonated polysulpho~e, iu the acid form, in the solvent ~ixture and contacting the solution obtained with a compound of a barlum to form the desired barium sale of the sulphonated polysulphone. The barium compound may be an oxide, hydroxide or carbonate but other compounds uhich are capable of reacting with the sulphonic acid group ~ay also be used. We~have obtained membranes ha~ing a combination of high salt rejection at a hlgh uater flux using barium oxide as the metal compound.
Using a procedure in which the solution of the sulphonated polysulphone ls reacted with a barium compound of a divalent ~etal, the barium co~pound is used iQ an amoun~ sufficient to react ~ith at least 85% and not ~ore than 91Z of the sulphonic acid groups in the sulphonated polysulp~one. ~ouever, it ls particularly preferred to use the barium compound in an amount sufficient to react with from at least 86Z and not more than 90% of the sulphonic acid groups.
The reactio~ of the barium compound with the solutlo~
containing the sulphonated polysulphone may be effected at essentially a~bient te~perature but higher or lower temperatures may be used if de5lred~ for example in the range 0C to 100C.
The sQlutio~ ~f the barium salt of the sulphonated polysulphone in the solyent mixture can be cast and coagulated to form a membrane.
More speciflcally, a sulphonated polyR-~lphone in the acid form is dis~olved in a solYent mixture containing a) at least one alk~lene carbonate;
b) at least one ether; and 3~ c) at least one hydro~yl compound ~elected from R COOH and R 0~, _ the solutlon i8 contacted with a barium compound ln an amount to react w~th at least 85X a~d not more than 91Z, of the sulphonlc acld group~
in the sulphonated yolysulp~one, any ~olld unreacted quantlty of the bariu~ compound 18 ~eparated from the solution, the solution 1~ cast onto a 8Uppo~t to for~ a fll~ of the solution on t~e support, the film ~280~'62 -14- H.33496 and support are immersed in a coagulation bath and a membrane is recovered wherein R is a bydrogen atom or a hydrocarbyl group.
The solution of the barium salt of the sulphonated polysulphone is formed into a membrane by casting on a support.
Casting onto the support may be effected at essentially ambient temperature but lower or higher temperatures may be used if desired.
The support may be for example a non-porous plane surface such as a glass or metal plate or, alternatively, may be a porous support such as a fabric and, where appropriate, it may have some other shape.
Sufficient of the solution is cast on to the support in conventional manner to give a film of the desired thickness which may be adjusted as necessary by suitable mechanical means. It is preferred to produce a film having a thickness of at least 20 micrometres and not more than 15 300 micrometres, most preferably from 50 up to 250 micrometres, and especially from 75 up to 200 micrometres. Alternatively, fine hollow fibres may be produced by extruding the solution through a die having a central mandrel, allowing some of the solvent to evaporate and then passing the fibres through a coagulation bath.
It is advantageous to allow at least partial evaporation of at least one component of the solvent mixture from the supported liquid film by exposing the latter to the atmosphere for a short time, 10 seconds to 5 minutes, before immersing the supported film in a coagulation bath. The coagulation bath may contain an aqueous solution, for example a solution of an inorganic salt such as sodium chloride or sodium nitrate, or may be a non-solvent liquid or liquid mixture, for example formed from one or more of the components of the solvent mixture. Preferably the coagulation bath ~s pure water.
The temperature of the coagulation bath is generally between -20C
and 60C, and is preferably about 0C. The coagulation treatment may be between 1 minute and several hours, for example between 5 and 60 minutes.
After the coagulation treatment, a membrane is recovered.
In the case of a non-porous support, the membrane is detached from the support but in ~he case of a porous support, the membrane remains adhered to the support. The recovered membrane may be sub~ected to -15- ~0262 H.33496 heat treatment in order to relax the structure. Such a treatment preferably includes an immersion in an aqueous solution of an inorganic salt at an elevated temperature, typically from 70C to 150C. This heat treament may be effected with the membrane being held under pressure (4 to 100 kN/m ), between porous supports such as porous graphite, sintered stainless steel or filter paper on a non-porous support. Once prepared, and after any heat treatment, the membrane is preferably washed with distilled water to remove any residual solvent and/or free ionic species and is then stored in distilled water until required.
The membranes as prepared by casting are formed from the sulphonated polysulphone predominantly in the form of the barium salt thereof. However, if the coagulation bath, and any subsequent heat treatment baths, contain an inorganic salt, ion exchange may occur between the barium ions in the membrane and the metal ions in the solution. ~ence, in the membrane obtained, some, or all, of the barium ions may have been replaced by other metal ions or even hydrogen ions.
Before being used for treatment of liquids, the membranes ~0 may be treated with a suitable-acid to convert the salt of the sulphonated polysulphone into the acid form thereof, and it should be appreciated that the present invention is not restricted to the sulphonated polysulphone in the acid form or in the form of any specific metal salt.
To reduce the possibility of variations in membrane properties, it is desirable that all stages in the preparation of the casting solution and the casting and coagulation steps are effected under carefully controlled conditions of time, temperature and humidity. ~uring the casting and subsequent evaporation, it is preferred that the humidity does not exceed about 65% relative humidity, for example in the range 35 to 50% relative humidity.
Membranes obtained by the method of the invention may be used for the treatment of a wide variety of aqueous or non-aqueous solutions or suspensions by conventional reverse osmosis or ultra-filtration techniques. In particular, they may be used for thedesalination of sea water and for the purification of water including brackish waters and industrial effluents.

12~0262 H.33496 ~ embranes formed from sulphonated polysulphones are more reslstant to the presence of agressive materials such as acids and alkalis. Hence, using membranes formed from sulphonated polysulphones, aqueous solutions may be treated in the presence of aggressive materials at levels which can cause deterioration of membranes formed from other materials such as cellulosics.
The accompanying drawing is a diagrammatic representation of a reverse osmosis cell in which the membranes of the present invention may be used.
~he cell comprises a closed vessel 1 which is divided into two sections internally by a membrane 2. The membrane 2 is in contact with a sheet 3 of a porous material for example filter paper, and sheet 3 is supported by a porous plate 4 which is not semi-permeable and which assists in preventing mechanical deformation of the membrane 2. The membrane 2, the sheet 3 and porous plate 4 are clamped at their edges to prevent leaking around the edges. The vessel 1 is divided by the membrane 2 into a large section 5 and a small section 6. The large section 5 is provided with two pipelines 7 and 8 for the supply and removal of liquid. The small section 6 is provided 0 with a pipeline 9. In use, liquid under pressure, for example sea water at a pressure of 4MNm or higher, is passed into section 5 of the vessel l through pipeline 7 and is withdrawn through pipeline 8. The pressure is sufficient to cause reverse osmosis and some water passes through the membrane 2 into the section G from which it is withdrawn through the pipeline 9. The apparatus can be operated at ambient temperature (about 25C) but higher temperatures may be used. In a continuous process, a further pipelinemay be connected to section6 of the vessel 1 whereby a continuous flow of a carrier liquid, which is the liquid being collected, is passed through section 6. Other modifications and variations may be effected in the manner known to those skilled in the art.
Various aspects of the present invention are illustrated, but not limited, by the following Examples, in which all parts and percentages are by weight unless otherwise indicated.

~28C~262 -17- H.33496 ~ sulphonated polyarylethersulphone copolymer containing about 20% mole of units II, about 80% mole of units III (as dafined herein) in which Ph1 and ph2 are para - phenylene residues and M is a hydrogen atom, having a sulphonation ratio of 1:10, and a reduced viscosity (as defined herein) of 0.82, was dissolved, at a temperature of 25C, in a 5:3:1 parts by weight propylene carbonate/1,4-dioxane/water mixture to give a 26% pzrts by weight solution of the copolymer in the solvent mixture. The solvent mixture had a delta-D of 9.17, a delta-P of 6.8 and a delta-H of 4.4, as calculated from the values quoted in the Hansen paper.
Barium oxide (BDH Technical Grade which, by analysis, was found to be of purity 95% and particle size less than 10 micrometres) was added to the solution in an amount sufficient to convert 87.4 of the sulphonic acid groups into the corresponding barium salt for~. The mixture was stirred at 25C for 10 hours by which time all of the added solid barium oxide had dissolved. The solution was filtered through a gauze with a mesh si~e of 30 micrometres and then centrifuged at 2000 r.p.m. for 20 to 30 minutes.
The solution obtained was cast on to a glass plate and the thickness of the film was adjusted manually using a brass spreader bar. The film so formed was exposed to the atmosphere at the ambient temperature for one minute before being coagulated by immersion in distilled water at 0C for 30 minutes. The membrane ~as washed with distilled water and then stored in distilled water until tested.
The membrane was tested using an apparatus of the type here-lnbefore described and in which the membrane was placed in contact with a porous support and the exposed side, being the side exposed to the air during casting, was subjected to a continuous feed of 0.2%
aqueous sodium chloride solution pumped across the surface of the membrane at a gauge pressure of 600 p.s.i. (4.14~Nm 2) and a temperature of 25C. The liquid passing through the membrane was analysed. The results obtained are set out in the following Table Exam~les 2 and 3 . _ The procedure of Example 1 was repeated using different proportions of bar:Lum oxide within the range from 85% up to 91~.

128C~Z6;~:
-18- H.33496 COMPARATIVE EXAMPLES A AND B
The procedure of Example 1 was repeated using different proportions of barium oxide in an amount of less than 85%
The results of testing the membranes of Examples 1 to 3 and the Comparative Examples are given in following Table.
TABLE
. _._ .. .. _ .. .
Example % S.R. Flux M.F.
or Ba (%) (m.day ) Comparative (a) (b) (c) (d) Example , . _ . ._. __ 10187.4 (99.56 0.40 0.91 ~99.40 0.57 0.95J
285.5 ~98.11 1.56 0.825 l98.24 0.80 0.455J
390.25 ~98.89 0.37 0.3331 ~98.25 0.93 0.531J
A76 82.41 2.73 0.155 _ B83.6 97.06 _ 0.67 0.228 _ 15 Notes to Table (a) % Ba is the amount of barium compound added as a percentage of that required to convert all of the sulphonic acid groups into the corresponding barium salt form, on the basis that the barium oxide used was 95%.

(b) S.R. is % salt rejection and is determined measuring the conductivity of the solution fed to the membrane cell and by measuring the conductivity of the solution permeating the membrane and using the relationship~
% salt rejection = ~ 1 - conductivity of permeate )x 100.
~ conductivity of feed (c) Flux is the volume (in m ) of the solution which passes through a membrane area of one m in one day and is expressed as m.day -19- ~28026~ H.33496 (d) ~.F. is the membrane factor and is given by the relationship~
Flux ~in m da 1 00 - % salt re;ection) ;

Claims (12)

1. An asymmetric semi-permeable membrane comprising a support layer and an active layer wherein the support layer and the active layer are both formed from the same sulphonated polyarylethersulphone and the membrane has a salt rejection of at least 99% measured in a reverse osmosis cell using a 0.2% by weight aqueous solution of sodium chloride at a gauge pressure of 41.4 bar and a temperature of 25°C.
2. An asymmetric semi-permeable membrane comprising a support layer and an active layer wherein the support layer and the active layer are both formed from the same sulphonated polyarylethersulphone wherein the membrane has a salt rejection and flux which are such that the ratio has a value of at least 0.7, the flux and salt rejection being measured in a reverse osmosis cell using a 0.2% by weight aqueous solution of sodium chloride at gauge pressure of 41.4 bar and a temperature of 25°C.
3. The membrane as claimed in claim 1 or 2, which has a salt rejection of at least 99% and the ratio has a value of at least 0.8.
4. The membrane of claim 1, wherein the salt rejection is at least 99.4%.
5. The membrane of claim 2, wherein said ratio has a value of at least 0.9.
6. The membrane of claim 1,wherein the sulphonated polyarylethersulphone contains repeat units of the formula I wherein Ph is a phenylene residue and at least some of the groups Ph are sulphonated; and m is 1 or 2 and the value of m can differ along the polymer chain.
7. A membrane according to claim 6, wherein the sulphonated polyarylethersulphone contains repeat units of the formula:
II ?Ph1 - O - Ph2 - O - Ph1 - SO2?
together with repeat units of the formula:
III ?Ph1 - O - Ph1 - SO2?
wherein Ph1 is a phenylene residue;
Ph2 is a phenylene residue having one or more groups wherein M is a hydrogen atom, a metal atom and/or a group NR4 (wherein R is a hydrogen atom or an alkyl group), the groups M
being the same or different provided that not all of the groups M
in the polyarylethersulphone are hydrogen atoms and the proportion of the groups M is sufficient to combine with the unsatisfied valencies of the groups -SO3-.
8. A membrane according to claim 7 , wherein the sulphonated polyarylethersulphone contains also repeat units of the formula:
IV ?Ph1 - O - Ph1 - O - Ph1 - SO2?
wherein Ph1 is a phenylene residue.
9. A membrane according to claim 1 , wherein the sulphonated polyarylethersulphone contains repeat units of the formula:
V ?Ph1 - O - Ph3 - O - Ph1 - SO2?
together with repeat units of the formula:
III ?Ph1 - O - Ph1 - SO2?
wherein Ph1 is a phenylene residue;
Ph3 is a phenylene residue having one or two groups -SO3M1, wherein in some -SO3M1 groups M1 is hydrogen and in other -SO3M1 groups M1 is barium the proportion of M1 being sufficient to combine with the unsatisfied valencies of the groups -SO3- and the proportion of barium atoms in the polyarylethersulphone being such that at least 85% and not more than 91% of the unsatisfied valencies of the -SO3- groups are satisfied by barium atoms.
10. A membrane according to claim 9, wherein the sulphonated polyarylethersulphone contains also a minor proportion of repeat units of the formula:
IV ?Ph1 - O - Ph1 - O - Ph1 - SO2?

wherein Ph1 is a phenylene residue.
11. A membrane according to claim 9 or 10, wherein said proportion of barium atoms is such that a least 86% and not more than 90% of the unsatisfied valencies of the groups -SO3- is satisfied by barium atoms.
12. A membrane according to claim 11, wherein said proportion of barium atoms is such that about 87.4% of the unsatisfied valencies of the groups -SO3- is satisfied by barium atoms.
CA000509817A 1985-05-23 1986-05-23 Asymmetric semi-permeable membrane having high salt rejection Expired - Fee Related CA1280262C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000610679A CA1274046A (en) 1985-05-23 1989-09-07 An asymmetric semi-permeable membrane having high salt rejection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB858513114A GB8513114D0 (en) 1985-05-23 1985-05-23 Membranes
GB8513114 1985-05-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA000610679A Division CA1274046A (en) 1985-05-23 1989-09-07 An asymmetric semi-permeable membrane having high salt rejection

Publications (1)

Publication Number Publication Date
CA1280262C true CA1280262C (en) 1991-02-19

Family

ID=10579599

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000509817A Expired - Fee Related CA1280262C (en) 1985-05-23 1986-05-23 Asymmetric semi-permeable membrane having high salt rejection

Country Status (12)

Country Link
US (2) US4920193A (en)
EP (1) EP0202850B1 (en)
JP (1) JPS6211505A (en)
AT (1) ATE91433T1 (en)
AU (2) AU586479B2 (en)
CA (1) CA1280262C (en)
DE (1) DE3688689T2 (en)
DK (1) DK244086A (en)
ES (1) ES8707120A1 (en)
GB (1) GB8513114D0 (en)
GR (1) GR861334B (en)
ZA (1) ZA863714B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877165A (en) * 2015-06-10 2015-09-02 上海大学 Preparing method of pH sensitive semi-permeable membrane

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8513114D0 (en) * 1985-05-23 1985-06-26 Ici Plc Membranes
GB8513113D0 (en) * 1985-05-23 1985-06-26 Ici Plc Polymer solutions
JP2694341B2 (en) * 1987-02-04 1997-12-24 ハイドロノーティクス Improved oxidation resistant film and method of manufacturing the same
US4990252A (en) * 1987-02-04 1991-02-05 Hydanautics Stable membranes from sulfonated polyarylethers
DE58909860D1 (en) * 1988-04-30 1999-11-11 Akzo Nobel Nv Process for the sulfonation of aromatic polyether sulfones
US5507949A (en) * 1992-03-20 1996-04-16 Monsanto Company Supported liquid membrane and separation process employing same
US5346924B1 (en) * 1992-09-23 2000-04-25 Ionpure Techn Corp Heterogenous ion exchange materials comprising polyethylene of linear low density or high density high molecular weight
US5356459A (en) * 1993-06-30 1994-10-18 Praxair Technology, Inc. Production and use of improved composite fluid separation membranes
US5348569A (en) * 1993-06-30 1994-09-20 Praxair Technology, Inc. Modified poly(phenylene oxide) based membranes for enhanced fluid separation
US5364454A (en) * 1993-06-30 1994-11-15 Praxair Technology, Inc. Fluid separation composite membranes prepared from sulfonated aromatic polymers in lithium salt form
WO1997026284A1 (en) * 1996-01-16 1997-07-24 Memtec America Corporation Method for gas phase sulfonation of polymer membranes
US6045899A (en) * 1996-12-12 2000-04-04 Usf Filtration & Separations Group, Inc. Highly assymetric, hydrophilic, microfiltration membranes having large pore diameters
WO1999033949A1 (en) 1997-12-29 1999-07-08 Monsanto Company A membrane process for making enhanced flavor fluids
DE69933129T2 (en) 1998-09-11 2007-03-01 Victrex Mfg. Ltd., Thornton Cleveleys ION EXCHANGE POLYMERS
US6258272B1 (en) 1999-04-09 2001-07-10 Usf Filtrations And Separations Group, Inc. Internal hydrophilic membranes from blended anionic copolymers
JP2004500971A (en) * 2000-05-02 2004-01-15 ベルント・シンドラー Sulfonated arylsulfonate matrix and method for producing the same
GB0016846D0 (en) * 2000-07-10 2000-08-30 United States Filter Corp Electrodeionisation Apparatus
US7147785B2 (en) 2000-09-28 2006-12-12 Usfilter Corporation Electrodeionization device and methods of use
US6607647B2 (en) 2001-04-25 2003-08-19 United States Filter Corporation Electrodeionization apparatus with expanded conductive mesh electrode and method
US6649037B2 (en) * 2001-05-29 2003-11-18 United States Filter Corporation Electrodeionization apparatus and method
US7572359B2 (en) * 2001-10-15 2009-08-11 Siemens Water Technologies Holding Corp. Apparatus for fluid purification and methods of manufacture and use thereof
US7501061B2 (en) 2002-10-23 2009-03-10 Siemens Water Technologies Holding Corp. Production of water for injection using reverse osmosis
TW577652U (en) * 2003-05-16 2004-02-21 Hon Hai Prec Ind Co Ltd Pull tab for electrical connector
US7604725B2 (en) 2003-11-13 2009-10-20 Siemens Water Technologies Holding Corp. Water treatment system and method
US7862700B2 (en) 2003-11-13 2011-01-04 Siemens Water Technologies Holding Corp. Water treatment system and method
US20050103717A1 (en) 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US7846340B2 (en) 2003-11-13 2010-12-07 Siemens Water Technologies Corp. Water treatment system and method
US7083733B2 (en) * 2003-11-13 2006-08-01 Usfilter Corporation Water treatment system and method
US8377279B2 (en) 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
US7563351B2 (en) * 2003-11-13 2009-07-21 Siemens Water Technologies Holding Corp. Water treatment system and method
US7582198B2 (en) 2003-11-13 2009-09-01 Siemens Water Technologies Holding Corp. Water treatment system and method
US7329358B2 (en) 2004-05-27 2008-02-12 Siemens Water Technologies Holding Corp. Water treatment process
JP4945939B2 (en) * 2004-07-05 2012-06-06 東レ株式会社 Polymer electrolyte membrane
US7658828B2 (en) 2005-04-13 2010-02-09 Siemens Water Technologies Holding Corp. Regeneration of adsorption media within electrical purification apparatuses
EP1885655B1 (en) 2005-06-01 2014-12-17 Evoqua Water Technologies LLC Water treatment process by intermittent sanitization
US8028842B2 (en) * 2006-01-18 2011-10-04 Virginia Tech Intellectual Properties, Inc. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers
US8277627B2 (en) 2006-06-13 2012-10-02 Siemens Industry, Inc. Method and system for irrigation
US10213744B2 (en) 2006-06-13 2019-02-26 Evoqua Water Technologies Llc Method and system for water treatment
US10252923B2 (en) 2006-06-13 2019-04-09 Evoqua Water Technologies Llc Method and system for water treatment
US20080067069A1 (en) 2006-06-22 2008-03-20 Siemens Water Technologies Corp. Low scale potential water treatment
US7820024B2 (en) 2006-06-23 2010-10-26 Siemens Water Technologies Corp. Electrically-driven separation apparatus
US7744760B2 (en) 2006-09-20 2010-06-29 Siemens Water Technologies Corp. Method and apparatus for desalination
US8585882B2 (en) 2007-11-30 2013-11-19 Siemens Water Technologies Llc Systems and methods for water treatment
US8829060B2 (en) 2011-03-01 2014-09-09 Dow Global Technologies Llc Sulfonated poly(aryl ether) membrane including blend with phenol compound
US8752714B2 (en) 2011-03-01 2014-06-17 Dow Global Technologies Llc Sulfonated poly (aryl ether) membrane including blend with phenyl amine compound
US9127132B2 (en) * 2013-10-08 2015-09-08 Katon Polymers U.S. LLC Process for coagulating sulfonated block copolymers
CN106908485B (en) * 2017-02-13 2019-05-28 武汉工程大学 A kind of method of non-destructive testing separation membrane flux
EP3672916A4 (en) 2017-08-21 2021-05-19 Evoqua Water Technologies LLC Treatment of saline water for agricultural and potable use
CN114832644B (en) * 2022-05-12 2023-05-12 浙江美易膜科技有限公司 High-flux composite nanofiltration membrane containing double electric layers, preparation method and application thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2040950A5 (en) * 1969-04-30 1971-01-22 Rhone Poulenc Sa
FR2138333B1 (en) * 1971-05-24 1974-03-08 Rhone Poulenc Sa
FR2138334B1 (en) * 1971-05-24 1974-03-08 Rhone Poulenc Sa
JPS5116297B2 (en) * 1973-05-02 1976-05-22
US3875096A (en) * 1974-03-20 1975-04-01 Us Interior Process for the preparation of a stable salt form of a sulfonated polyarylether sulfone
FR2295979A1 (en) * 1974-12-26 1976-07-23 Rhone Poulenc Ind SULPHONATED POLYARYLETHERSULFONES AND THEIR PREPARATION PROCESS
FR2331602A1 (en) * 1975-11-14 1977-06-10 Rhone Poulenc Ind COMPOSITIONS BASED ON POLYMERS OF THE POLYSULFONE TYPE FOR REVERSE OSMOSIS MEMBRANES
DE2964904D1 (en) * 1978-09-05 1983-03-31 Ici Plc Sulphonated polyarylethersulphone copolymers and process for the manufacture thereof
GB8331195D0 (en) * 1983-11-23 1983-12-29 Ici Plc Membranes
GB8331198D0 (en) * 1983-11-23 1983-12-29 Ici Plc Membranes
GR81009B (en) * 1983-11-23 1985-02-13 Ici Plc Membranes
GB8428525D0 (en) * 1984-11-12 1984-12-19 Ici Plc Membranes
GB8513113D0 (en) * 1985-05-23 1985-06-26 Ici Plc Polymer solutions
GB8513114D0 (en) * 1985-05-23 1985-06-26 Ici Plc Membranes
GB8601994D0 (en) * 1986-01-28 1986-03-05 Ici Plc Aromatic polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877165A (en) * 2015-06-10 2015-09-02 上海大学 Preparing method of pH sensitive semi-permeable membrane
CN104877165B (en) * 2015-06-10 2018-04-27 上海大学 The preparation method of pH sensitiveness pellicles

Also Published As

Publication number Publication date
AU5782786A (en) 1986-11-27
US4920193A (en) 1990-04-24
EP0202850A2 (en) 1986-11-26
ATE91433T1 (en) 1993-07-15
ES555281A0 (en) 1987-07-16
AU2466988A (en) 1989-06-01
AU586479B2 (en) 1989-07-13
EP0202850B1 (en) 1993-07-14
US5030672A (en) 1991-07-09
DK244086A (en) 1986-11-24
ES8707120A1 (en) 1987-07-16
DE3688689T2 (en) 1993-12-02
AU612716B2 (en) 1991-07-18
JPS6211505A (en) 1987-01-20
ZA863714B (en) 1987-02-25
DE3688689D1 (en) 1993-08-19
EP0202850A3 (en) 1988-01-13
GR861334B (en) 1986-08-27
GB8513114D0 (en) 1985-06-26
DK244086D0 (en) 1986-05-23

Similar Documents

Publication Publication Date Title
CA1280262C (en) Asymmetric semi-permeable membrane having high salt rejection
US4820419A (en) Membranes
US4207182A (en) Polymeric compositions for membranes
US4029582A (en) Poly(arylether-sulfone) semipermeable membrane comprising substituted halomethyl and/or quaternary nitrogen groups
CA1269485A (en) Membrane
EP0139061B1 (en) Chlorosulphonated polysulphones, their preparation and their use in preparing sulphonated polysulphones
EP0165077A2 (en) Sulfonated polysulfone composite semipermeable membranes and process for their production
EP0145305B1 (en) Membranes
JPS6139083B2 (en)
US5112892A (en) Method for the production of an asymmetric semipermeable membrane from a solution of a sulfonated polyarylethersulfone
US4083904A (en) Method for manufacturing phosphorylated cellulose ester membranes for use in the separation or concentration of substances
EP0142973A2 (en) Membranes
EP0202849A2 (en) Solution of polymeric material
US3962212A (en) Phosphorylated cellulose ester membrane for use in separation or concentration of substances
US4073724A (en) Anisotropic phenolic polyether membrane
CA1262994A (en) Membranes
JPH052365B2 (en)
JPS62168503A (en) Separation membrane
JPH0510967B2 (en)
JPH052364B2 (en)
JPH0252529B2 (en)
JPS5930442B2 (en) Permselective charged membrane and its manufacturing method
JPH0252528B2 (en)
JPS61146303A (en) Composite ultrafiltration membrane
JPS607854A (en) Anionic bodyfluid filtering membrane

Legal Events

Date Code Title Description
MKLA Lapsed