CA1278843C - Flow control system using boyle's law - Google Patents

Flow control system using boyle's law

Info

Publication number
CA1278843C
CA1278843C CA 531004 CA531004A CA1278843C CA 1278843 C CA1278843 C CA 1278843C CA 531004 CA531004 CA 531004 CA 531004 A CA531004 A CA 531004A CA 1278843 C CA1278843 C CA 1278843C
Authority
CA
Canada
Prior art keywords
fluid
pressure
region
measurement
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 531004
Other languages
French (fr)
Inventor
Dean L. Kamen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deka Products LP
Original Assignee
Deka Products LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deka Products LP filed Critical Deka Products LP
Application granted granted Critical
Publication of CA1278843C publication Critical patent/CA1278843C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/005Piezo-electric benders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • A61M5/16809Flow controllers by repeated filling and emptying of an intermediate volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • A61M5/16813Flow controllers by controlling the degree of opening of the flow line
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M5/16854Monitoring, detecting, signalling or eliminating infusion flow anomalies by monitoring line pressure
    • A61M5/16859Evaluation of pressure response, e.g. to an applied pulse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/36Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body
    • A61M5/365Air detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/02Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement
    • G01F11/08Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement of the diaphragm or bellows type
    • G01F11/086Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement of the diaphragm or bellows type using an auxiliary pressure to cooperate with the diaphragm or bellows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/0006Indicating or recording presence, absence, or direction, of movement of fluids or of granulous or powder-like substances
    • G01P13/0066Indicating or recording presence, absence, or direction, of movement of fluids or of granulous or powder-like substances by using differences of pressure in the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M2005/1401Functional features
    • A61M2005/1403Flushing or purging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/15Detection of leaks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/12Pressure infusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/13Infusion monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7782With manual or external control for line valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7796Senses inlet pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87917Flow path with serial valves and/or closures
    • Y10T137/87981Common actuator
    • Y10T137/87997Alternately seating
    • Y10T137/88005Biased valve

Abstract

ABSTRACT

A system is provided for controlling fluid flow, particularly from a reservoir to a patient. A dispensing device isolates a region of a first fluid in a line from the effects of pressure in the line outside of the region.
Increments of the first fluid are repetitively dispensed into and out of the region, as a result of which pressure changes occur in the first fluid in the region. These pressure changes are measured. A measurement fluid in a housing is so related to the region that a change in the measurement fluid pressure causes a change in the first fluid pressure in the region. Predetermined volume incre-ments of measurement fluid are repetitively displaced by a displacement device. A control device which is in communication with the pressure measurement device, the displacement device and the dispensing device causes the dispensing device to dispense first fluid in increments that are calibrated by the displacement device and monitor-ed by the pressure measurement device.

Description

~7~ 3 , F~OW C~NTRO~_~Y~ L~SING BOYLE'S L~

DESCRIPTION

Ei~ld Df Inv~n~ion The present invention relates to systems for controlling fluid flow, particularly from a reservoir to a patier,t, although other embodiments are discussed below.
Background A~

Numerous devices exist in the prior art for controlling fluid flow for use in intravenous administration arrangements and similar applications. Many of these designs, including the design disclosed in United States Patent No. 4,5l5,588, utilize elaborate systems for pressure regulation. The inventor is unaware, however, of any sy~tem which utilizes an external volume displacement 2n arrangement for calibrating a dispellsing arrangement that is monitored by a pressure sensitive device.

~isclosure of Invention ~5 A preferred embodiment o the invention utilizes a dispensing arrangement in a fluid line that isolates a reyion of fluid in the line from pressure effects in the line outside the region. The dispensing arrangement also has a provision for repetitively dispensing fluid into and out of the region. A pressure transducer monitors pressure changes in the region. The system also includes a provision for housing a measurement fluid (such a~ air) in relation to the region in such a manner that a ch~nge in the measurément fluid pressure causes a change in the ~Lq~ 3 pressure of the original fluid in the region. There is also a displacement arrangement for repetitively displacing predetermined volume increments of the measurement fluid, so that these volume increments cause changes in khe original fluid pressure in the region which are measured by the pressure transducer. Finally, a control arrangement causes the dispensing arrangement to dispense the original fluid in increments that are calibrated by the displacement arrangement and monitored by the pressure transducer. In a further embodiment, the control arrangement is operated so that the predetermined volume increments of measurement fluid are matched by the increments of original fluid dispensed by the dispensing arrangement.
Various aspects of this invention are as follows:
A system for controlling flow of a first fluid in a line, the system comprising:
dispensing means (i) for isolating a region of the first fluid in the line from effects of pressure in the line outside of the region, such region having an input and an output for the first fluid, and (ii) for repetitively dispensing into and out of the region increments of first fluid, whereby such dispensing may cause changes in pressure of the first fluid in the region;
pressure measurement means for measuring changes in pressure of the first fluid in the region;
measurement fluid housing means for housing a measurement fluid in relation to the region such that a change in the measurement fluid pressure causes a change in the first fluid pressure in the region;
displacement means for repetitively displacing predetermined volume increments of measurement fluid, whereby the resulting changes in first fluid pressure are measured by the pressure measurement means;

2a control means, in communication with the pressure measurement means, the displacement means, and the dispensing means, for causing the dispensing means to dispense first fluid in increments that are calibrated by the displacement means and monitored by the pressure measurement means.
A system for determining the volume of fluid in an enclosure, the system comprising:
displacement means for displacing a predetermined volume increment of the enclosure; and pressure measurement means for measuring a change in pressure of the fluid in the enclosure, so that the volume of fluid may be determined on the basis of the extent of pressure change caused by displacement of the predetermined volume increment.
An intravenous line valving system, comprising:
a drip chamber, a fitting disposed at one end of the drip chamber, the fitting joining the drip chamber with an intravenous line such that an intravenous fluid path is formed along the line, through the fittin~, and into the drip chamber, the fitting further including an aperture through the exterior of the fitting permitting communication with the intravenous fluid path;
a fluidtight flexible membrane mounted onto the fitting, the membrane disposed so as to prevent intravenous fluid from flowing out of the aperture;
compression means for compressing the flexible membrane against the interior surface of the fitting so as to regulate the flow of intravenous fluid through the line.
Brief Description of the Drawin s The foregoing objects and features of the invention are better understood with reference to the following description taken with the accompanying drawings in which:

2b Fig. 1 is a simplified schematic of a first embodiment of the invention;
Figs. 2-4 illustrate operation o~ the embodiment of Fig. 1;
Figs. 5 and 6 show different perspective views of a second embodiment of the invention;
Fig. 7 shows a detailed drawing of a drip chamber for use in the embodiment of Figs. 5 and 6; and Fig. 8 shows a schematic diagram of the system illustrated in Figs. 5 and 6.
Detailed Description of Specific Embodiments Fig. 1 illustrates a fluid control system in accordance with the present invention for controlling fluid from a reservoir 11 into a patient 12. The fluid line 14 passes through a measurement housing 13 that is substantially airtight. The measurement housing 13 is provided with an upper valve 132 and a lower valve 131 for controlling flow LW~ 3 into and ~ut of flexible enclosure 141 located within the measurement housing. The portion of ~he interior 16 o the housing not occupied by the flexible enclosure 141 is filled with air. The interior 16 of the housing 13 is in 5 communication wlth a volume standard that comprises a cylinder 161 in which travels a piston 162. The air pressure within the housing 13 i5 monitored by pressure trandsucer 15. It can be seen that the pressure in the interior 16 of the housing is a function of the volume occupied by flexlble enclosure 141 ~nd the effective volume of the interior (16) as modified by displacement of the piston 162 within the cylinder 161.
Study of Fig. 1 will reveal that displacement of the piston by some amount, for example 1 cc, from position Vo to position Vl removes 1 cc from the total ef$ective volume of the interior 16 of the mea~urement housing 13.
As a result of Boyle's Law, there is an increase in air pressure in the interior 16 that i6 monitored by the pressure tran~ducer 15. (Because the enclosure 141 is ~ flexible, there is a concomitant increase in fluid pressure within the enclosure 141.) Let us a~sume that there is ~ufficient fluid ln the enclosure 141 that it occupies the position shown in dashes as item 142. If the lower valve 131 is opened, fluid will drain from the enclosure shown as item 142 through the line 14 into the patient 1~. Since valve 132 is closed, the walls of the flexible enclosure 142 will occupy a decreasing volume as the fluid leaves the enclosure, and at some point the decrease in volume occupied by the enclosure 142 will equal 1 cc. At this 3~ point, the pressure within the interlor 16 of the measurement houslng 13 has returned to the original pressure, since the total volume of the interior 16 that is available for occupancy by air has returned to the original volume. Thus the pressure transducer 15 can be used to determine when the original pressure has returned and can be used to establish the point in tlme when valve 131 should be closed in order for exactly 1 cc of fluid to have been dispensed into the patient. In this fashion, the volume standard that includes cylinder 161 and pist~n 162 serves as a templ~te for determining the increment of fluid that may be dispensed thr~ugh the flexible enclosure 141.
The system may be restored to an initial position by retracting piston 162 to ~osition VO, and opening valve 132 until sufficient fluid flows into enclosure 141 that again the pre~sure indicated by transducer 15 has returned to the original level.
This cycle is lllustrated in the graphs of Figs. 2 through 4. In Fig. 2, atmospheric pressure ~s indicated hy PO. When the volume shrinks from Vo to Vl the pressure immediately rises to a new pre6sure Pl. After a desired interval, valve 131 is opened, and the pressure within the inter~or 16 of the measurement housing 13 is permitted to return to pressure Po, at which point valve 131 is closed. Thu3 there has been dispensed from flexible enclosure 141 a volume increment of fluid equal to (VO - Vl). After an additional desired interval, the piston 162 i6 returned to position Vo, at which point the pressure drops to amount P2 in the interior 16. Af~er another desired interval, the upper valve 132 is opened and the pressure i~ monitored until it returns to point P~, whereupon valve 132 is closed and the same volume increment (VO - Vl) has been dispensed into flexible enclosure 141. After another desired interval, the cycle can begin again with di~placement of the piston to position Vl and so forth.
Fig. 3 illustrates that the same process shown in Fig.
2 may be conducted at an elevated pres~ure, 60 that the system acts in effect as a pump rather than merely a flow control device. In this embodiment atmospheric pressure indicated by Po iB below the elevated operating pressure PE. The piston 162 is used to displace volume from initial position Vo to position V2, whereupon the pressure in the interior 16 of the measurement housing 13 exceeds pressure PE by an amount ~P. When valve 131 i5 opened, the pressure is permitted to fall to PE, and when after 131 is closed, the piston is not moved back to '7~3 position V0, but rather only to position Vl~ so that pressure falls by an amount ~P from PE, but does not reach Po. In this fashion pressure i~ maintained within a predetermined limit ~ P of the desired elevated pressure PE -In connectlon with Figs. 2 and 3 lt may be remarked that in fact the relation between pre~sure and volume is also a function of temperature, and that compression of the air by piston 162 would also cause a momentary increase in temperature of the air within the measurement housing 13 and that the elevated temperature could lead to errors. In this regard, it 16 within the domain of the present invention to monitor the temperature change and compensate the pressure ~ystem for temperature effects. However, I
have conducted experiments and performed calculations that indicate that relatively high accuracy (measurement of volume within a percent or so) can be achieved without temperature co~pen3ation. It should also be noted that points Pl and P2 are somewhat arbitrary, and that, therefore, as long as the pressure transducer has errors in accuracy that are eeproducible, the ~ystem will avoid errors introduced by the pressure transducer in any form, and the accuracy of the system will tend to be limited by the reproducibility of the volume di~placements caused by piston 162.
Fig. 4 illu~trates another mode oi operation of the system. In this mode, the piston 162 i8 repeatedly displaced to the left in small increments ~V. Each time the resulting press~re increase from Po is thereafter cancelled out by opening valve 131 until the pressure returns to Po, whereupon valve 131 i8 closed. In this fashion, an amount of fluid V is dispensed each time through the fluid line. At some point after the piston has fully traversed it~ stroke to the left, valve 131 is closed for the last time, the piston is moved to the right, returning the ~ystem to volume Vo, at which point the upper valve 132 i~ opened, the flexible enclosure 141 is refilled, and upper valve 132 is closed when peessure again 8~3 returns to P~. Numerous other configurations are po~3sible, the point being onl~ that the piston lfi2 an~
cylinder 161 permit calibration of the dispensing system, tht~ pressure of which can be monitored by a pressuce transducer 15. Although the illustration has been made using air as the measurenlen~ ~luid in the interior 16 o~
the measurernent housing 13, other fluids, including other gases and other llquids, may alco be feasibly utilized. It should also be noted that the pressure transducer produces more information than simply departures from equalibrium pressure Po or PE. In particular, the ~lope of the curve in these flgures may also be monitored, thereby providing an extremely accurate sytem for determining on an instarJtaneous basis the flow rate. ln fact, flow rate can he monitored ~o that a sudden decrease from a statistically determined average f]ow rate (i.e., slope of the pressure versus time curve) for a given patient can be used for causing the ystem to enter an alarm state indicating, for examl;]e, that the needle is no longer ln the vein. ~hat is, a sudden decrease in the rate of change of pressure with time during the flow pcrtion of the cycle may be used as an indication of infiltr~tion. The horizontal portions of the curves in Fig. 2 and 3 may also be used to monitor the system for alr leaks and related phenomena; that is, the elevated or depressed pressures will not remain constant in the presence of such leaks.
The arrangement described above alRo permits detec~ing the presence of alr in the fluid llne. Under such circumstances, the pressure change when the volume is c}langed by pl~ton 162 will be smaller than in the case when fluid is properly flowing. For example, with respect to Fig. 2, in the pre~ence of air within the flexible erlclosure 141, the usual threshhold Pl will not be reached when the volume changes to Vl. The failure to achieve the normal pressure di~ferential can be v1ewed as an alarm state. ~]owever, since the valve arrangement 131 an.~ ~ 32 is qui$e flexihle be~ore entering the alarm state, valve 131 may ~e reLained in its cloc~ed position and the .
8~3 piston 162 could be displaced maximally to ~he left to cause a great increase in pressure in the interior 16 of the measurement housing 13 with valve 132 open, so as ~o cause enclosure 141 to shrink to minimum volume;
thereafter, piston 162 can be moved back to the right and flexible enclosure 141 be permitted to expand again and the test repeated to ffee if the normal rise in pressure has occurred. If ~t has not occurred a ~econd time, then the alarm state would be entered. Otherwise, the approach just described i5 a reasonable method of purging the enclosure 141 from minor air bubbles. All of this has been done without risk of harm to the patient, 6ince valve 131 has remained closed.
Although the ~ystem has been descr~bed a~ appropriate for controlling flow from a reservoir into a patient, this system may al~o be used for monitoring fluid flow out from a patient, for example in the measurement of urine volume.
In such an embodiment, item 11 would constitute the catheter or other connection to the pat~ent and item 12 of Fig. 1 would con~titute a reservoir. Valve 131 would be closed while valve 132 could be opened. Periodically, valve 132 would be closed and then a measurement cycle such -as illustrated in FlgO 2 would be performed to dispense a determined amount of fluid from the enclosure 141.
It should be noted that Fig. 1 al80 provides a simple arrangement for measuring the blood pressure of the patient. In this arrangement, the upper valve 132 is closed, and lower valve 131 is opened and the system is permitted to reach equilibrium. In thls fashion, the peessure in line 14 is indicative of the patient's blood pressure, which may be monitored by pressure tran~ducer 15~
Although the invention has been described thus far with a separate measurement housing 13, such a housing may be combined with a drip chamber, as illu~trated in Fi~. 5.
In Fig. 5 one may see a drip chamber 51 including a spike end 55, a fluid llne end 511 that is held ~n a case 56.
The drip chamber is provided with a fitting 54 for attachment bo~h to a pressure transducer such as indicated - ~ -by item 15 in Fig. 1 and to a volume standard including a piston 162 and cyllnder 161 such as illustrated in Fig. 1.
The volume standard can cause change~ in the air pressure within the drip chamber ~1 in the ~ame fashion discussed above in connection with Fig. 1, except that the pressure changes are directly transmitted to the fluid, rather than through the intermediary of the flexible enciosure 141.
The case 56 i8 provided with a valve in the lower region 52 of the drip chamber and another valve in the upper region 53 of the drip chamber. The valve in region 52 can be a normal crimp type valve operative on the fluid line. The upper valve 52 may be any suitable valve, although one is described in further detail in connection with Figs. 6 and 7~
Fig. 6 present~ another view of the system of Fig. ~.
The drip chamber 51 in the spike end 55 is provided wi~h a hole 61. The hole 61 is in the external rigid plastic portion of the drip chamber and would reach directly into the fluid line, except that the interior of the spike portion 55 is fitted with a piece of silicon rubber tubing, the outside wall~ of which engage tightly withi~ the inside -walls of the splke. Thus, hole 61 provides direct access to the outer wall of the silicon tubing but is outside the fluid flow path from the tip of spike 55 into the drip chamber 51. The upper valve acctuator housing 611, however, contain~ an actuator pin which is capable of moving lnto ~nd out of the hole 61 in such fashion as to squeeze the silicon tubing when the pin is in the closed position. In this fashion flow through the spike 55 is halted when the pin ls in the closed position. When the pin is in the open position, flow is permitted through spike 55. In thi6 embodiment the silicon tubing, the hole 61, and the pin ln upper valve actuator housing 611 provide an upper valve.
As illustrated in Fig. 7, the upper valve access hole 61 may be provided with a manual adjustment in lieu of the automatic system described in connection with the previous figures. In the manual adjustment embodiment, adjustment a~

ring 72 may be inserted over the spike end 75 until the thumb screw 73 can be ~urned to cauce the inside portion of the screw to enter hole 61 and compress the ~ilicon tube inside the spike 75. The degree of compression of the tube will regulate the flow through the spike 75. When the manual adjustment ring assembly 73 i8 removed from the spike, it may be used in the system of Figs. 5 and 6.
The system of Figs. 5 and 6 is illustrated schematically in Fig. 8, where there i6 shown the drip chamber 82 having spike end B7, upper valve 821, and lower valve 822, which valves are operated by control circuitry 81. A piston arrangement 85 compresses air in line 851, which is connected at fitting 823 into the drip chamber B2. Pressure in the interior of the drip chamber B2 is monitored by transducer 83, which is ~l~o connected to control circuitry 81. Motor 84 drives pi~ton 85 in any of a variety method~ well known in the art. The motor 84, which is also connected to control circuitry 81, may, for example, be a stepper motor which drlve6 the piston by a conventional rack and pinion arrangement. In this fashion the control circuitry 81 will always know the relative position of the pi~ton 85. Alternatlve sensing arrangements may utilize a simpler motor with Hall effect devices, for example, to monitor position of the rack. The cycles of operation of this system are identical to those as discussed above ln connection with Fig. 1.
lt should be noted that the embodiments of Fig~ 1 and Fig. 8 can be used to determine the volume of fluid in the flexible enclosure 1~1 and the drip chamber 82 by a related but ~omewhat dlf~erent technique. In particular one may cause a slight perturbation in volume by the piston 162 or 85. If the resulting increase in pressure is measured by the pressure tran~ducer 15 or 83, Boyle's Law may be used directly ln order to determine the volume of fluid in the drip chamber or the flexible enclosure. This approach could be used to determine the volume of fluid in any flexible enclosure in the case of Fig. 1 or in any rigid enclosure in the case of Fig. 8.

Claims (7)

1. A system for controlling flow of a first fluid in a line, the system comprising:
dispensing means (i) for isolating a region of the first fluid in the line from effects of pressure in the line outside of the region, such region having an input and an output for the first fluid, and (ii) for repetitively dispensing into and out of the region increments of first fluid, whereby such dispensing may cause changes in pressure of the first fluid in the region;
pressure measurement means for measuring changes in pressure of the first fluid in the region;
measurement fluid housing means for housing a measurement fluid in relation to the region such that a change in the measurement fluid pressure causes a change in the first fluid pressure in the region;
displacement means for repetitively displacing predetermined volume increments of measurement fluid, whereby the resulting changes in first fluid pressure are measured by the pressure measurement means;
control means, in communication with the pressure measurement means, the displacement means, and the dispensing means, for causing the dispensing means to dispense first fluid in increments that are calibrated by the displacement means and monitored by the pressure measurement means.
2. A system according to claim 1, wherein (i) the dispensing means includes an input valve at the first fluid input to the region and an output valve at the first fluid output from the region and (ii) the measurement fluid is air.
3. A system according to claim 2, wherein the measurement fluid housing means includes a drip chamber through which the first fluid flows and the upper region of which is in communication with the displacement means.
4. A system according to claim 2, (i) wherein the measurement fluid housing means includes a substantially airtight housing around the region, such housing in communication with the displacement means, and (ii) further comprising a flexible enclosure, within the housing, for containing the first fluid in the region.
5. A system according to claim 3, wherein the control means includes means for causing the dispensing means to dispense first fluid in the same increments of volume as displaced by the displacement means.
6. A system according to claim 4, wherein the control means includes means for causing the dispensing means to dispense first fluid in the same increments of volume as displaced by the displacement means.
7. A system according to claim 5, wherein the control means includes means for causing the first fluid in the region to have an average line pressure regulated at a desired amount lying in the range of 1/2 to 10 lbs. per square inch.
CA 531004 1986-03-04 1987-03-03 Flow control system using boyle's law Expired - Fee Related CA1278843C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US836,023 1986-03-04
US06/836,023 US4778451A (en) 1986-03-04 1986-03-04 Flow control system using boyle's law

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA000615675A Division CA1282737C (en) 1986-03-04 1990-03-13 Flow control system using boyle's law

Publications (1)

Publication Number Publication Date
CA1278843C true CA1278843C (en) 1991-01-08

Family

ID=25271036

Family Applications (2)

Application Number Title Priority Date Filing Date
CA 531004 Expired - Fee Related CA1278843C (en) 1986-03-04 1987-03-03 Flow control system using boyle's law
CA000615675A Expired - Fee Related CA1282737C (en) 1986-03-04 1990-03-13 Flow control system using boyle's law

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA000615675A Expired - Fee Related CA1282737C (en) 1986-03-04 1990-03-13 Flow control system using boyle's law

Country Status (7)

Country Link
US (5) US4778451A (en)
EP (3) EP0258424B1 (en)
JP (3) JPS63503116A (en)
AU (3) AU7164687A (en)
CA (2) CA1278843C (en)
DE (3) DE3773091D1 (en)
WO (3) WO1987005223A1 (en)

Families Citing this family (371)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935099A (en) 1992-09-09 1999-08-10 Sims Deltec, Inc. Drug pump systems and methods
US5669877A (en) * 1994-03-07 1997-09-23 Sims Deltec, Inc. Systems and methods for automated testing of medical equipment
US6241704B1 (en) 1901-11-22 2001-06-05 Sims Deltec, Inc. Drug pump systems and methods
US4976162A (en) * 1987-09-03 1990-12-11 Kamen Dean L Enhanced pressure measurement flow control system
US5195986A (en) * 1986-03-04 1993-03-23 Deka Products Limited Partnership Integral intravenous fluid delivery device
US5349852A (en) * 1986-03-04 1994-09-27 Deka Products Limited Partnership Pump controller using acoustic spectral analysis
US5575310A (en) * 1986-03-04 1996-11-19 Deka Products Limited Partnership Flow control system with volume-measuring system using a resonatable mass
EP0248632B1 (en) * 1986-06-06 1992-04-15 Ivac Corporation Intravenous fluid flow monitor
ES2004595A6 (en) * 1987-04-09 1989-01-16 Ruano Marco Miguel Volumetric pump for parenteral perfusion.
DE3741802C1 (en) * 1987-12-10 1988-11-24 Braun Melsungen Ag Method for monitoring the operation of an infusion syringe pump
DE3805368C1 (en) * 1988-02-17 1989-08-24 Peter P. Dipl.-Ing. Wiest
US4846792A (en) * 1988-03-08 1989-07-11 Baxter International Inc. Automatic infiltration detection system and method
US5730731A (en) * 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
US5026348A (en) * 1988-06-06 1991-06-25 The General Hospital Corporation Apparatus and method for the detection of IV catheter obstruction and extravasation
US4976685A (en) * 1988-06-15 1990-12-11 Block Jr Frank E Method of blood-gas interface control in surgical gas traps
US4959050A (en) * 1988-09-26 1990-09-25 Baxter International Inc. In-line infiltration detection apparatus and method
DE3837298C1 (en) * 1988-11-03 1990-03-29 Fresenius Ag, 6380 Bad Homburg, De
US4923444A (en) * 1988-12-19 1990-05-08 Ivac Corporation Negative pressure measurement system
WO1990007353A1 (en) * 1989-01-03 1990-07-12 Medical Inventors Corp. Programmable flexible-tube flow regulator and methods
PL159857B1 (en) * 1989-01-20 1993-01-29 Method for the continuous control of the carried infusion microbatcher
US5000664A (en) * 1989-06-07 1991-03-19 Abbott Laboratories Apparatus and method to test for valve leakage in a pump assembly
US5096385A (en) * 1989-11-08 1992-03-17 Ivac Corporation Method and system for upstream occlusion detection
FI88343C (en) * 1989-12-28 1993-04-26 Antti Johannes Niemi FOLLOWING ORGANIZATION FOR THE CONDUCT OF A VARIABLE VOLUME WITH A FLOWED VID REGLERING OF A GENOMSTROEMNINGSPROCESSER
US5185084A (en) * 1990-03-02 1993-02-09 Cytyc Corporation Method and apparatus for control of flow through a filter chamber by measured chamber equilibration pressure
US5266495A (en) 1990-03-02 1993-11-30 Cytyc Corporation Method and apparatus for controlled instrumentation of particles with a filter device
DE4017853C2 (en) * 1990-06-02 1993-12-23 Martin Lehmann Connection for filling a container and device for checking the volume of containers
US5059171A (en) * 1990-06-21 1991-10-22 Boc Health Care, Inc. Bubble detection system
WO1992008503A2 (en) * 1990-11-19 1992-05-29 Deka Products Limited Partnership Integral intravenous fluid delivery device
GB2252798B (en) * 1991-02-14 1994-07-27 Danby Medical Ltd Pumping apparatus
DE4121185A1 (en) * 1991-03-11 1993-01-07 Pierburg Gmbh DEVICE FOR MEASURING THE QUANTITY OF LIQUID FUEL IN A TANK
US5207645A (en) * 1991-06-25 1993-05-04 Medication Delivery Devices Infusion pump, treatment fluid bag therefor, and method for the use thereof
USRE35501E (en) * 1991-06-25 1997-05-06 Medication Delivery Devices Infusion pump, treatment fluid bag therefor, and method for the use thereof
US5213573A (en) * 1991-08-05 1993-05-25 Imed Corporation Iv administration set infiltration monitor
US5713865A (en) * 1991-11-15 1998-02-03 Deka Products Limited Partnership Intravenous-line air-elimination system
US5772637A (en) * 1995-06-07 1998-06-30 Deka Products Limited Partnership Intravenous-line flow-control system
US5755683A (en) * 1995-06-07 1998-05-26 Deka Products Limited Partnership Stopcock valve
US5560247A (en) * 1992-09-16 1996-10-01 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas sampling device for outboard motor
CA2083555A1 (en) * 1992-11-23 1994-05-24 David H. Laing Portable infusion device
US5350357A (en) * 1993-03-03 1994-09-27 Deka Products Limited Partnership Peritoneal dialysis systems employing a liquid distribution and pumping cassette that emulates gravity flow
US5431626A (en) * 1993-03-03 1995-07-11 Deka Products Limited Partnership Liquid pumping mechanisms for peritoneal dialysis systems employing fluid pressure
US5474683A (en) * 1993-03-03 1995-12-12 Deka Products Limited Partnership Peritoneal dialysis systems and methods employing pneumatic pressure and temperature-corrected liquid volume measurements
DE69428138T2 (en) * 1993-03-03 2002-05-02 Deka Products Lp Cassette for periotoneal dialysis
US5324422A (en) * 1993-03-03 1994-06-28 Baxter International Inc. User interface for automated peritoneal dialysis systems
US5438510A (en) * 1993-03-03 1995-08-01 Deka Products Limited Partnership User interface and monitoring functions for automated peritoneal dialysis systems
ES2121201T3 (en) * 1993-07-20 1998-11-16 Lang Volker INFUSION CONTROL DEVICE.
US5423743A (en) * 1993-09-17 1995-06-13 Ivac Corporation Cannula position detection
FR2711531B1 (en) * 1993-10-29 1995-12-29 Francois David Device for infusion.
USRE38695E1 (en) 1994-01-14 2005-02-08 E-Z-Em, Inc. Extravasation detection electrode patch
US5947910A (en) 1994-01-14 1999-09-07 E-Z-Em, Inc. Extravasation detection technique
US5421208A (en) * 1994-05-19 1995-06-06 Baxter International Inc. Instantaneous volume measurement system and method for non-invasively measuring liquid parameters
US5695473A (en) * 1994-07-27 1997-12-09 Sims Deltec, Inc. Occlusion detection system for an infusion pump
ES2162622T3 (en) * 1994-12-21 2002-01-01 Francois David PERFUSION DEVICE
US5640995A (en) * 1995-03-14 1997-06-24 Baxter International Inc. Electrofluidic standard module and custom circuit board assembly
US5520638A (en) * 1995-03-28 1996-05-28 Arthrex, Inc. Main pump tubing for arthroscopy infusion pump
US6062066A (en) * 1995-06-05 2000-05-16 Shell Oil Company Method for determining empty volume of fuel tank
US5707348A (en) * 1995-06-06 1998-01-13 Krogh; Steve S. Intravenous bandage
US6709417B1 (en) 1995-06-07 2004-03-23 Deka Products Limited Partnership Valve for intravenous-line flow-control system
US5954668A (en) * 1996-06-14 1999-09-21 Medrad, Inc. Extravasation detector using microwave radiometry
US5942700A (en) * 1996-11-01 1999-08-24 Cytyc Corporation Systems and methods for collecting fluid samples having select concentrations of particles
IL120651A (en) * 1997-04-11 2001-06-14 Nestle Sa Administration of liquid to a patient
US6070761A (en) * 1997-08-22 2000-06-06 Deka Products Limited Partnership Vial loading method and apparatus for intelligent admixture and delivery of intravenous drugs
GB9724223D0 (en) * 1997-11-18 1998-01-14 Pa Consulting Services Drug delivery device
EP1032441B1 (en) * 1997-11-26 2004-03-03 E-Z-Em, Inc. Extravasation detection device
US5989237A (en) 1997-12-04 1999-11-23 Baxter International Inc. Sliding reconstitution device with seal
US6120475A (en) * 1998-02-16 2000-09-19 Chen; San-Ming Infusion bottle monitor device
US5948977A (en) * 1998-03-31 1999-09-07 The United States Of America As Represented By The United States National Aeronautics And Space Administration Soft-sided air displacement volumometer
US6041801A (en) 1998-07-01 2000-03-28 Deka Products Limited Partnership System and method for measuring when fluid has stopped flowing within a line
US6022339A (en) 1998-09-15 2000-02-08 Baxter International Inc. Sliding reconstitution device for a diluent container
US20050137566A1 (en) * 2003-12-23 2005-06-23 Fowles Thomas A. Sliding reconstitution device for a diluent container
US7074216B2 (en) * 1998-09-15 2006-07-11 Baxter International Inc. Sliding reconstitution device for a diluent container
US7358505B2 (en) * 1998-09-15 2008-04-15 Baxter International Inc. Apparatus for fabricating a reconstitution assembly
AR021220A1 (en) 1998-09-15 2002-07-03 Baxter Int CONNECTION DEVICE FOR ESTABLISHING A FLUID COMMUNICATION BETWEEN A FIRST CONTAINER AND A SECOND CONTAINER.
US6223130B1 (en) 1998-11-16 2001-04-24 Deka Products Limited Partnership Apparatus and method for detection of a leak in a membrane of a fluid flow control system
US6077055A (en) * 1998-12-03 2000-06-20 Sims Deltec, Inc. Pump system including cassette sensor and occlusion sensor
US6276567B1 (en) 1999-03-29 2001-08-21 Hydrus, Inc. Pressurized fluid delivery apparatus
US6877713B1 (en) 1999-07-20 2005-04-12 Deka Products Limited Partnership Tube occluder and method for occluding collapsible tubes
US6416293B1 (en) 1999-07-20 2002-07-09 Deka Products Limited Partnership Pumping cartridge including a bypass valve and method for directing flow in a pumping cartridge
US6382923B1 (en) 1999-07-20 2002-05-07 Deka Products Ltd. Partnership Pump chamber having at least one spacer for inhibiting the pumping of a gas
US6302653B1 (en) 1999-07-20 2001-10-16 Deka Products Limited Partnership Methods and systems for detecting the presence of a gas in a pump and preventing a gas from being pumped from a pump
US6604908B1 (en) 1999-07-20 2003-08-12 Deka Products Limited Partnership Methods and systems for pulsed delivery of fluids from a pump
US6905479B1 (en) 1999-07-20 2005-06-14 Deka Products Limited Partnership Pumping cartridge having an integrated filter and method for filtering a fluid with the cartridge
US6408204B1 (en) 1999-07-28 2002-06-18 Medrad, Inc. Apparatuses and methods for extravasation detection
US6296450B1 (en) 1999-09-03 2001-10-02 Baxter International Inc. Systems and methods for control of pumps employing gravimetric sensing
US6709412B2 (en) * 1999-09-03 2004-03-23 Baxter International Inc. Blood processing systems and methods that employ an in-line leukofilter mounted in a restraining fixture
US6875191B2 (en) * 1999-09-03 2005-04-05 Baxter International Inc. Blood processing systems and methods that alternate flow of blood component and additive solution through an in-line leukofilter
US6325775B1 (en) 1999-09-03 2001-12-04 Baxter International Inc. Self-contained, transportable blood processsing device
US6270673B1 (en) 1999-09-03 2001-08-07 Baxter International Inc. Door latching assembly for holding a fluid pressure actuated cassette during use
US7041076B1 (en) * 1999-09-03 2006-05-09 Baxter International Inc. Blood separation systems and methods using a multiple function pump station to perform different on-line processing tasks
US6723062B1 (en) * 1999-09-03 2004-04-20 Baxter International Inc. Fluid pressure actuated blood pumping systems and methods with continuous inflow and pulsatile outflow conditions
US8722422B2 (en) 1999-09-03 2014-05-13 Therakos, Inc. Uninterrupted flow pump apparatus and method
US6261065B1 (en) * 1999-09-03 2001-07-17 Baxter International Inc. System and methods for control of pumps employing electrical field sensing
US6949079B1 (en) 1999-09-03 2005-09-27 Baxter International Inc. Programmable, fluid pressure actuated blood processing systems and methods
US6495366B1 (en) 1999-09-03 2002-12-17 Therakos, Inc. Uninterrupted flow pump apparatus and method
US6759007B1 (en) 1999-09-03 2004-07-06 Baxter International Inc. Blood processing systems and methods employing fluid pressure actuated pumps and valves
US6481980B1 (en) 1999-09-03 2002-11-19 Baxter International Inc. Fluid flow cassette with pressure actuated pump and valve stations
US20060178612A9 (en) * 1999-09-03 2006-08-10 Baxter International Inc. Blood processing systems with fluid flow cassette with a pressure actuated pump chamber and in-line air trap
US7255680B1 (en) * 1999-10-27 2007-08-14 Cardinal Health 303, Inc. Positive pressure infusion system having downstream resistance measurement capability
US6497676B1 (en) 2000-02-10 2002-12-24 Baxter International Method and apparatus for monitoring and controlling peritoneal dialysis therapy
EP1261876B1 (en) 2000-02-29 2015-09-09 Gen-Probe Incorporated Fluid dispense and liquid surface verification system
US6793643B1 (en) 2000-04-21 2004-09-21 Therakos, Inc. Low extracorporeal volume treatment system
US6447545B1 (en) * 2000-07-01 2002-09-10 George W. Bagby Self-aligning bone implant
US6503062B1 (en) * 2000-07-10 2003-01-07 Deka Products Limited Partnership Method for regulating fluid pump pressure
US6669669B2 (en) * 2001-10-12 2003-12-30 Insulet Corporation Laminated patient infusion device
CA2771723C (en) 2000-09-08 2016-03-29 Insulet Corporation Devices, systems and methods for patient infusion
US6461382B1 (en) * 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
DE60126325T2 (en) 2000-11-09 2007-11-08 Insulet Corp., Beverly DEVICE FOR THE TRANSCUTANEOUS DISPOSAL OF MEDICAMENTS
ATE311811T1 (en) 2000-12-21 2005-12-15 Insulet Corp REMOTE CONTROL MEDICAL DEVICE
US7047058B1 (en) 2001-02-06 2006-05-16 Medrad, Inc. Apparatuses, systems and methods for extravasation detection
CN1556716A (en) 2001-02-22 2004-12-22 ���Ͽع����޹�˾ Modular infusion device and method
WO2002078765A2 (en) * 2001-04-02 2002-10-10 The Hook Research Foundation Programmable flexible-tube flow regulator and use methods
US6554023B2 (en) 2001-06-13 2003-04-29 Baxter International Inc. Vacuum demand flow valve
US20040060598A1 (en) * 2001-06-13 2004-04-01 Hal Danby Vacuum demand flow valve
USD493866S1 (en) 2001-06-13 2004-08-03 Baxter Intl. Inc Valve
US6550493B2 (en) 2001-06-13 2003-04-22 Baxter International Inc. Vacuum demand valve
US20020189685A1 (en) * 2001-06-13 2002-12-19 Danby Hal C. Vacuum demand flow valve
US20030017066A1 (en) * 2001-07-19 2003-01-23 Baxter International Inc. Apparatus, flexible bag and method for dispensing
US6905314B2 (en) 2001-10-16 2005-06-14 Baxter International Inc. Pump having flexible liner and compounding apparatus having such a pump
US6769231B2 (en) * 2001-07-19 2004-08-03 Baxter International, Inc. Apparatus, method and flexible bag for use in manufacturing
EP1414339B1 (en) * 2001-07-26 2006-10-25 Medrad Inc. Electromagnetic sensors for biological tissue applications
WO2003009753A2 (en) * 2001-07-26 2003-02-06 Chad Bouton Detection of fluids in tissue
US7569028B2 (en) * 2001-10-12 2009-08-04 Flexcorp Fluid flow adjustment mechanism
US6974438B2 (en) 2001-10-22 2005-12-13 L.G. Med Ltd. Method and device for detecting malfunction in a gravity fed intravenous delivery system
US20040078028A1 (en) * 2001-11-09 2004-04-22 Flaherty J. Christopher Plunger assembly for patient infusion device
EP1319417A1 (en) * 2001-12-17 2003-06-18 B. Braun Medizintechnologie GmbH Method and apparatus for monitoring a fluid conduit system of a medical instrument
US20030125662A1 (en) 2002-01-03 2003-07-03 Tuan Bui Method and apparatus for providing medical treatment therapy based on calculated demand
US20030130624A1 (en) * 2002-01-07 2003-07-10 Kowalik Francis C. Medical infusion system with integrated power supply and pump therefor
DE60320639T2 (en) * 2002-01-16 2009-05-28 Michael G. Carlsbad Simon PRESSURE COMPENSATING IV RIVER REGULATOR
RU2279898C2 (en) * 2002-02-18 2006-07-20 Данфосс А/С Device for introducing liquid medicaments
US8250483B2 (en) * 2002-02-28 2012-08-21 Smiths Medical Asd, Inc. Programmable medical infusion pump displaying a banner
US8504179B2 (en) 2002-02-28 2013-08-06 Smiths Medical Asd, Inc. Programmable medical infusion pump
US6830558B2 (en) 2002-03-01 2004-12-14 Insulet Corporation Flow condition sensor assembly for patient infusion device
US6692457B2 (en) 2002-03-01 2004-02-17 Insulet Corporation Flow condition sensor assembly for patient infusion device
US6863261B2 (en) 2002-03-12 2005-03-08 Baxter International Inc. Valve stop
US7544179B2 (en) 2002-04-11 2009-06-09 Deka Products Limited Partnership System and method for delivering a target volume of fluid
US6656158B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
US20050238507A1 (en) * 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
US20040153032A1 (en) * 2002-04-23 2004-08-05 Garribotto John T. Dispenser for patient infusion device
US6960192B1 (en) 2002-04-23 2005-11-01 Insulet Corporation Transcutaneous fluid delivery system
US6656159B2 (en) 2002-04-23 2003-12-02 Insulet Corporation Dispenser for patient infusion device
JP3854190B2 (en) * 2002-04-26 2006-12-06 株式会社ジェイテクト Motor control device
CN1653338A (en) 2002-05-17 2005-08-10 贝克顿·迪金森公司 Automated system for isolating, amplifying and detecting a target nucleic acid sequence
US20030220607A1 (en) * 2002-05-24 2003-11-27 Don Busby Peritoneal dialysis apparatus
US7175606B2 (en) 2002-05-24 2007-02-13 Baxter International Inc. Disposable medical fluid unit having rigid frame
US7153286B2 (en) 2002-05-24 2006-12-26 Baxter International Inc. Automated dialysis system
US6929751B2 (en) * 2002-05-24 2005-08-16 Baxter International Inc. Vented medical fluid tip protector methods
US6814547B2 (en) 2002-05-24 2004-11-09 Baxter International Inc. Medical fluid pump
DE10224750A1 (en) 2002-06-04 2003-12-24 Fresenius Medical Care De Gmbh Device for the treatment of a medical fluid
US6723072B2 (en) 2002-06-06 2004-04-20 Insulet Corporation Plunger assembly for patient infusion device
US7018360B2 (en) 2002-07-16 2006-03-28 Insulet Corporation Flow restriction system and method for patient infusion device
EP2338543B1 (en) 2002-07-19 2013-06-12 Baxter International Inc. Systems for performing peritoneal dialysis
US7238164B2 (en) * 2002-07-19 2007-07-03 Baxter International Inc. Systems, methods and apparatuses for pumping cassette-based therapies
DE60336724D1 (en) 2002-07-19 2011-05-26 Baxter Healthcare Sa SYSTEM FOR PERITONEAL DIALYSIS
US11273245B2 (en) 2002-07-19 2022-03-15 Baxter International Inc. Dialysis system having a vented disposable dialysis fluid carrying member
US7128727B2 (en) * 2002-09-30 2006-10-31 Flaherty J Christopher Components and methods for patient infusion device
US6846161B2 (en) * 2002-10-24 2005-01-25 Baxter International Inc. Blood component processing systems and methods using fluid-actuated pumping elements that are integrity tested prior to use
US20040116866A1 (en) * 2002-12-17 2004-06-17 William Gorman Skin attachment apparatus and method for patient infusion device
US7007824B2 (en) 2003-01-24 2006-03-07 Baxter International Inc. Liquid dispenser and flexible bag therefor
US20040144799A1 (en) * 2003-01-24 2004-07-29 Baxter International Inc. Liquid dispenser and flexible bag therefor
USD499793S1 (en) 2003-03-17 2004-12-14 Baxter International Inc. Valve
US20050182366A1 (en) * 2003-04-18 2005-08-18 Insulet Corporation Method For Visual Output Verification
AU2004232858B2 (en) 2003-04-23 2009-07-09 Mannkind Corporation Hydraulically actuated pump for long duration medicament administration
US20050011908A1 (en) * 2003-07-16 2005-01-20 Baxter International, Inc. Dispenser and pressure/vacuum converting machine
RU2006104656A (en) 2003-07-31 2007-09-10 Дебиотех С.А. (Ch) SYSTEM FOR PERITONAL DIALYSIS
WO2005009512A1 (en) 2003-07-31 2005-02-03 Debiotech S.A. A system for performing fluid administration
US20050065760A1 (en) * 2003-09-23 2005-03-24 Robert Murtfeldt Method for advising patients concerning doses of insulin
US20050070847A1 (en) * 2003-09-29 2005-03-31 Van Erp Wilhelmus Petrus Martinus Maria Rapid-exchange balloon catheter with hypotube shaft
MX351817B (en) 2003-10-28 2017-10-30 Baxter Healthcare Sa Improved priming, integrity and head height methods and apparatuses for medical fluid systems.
US7461968B2 (en) 2003-10-30 2008-12-09 Deka Products Limited Partnership System, device, and method for mixing liquids
US8158102B2 (en) 2003-10-30 2012-04-17 Deka Products Limited Partnership System, device, and method for mixing a substance with a liquid
US7662139B2 (en) 2003-10-30 2010-02-16 Deka Products Limited Partnership Pump cassette with spiking assembly
US8182461B2 (en) 2003-11-04 2012-05-22 Smiths Medical Asd, Inc. Syringe pump rapid occlusion detection system
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
US7776006B2 (en) * 2003-11-05 2010-08-17 Baxter International Inc. Medical fluid pumping system having real time volume determination
US20050133729A1 (en) * 2003-12-23 2005-06-23 Archie Woodworth Apparatus and method for fabricating a reconstitution assembly
US7641851B2 (en) * 2003-12-23 2010-01-05 Baxter International Inc. Method and apparatus for validation of sterilization process
US7206715B2 (en) * 2003-12-31 2007-04-17 Cardinal Health 303, Inc. Empty container detection using container side pressure sensing
US8672875B2 (en) * 2003-12-31 2014-03-18 Carefusion 303, Inc. Medication safety enhancement for secondary infusion
US7255683B2 (en) * 2003-12-31 2007-08-14 Cardinal Health 303, Inc. System for detecting the status of a vent associated with a fluid supply upstream of an infusion pump
US8954336B2 (en) 2004-02-23 2015-02-10 Smiths Medical Asd, Inc. Server for medical device
US20050209563A1 (en) * 2004-03-19 2005-09-22 Peter Hopping Cassette-based dialysis medical fluid therapy systems, apparatuses and methods
WO2006014425A1 (en) * 2004-07-02 2006-02-09 Biovalve Technologies, Inc. Methods and devices for delivering glp-1 and uses thereof
US20060012793A1 (en) * 2004-07-19 2006-01-19 Helicos Biosciences Corporation Apparatus and methods for analyzing samples
US7276720B2 (en) 2004-07-19 2007-10-02 Helicos Biosciences Corporation Apparatus and methods for analyzing samples
US8512283B2 (en) * 2004-08-27 2013-08-20 Atul Kumar Tissue cavity distending system with low turbulence
US20070070349A1 (en) * 2005-09-23 2007-03-29 Helicos Biosciences Corporation Optical train and method for TIRF single molecule detection and analysis
JP4722654B2 (en) * 2004-12-20 2011-07-13 ルネサスエレクトロニクス株式会社 Oscillator and charge pump circuit using the same
WO2006080885A1 (en) * 2005-01-25 2006-08-03 Aerocrine Ab Constant flow regulator device
US20060178633A1 (en) * 2005-02-03 2006-08-10 Insulet Corporation Chassis for fluid delivery device
US20060286566A1 (en) * 2005-02-03 2006-12-21 Helicos Biosciences Corporation Detecting apparent mutations in nucleic acid sequences
US20060195064A1 (en) * 2005-02-28 2006-08-31 Fresenius Medical Care Holdings, Inc. Portable apparatus for peritoneal dialysis therapy
US7935074B2 (en) 2005-02-28 2011-05-03 Fresenius Medical Care Holdings, Inc. Cassette system for peritoneal dialysis machine
US20060276748A1 (en) * 2005-05-17 2006-12-07 Infussafe Llc Infusion monitoring device system and method
US7552240B2 (en) * 2005-05-23 2009-06-23 International Business Machines Corporation Method for user space operations for direct I/O between an application instance and an I/O adapter
US8197231B2 (en) 2005-07-13 2012-06-12 Purity Solutions Llc Diaphragm pump and related methods
US9146564B2 (en) 2006-03-06 2015-09-29 Deka Products Limited Partnership Product dispensing system
JP2009532117A (en) 2006-03-30 2009-09-10 ヴァレリタス,エルエルシー Multi-cartridge fluid dispensing device
US10537671B2 (en) 2006-04-14 2020-01-21 Deka Products Limited Partnership Automated control mechanisms in a hemodialysis apparatus
US8292594B2 (en) 2006-04-14 2012-10-23 Deka Products Limited Partnership Fluid pumping systems, devices and methods
US8858526B2 (en) 2006-08-03 2014-10-14 Smiths Medical Asd, Inc. Interface for medical infusion pump
US20080126969A1 (en) * 2006-08-03 2008-05-29 Blomquist Michael L Interface for medical infusion pump
US8149131B2 (en) 2006-08-03 2012-04-03 Smiths Medical Asd, Inc. Interface for medical infusion pump
US8435206B2 (en) 2006-08-03 2013-05-07 Smiths Medical Asd, Inc. Interface for medical infusion pump
US8965707B2 (en) 2006-08-03 2015-02-24 Smiths Medical Asd, Inc. Interface for medical infusion pump
US8926550B2 (en) * 2006-08-31 2015-01-06 Fresenius Medical Care Holdings, Inc. Data communication system for peritoneal dialysis machine
US8870811B2 (en) * 2006-08-31 2014-10-28 Fresenius Medical Care Holdings, Inc. Peritoneal dialysis systems and related methods
US8870812B2 (en) 2007-02-15 2014-10-28 Baxter International Inc. Dialysis system having video display with ambient light adjustment
US8361023B2 (en) 2007-02-15 2013-01-29 Baxter International Inc. Dialysis system with efficient battery back-up
US8558964B2 (en) 2007-02-15 2013-10-15 Baxter International Inc. Dialysis system having display with electromagnetic compliance (“EMC”) seal
US7998115B2 (en) 2007-02-15 2011-08-16 Baxter International Inc. Dialysis system having optical flowrate detection
US7731689B2 (en) 2007-02-15 2010-06-08 Baxter International Inc. Dialysis system having inductive heating
KR101861192B1 (en) 2007-02-27 2018-05-28 데카 프로덕츠 리미티드 파트너쉽 Hemodialysis apparatus and methods
US8409441B2 (en) 2007-02-27 2013-04-02 Deka Products Limited Partnership Blood treatment systems and methods
US8491184B2 (en) 2007-02-27 2013-07-23 Deka Products Limited Partnership Sensor apparatus systems, devices and methods
US8357298B2 (en) 2007-02-27 2013-01-22 Deka Products Limited Partnership Hemodialysis systems and methods
US8393690B2 (en) 2007-02-27 2013-03-12 Deka Products Limited Partnership Enclosure for a portable hemodialysis system
US8042563B2 (en) 2007-02-27 2011-10-25 Deka Products Limited Partnership Cassette system integrated apparatus
US8425471B2 (en) 2007-02-27 2013-04-23 Deka Products Limited Partnership Reagent supply for a hemodialysis system
US9028691B2 (en) 2007-02-27 2015-05-12 Deka Products Limited Partnership Blood circuit assembly for a hemodialysis system
US8562834B2 (en) 2007-02-27 2013-10-22 Deka Products Limited Partnership Modular assembly for a portable hemodialysis system
US20090107335A1 (en) 2007-02-27 2009-04-30 Deka Products Limited Partnership Air trap for a medical infusion device
US20080253911A1 (en) 2007-02-27 2008-10-16 Deka Products Limited Partnership Pumping Cassette
MX345516B (en) 2007-05-29 2017-02-02 Fresenius Medical Care Holdings Inc Solutions, dialysates, and related methods.
US8057423B2 (en) 2007-07-05 2011-11-15 Baxter International Inc. Dialysis system having disposable cassette
US7901376B2 (en) * 2007-07-05 2011-03-08 Baxter International Inc. Dialysis cassette having multiple outlet valve
US7909795B2 (en) 2007-07-05 2011-03-22 Baxter International Inc. Dialysis system having disposable cassette and interface therefore
US8715235B2 (en) 2007-07-05 2014-05-06 Baxter International Inc. Dialysis system having disposable cassette and heated cassette interface
US7892197B2 (en) 2007-09-19 2011-02-22 Fresenius Medical Care Holdings, Inc. Automatic prime of an extracorporeal blood circuit
US8728020B2 (en) 2007-10-04 2014-05-20 Gambro Lundia Ab Infusion apparatus
US20100056975A1 (en) * 2008-08-27 2010-03-04 Deka Products Limited Partnership Blood line connector for a medical infusion device
US8771508B2 (en) 2008-08-27 2014-07-08 Deka Products Limited Partnership Dialyzer cartridge mounting arrangement for a hemodialysis system
US8863772B2 (en) 2008-08-27 2014-10-21 Deka Products Limited Partnership Occluder for a medical infusion system
KR20210000735A (en) * 2007-10-12 2021-01-05 데카 프로덕츠 리미티드 파트너쉽 Apparatus and method for hemodialysis
US8114276B2 (en) 2007-10-24 2012-02-14 Baxter International Inc. Personal hemodialysis system
US7905853B2 (en) 2007-10-30 2011-03-15 Baxter International Inc. Dialysis system having integrated pneumatic manifold
KR100915083B1 (en) * 2007-12-21 2009-09-02 재단법인서울대학교산학협력재단 Gas Volume Quantitative Analysis Device Combined With Syringe and Manometer
KR101863753B1 (en) 2008-01-23 2018-06-04 데카 프로덕츠 리미티드 파트너쉽 Pump cassette and methods for use in medical treatment system using a plurality of fluid lines
US10201647B2 (en) 2008-01-23 2019-02-12 Deka Products Limited Partnership Medical treatment system and methods using a plurality of fluid lines
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US20090191067A1 (en) * 2008-01-25 2009-07-30 Phluid,Inc. Two chamber pumps and related methods
US8133197B2 (en) 2008-05-02 2012-03-13 Smiths Medical Asd, Inc. Display for pump
US9514283B2 (en) 2008-07-09 2016-12-06 Baxter International Inc. Dialysis system having inventory management including online dextrose mixing
US8062513B2 (en) 2008-07-09 2011-11-22 Baxter International Inc. Dialysis system and machine having therapy prescription recall
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US7804599B2 (en) * 2008-07-24 2010-09-28 MGM Instruments, Inc. Fluid volume verification system
US8056582B2 (en) 2008-08-08 2011-11-15 Tandem Diabetes Care, Inc. System of stepped flow rate regulation using compressible members
MX2011001778A (en) 2008-08-15 2011-05-10 Deka Products Lp Water vending apparatus with distillation unit.
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
EP2350897B1 (en) 2008-08-27 2019-10-09 Deka Products Limited Partnership Control architecture and methods for blood treatment systems
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
US8650937B2 (en) 2008-09-19 2014-02-18 Tandem Diabetes Care, Inc. Solute concentration measurement device and related methods
US8529471B2 (en) * 2008-12-03 2013-09-10 Holtech Medical Method and system for the determination of residual volume in patients having an enteral feeding tube
US8556869B2 (en) * 2009-02-03 2013-10-15 Michael G. Simon IV flow rate regulator
US8480634B2 (en) * 2009-02-03 2013-07-09 Michael G. Simon Pressure compensating device
US8192401B2 (en) 2009-03-20 2012-06-05 Fresenius Medical Care Holdings, Inc. Medical fluid pump systems and related components and methods
US8591448B2 (en) * 2009-05-13 2013-11-26 Haemonetics Corporation Pressure monitoring within a fluid cassette
WO2011008858A1 (en) 2009-07-15 2011-01-20 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US9149588B2 (en) * 2009-07-17 2015-10-06 Nektar Therapeutics Systems and methods for driving sealed nebulizers
CA2769030C (en) 2009-07-30 2016-05-10 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8720913B2 (en) 2009-08-11 2014-05-13 Fresenius Medical Care Holdings, Inc. Portable peritoneal dialysis carts and related systems
CN102821798A (en) * 2009-10-30 2012-12-12 德卡产品有限公司 Apparatus and method for detecting disconnection of an intravascular access device
US9151646B2 (en) 2011-12-21 2015-10-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
RU2012141046A (en) 2010-02-26 2014-04-10 Дека Продактс Лимитед Партнершип RFID SYSTEM WITH VOLTAGE CURRENT CATCHER
US8425780B2 (en) 2010-03-11 2013-04-23 Fresenius Medical Care Holdings, Inc. Dialysis system venting devices and related systems and methods
US9211378B2 (en) 2010-10-22 2015-12-15 Cequr Sa Methods and systems for dosing a medicament
DE102010053973A1 (en) 2010-12-09 2012-06-14 Fresenius Medical Care Deutschland Gmbh Medical device with a heater
WO2012087798A2 (en) 2010-12-20 2012-06-28 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US9624915B2 (en) 2011-03-09 2017-04-18 Fresenius Medical Care Holdings, Inc. Medical fluid delivery sets and related systems and methods
WO2012154352A1 (en) 2011-04-21 2012-11-15 Fresenius Medical Care Holdings, Inc. Medical fluid pumping systems and related devices and methods
US9724458B2 (en) 2011-05-24 2017-08-08 Deka Products Limited Partnership Hemodialysis system
AU2012259459B2 (en) 2011-05-24 2016-06-02 Deka Products Limited Partnership Blood treatment systems and methods
EP2551523A1 (en) * 2011-07-29 2013-01-30 Debiotech S.A. Method and device for accurate and low-consumption mems micropump actuation
US10987017B2 (en) 2011-09-02 2021-04-27 Battelle Memorial Institute Distributed extravasation detecton system
BR112014009778A2 (en) 2011-10-28 2017-06-13 Deka Products Lp pwm-controlled solenoid pump product distribution system
US9186449B2 (en) 2011-11-01 2015-11-17 Fresenius Medical Care Holdings, Inc. Dialysis machine support assemblies and related systems and methods
US9746094B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter having a background pattern with first and second portions
US9724467B2 (en) 2011-12-21 2017-08-08 Deka Products Limited Partnership Flow meter
US9746093B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter and related system and apparatus
US10228683B2 (en) 2011-12-21 2019-03-12 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9435455B2 (en) 2011-12-21 2016-09-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
CR20200298A (en) 2011-12-21 2020-09-07 Deka Products Lp Apparatus for controlling fluid flow
US10488848B2 (en) 2011-12-21 2019-11-26 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US20130317373A1 (en) 2012-03-12 2013-11-28 Ivwatch, Llc System for Mitigating the Effects of Tissue Blood Volume Changes to Aid in Diagnosing Infiltration or Extravasation in Animalia Tissue
EP3549524B1 (en) 2012-03-30 2023-01-25 Insulet Corporation Fluid delivery device with transcutaneous access tool, insertion mechanism and blood glucose monitoring for use therewith
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9364655B2 (en) 2012-05-24 2016-06-14 Deka Products Limited Partnership Flexible tubing occlusion assembly
CA3205282A1 (en) 2012-05-24 2013-11-28 Deka Products Limited Partnership Apparatus for infusing fluid
US9610392B2 (en) 2012-06-08 2017-04-04 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US9500188B2 (en) 2012-06-11 2016-11-22 Fresenius Medical Care Holdings, Inc. Medical fluid cassettes and related systems and methods
US9759343B2 (en) 2012-12-21 2017-09-12 Deka Products Limited Partnership Flow meter using a dynamic background image
SG10201609076XA (en) 2013-01-28 2016-12-29 Smiths Medical Asd Inc Medication safety devices and methods
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9561323B2 (en) 2013-03-14 2017-02-07 Fresenius Medical Care Holdings, Inc. Medical fluid cassette leak detection methods and devices
MX368118B (en) 2013-03-14 2019-09-19 Deka Products Lp Product dispensing system.
US9772386B2 (en) 2013-03-15 2017-09-26 Fresenius Medical Care Holdings, Inc. Dialysis system with sample concentration determination device using magnet and radio frequency coil assemblies
JP6456911B2 (en) 2013-03-15 2019-01-23 デカ・プロダクツ・リミテッド・パートナーシップ Blood treatment system and method
US9433718B2 (en) 2013-03-15 2016-09-06 Fresenius Medical Care Holdings, Inc. Medical fluid system including radio frequency (RF) device within a magnetic assembly, and fluid cartridge body with one of multiple passageways disposed within the RF device, and specially configured cartridge gap accepting a portion of said RF device
US9566377B2 (en) 2013-03-15 2017-02-14 Fresenius Medical Care Holdings, Inc. Medical fluid sensing and concentration determination in a fluid cartridge with multiple passageways, using a radio frequency device situated within a magnetic field
US9597439B2 (en) 2013-03-15 2017-03-21 Fresenius Medical Care Holdings, Inc. Medical fluid sensing and concentration determination using radio frequency energy and a magnetic field
US9713664B2 (en) 2013-03-15 2017-07-25 Fresenius Medical Care Holdings, Inc. Nuclear magnetic resonance module for a dialysis machine
MX369314B (en) 2013-05-23 2019-11-05 Turnpoint Medical Devices Inc Pneumatically coupled direct drive fluid control system and process.
US10117985B2 (en) 2013-08-21 2018-11-06 Fresenius Medical Care Holdings, Inc. Determining a volume of medical fluid pumped into or out of a medical fluid cassette
USD745661S1 (en) 2013-11-06 2015-12-15 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD752209S1 (en) 2013-11-06 2016-03-22 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD751690S1 (en) 2013-11-06 2016-03-15 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
US20150182698A1 (en) 2013-12-31 2015-07-02 Abbvie Inc. Pump, motor and assembly for beneficial agent delivery
GB2523989B (en) 2014-01-30 2020-07-29 Insulet Netherlands B V Therapeutic product delivery system and method of pairing
EP2921189B1 (en) * 2014-03-17 2017-08-02 F. Hoffmann-La Roche AG Initalization of a dosing unit for drug infusion
US10286135B2 (en) 2014-03-28 2019-05-14 Fresenius Medical Care Holdings, Inc. Measuring conductivity of a medical fluid
EP3578212A1 (en) 2014-05-27 2019-12-11 DEKA Products Limited Partnership Control systems for blood or fluid handling medical devices
MX2016015561A (en) 2014-05-27 2017-07-28 Deka Products Lp Systems and methods for detecting vascular access disconnection.
JP6783147B2 (en) 2014-06-05 2020-11-11 デカ・プロダクツ・リミテッド・パートナーシップ A system that calculates changes in fluid volume in a pumping chamber
US10279126B2 (en) 2014-10-07 2019-05-07 Medtronic Minimed, Inc. Fluid conduit assembly with gas trapping filter in the fluid flow path
US10220132B2 (en) 2014-12-19 2019-03-05 Fenwal, Inc. Biological fluid flow control apparatus and method
WO2016134137A1 (en) 2015-02-18 2016-08-25 Insulet Corporation Fluid delivery and infusion devices, and methods of use thereof
DE102015206760A1 (en) * 2015-04-15 2016-10-20 Henkel Ag & Co. Kgaa Apparatus and method for metered delivery of a liquid
WO2016182716A1 (en) * 2015-05-11 2016-11-17 Cable Craig Alan Ii High-viscosity filling of implanted devices
WO2016207206A1 (en) 2015-06-25 2016-12-29 Gambro Lundia Ab Medical device system and method having a distributed database
AU2016334242B2 (en) 2015-10-09 2020-09-24 Deka Products Limited Partnership Fluid pumping and bioreactor system
US10716896B2 (en) 2015-11-24 2020-07-21 Insulet Corporation Wearable automated medication delivery system
WO2017091584A1 (en) 2015-11-25 2017-06-01 Insulet Corporation Wearable medication delivery device
WO2017123525A1 (en) 2016-01-13 2017-07-20 Bigfoot Biomedical, Inc. User interface for diabetes management system
CA3009351A1 (en) 2016-01-14 2017-07-20 Bigfoot Biomedical, Inc. Adjusting insulin delivery rates
CA3013046A1 (en) 2016-01-28 2017-08-03 Deka Products Limited Partnership Apparatus for monitoring, regulating, or controlling fluid flow
USD905848S1 (en) 2016-01-28 2020-12-22 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
US10413663B2 (en) * 2016-03-04 2019-09-17 Zyno Medical, Llc Automatic anti-free-flow valve for medical pumps
USD854145S1 (en) 2016-05-25 2019-07-16 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
WO2018035051A1 (en) 2016-08-14 2018-02-22 Insulet Corporation Drug delivery device with detection of position of the plunger
US10765807B2 (en) 2016-09-23 2020-09-08 Insulet Corporation Fluid delivery device with sensor
WO2018067645A1 (en) 2016-10-07 2018-04-12 Insulet Corporation Multi-stage delivery system
US11607490B2 (en) * 2016-11-01 2023-03-21 Sanofi-Aventis Deutschland Gmbh Volume measuring arrangement
US11299705B2 (en) 2016-11-07 2022-04-12 Deka Products Limited Partnership System and method for creating tissue
US10780217B2 (en) 2016-11-10 2020-09-22 Insulet Corporation Ratchet drive for on body delivery system
KR102476516B1 (en) 2016-12-21 2022-12-09 감브로 룬디아 아베 A medical device system that includes an information technology infrastructure with secure cluster domains supporting external domains.
US10384001B2 (en) * 2017-01-17 2019-08-20 Nxp B.V. Fluid flow device
US10603440B2 (en) 2017-01-19 2020-03-31 Insulet Corporation Cartridge hold-up volume reduction
US11045603B2 (en) 2017-02-22 2021-06-29 Insulet Corporation Needle insertion mechanisms for drug containers
US10695485B2 (en) 2017-03-07 2020-06-30 Insulet Corporation Very high volume user filled drug delivery device
US11135345B2 (en) 2017-05-10 2021-10-05 Fresenius Medical Care Holdings, Inc. On demand dialysate mixing using concentrates
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery
EP3662161A1 (en) 2017-08-03 2020-06-10 Insulet Corporation Micro piston pump
US10973978B2 (en) 2017-08-03 2021-04-13 Insulet Corporation Fluid flow regulation arrangements for drug delivery devices
EP3443947B1 (en) 2017-08-15 2021-09-29 Prodictis SA Device for preparing a dose of material
US11786668B2 (en) 2017-09-25 2023-10-17 Insulet Corporation Drug delivery devices, systems, and methods with force transfer elements
EP3687600B1 (en) 2017-09-26 2022-04-27 Insulet Corporation Needle mechanism module for drug delivery device
US11147931B2 (en) 2017-11-17 2021-10-19 Insulet Corporation Drug delivery device with air and backflow elimination
CN109289100A (en) * 2017-11-27 2019-02-01 朱永财 One kind is medical to be automatically closed transfusion system
US20200384189A1 (en) * 2017-11-29 2020-12-10 Serenno Medical A dual active valve fluid pressure operated positive displacement pump
USD928199S1 (en) 2018-04-02 2021-08-17 Bigfoot Biomedical, Inc. Medication delivery device with icons
CN112236826A (en) 2018-05-04 2021-01-15 英赛罗公司 Safety constraints for drug delivery systems based on control algorithms
US10874803B2 (en) 2018-05-31 2020-12-29 Insulet Corporation Drug cartridge with drive system
EP3801682A1 (en) 2018-06-06 2021-04-14 Insulet Corporation Linear shuttle pump for drug delivery
US11628251B2 (en) 2018-09-28 2023-04-18 Insulet Corporation Activity mode for artificial pancreas system
WO2020077223A1 (en) 2018-10-11 2020-04-16 Insulet Corporation Event detection for drug delivery system
US11504458B2 (en) 2018-10-17 2022-11-22 Fresenius Medical Care Holdings, Inc. Ultrasonic authentication for dialysis
AU2019390474B2 (en) 2018-11-28 2023-03-30 Insulet Corporation Drug delivery shuttle pump system and valve assembly
WO2021021596A1 (en) 2019-07-26 2021-02-04 Deka Products Limited Partnership Apparatus for monitoring, regulating, or controlling fluid flow
USD964563S1 (en) 2019-07-26 2022-09-20 Deka Products Limited Partnership Medical flow clamp
US11801344B2 (en) 2019-09-13 2023-10-31 Insulet Corporation Blood glucose rate of change modulation of meal and correction insulin bolus quantity
US11935637B2 (en) 2019-09-27 2024-03-19 Insulet Corporation Onboarding and total daily insulin adaptivity
US11369735B2 (en) 2019-11-05 2022-06-28 Insulet Corporation Component positioning of a linear shuttle pump
IL270895B (en) * 2019-11-25 2021-06-30 Elad David Infusion pump
US11833329B2 (en) 2019-12-20 2023-12-05 Insulet Corporation Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns
US11551802B2 (en) 2020-02-11 2023-01-10 Insulet Corporation Early meal detection and calorie intake detection
US11547800B2 (en) 2020-02-12 2023-01-10 Insulet Corporation User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system
US11324889B2 (en) 2020-02-14 2022-05-10 Insulet Corporation Compensation for missing readings from a glucose monitor in an automated insulin delivery system
US11607493B2 (en) 2020-04-06 2023-03-21 Insulet Corporation Initial total daily insulin setting for user onboarding
US11684716B2 (en) 2020-07-31 2023-06-27 Insulet Corporation Techniques to reduce risk of occlusions in drug delivery systems
US11904140B2 (en) 2021-03-10 2024-02-20 Insulet Corporation Adaptable asymmetric medicament cost component in a control system for medicament delivery
US11738144B2 (en) 2021-09-27 2023-08-29 Insulet Corporation Techniques enabling adaptation of parameters in aid systems by user input
US11439754B1 (en) 2021-12-01 2022-09-13 Insulet Corporation Optimizing embedded formulations for drug delivery
WO2024038324A1 (en) * 2022-08-18 2024-02-22 Takeda Pharmaceutical Company Limited Flow detection for infusion pump

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US121487A (en) * 1871-12-05 Improvement in faucets
US1800995A (en) * 1926-11-22 1931-04-14 Reynolds Gas Regulator Co Gas regulator
FR792708A (en) * 1935-07-20 1936-01-09 Diaphragm pressure regulator
US2116636A (en) * 1936-02-18 1938-05-10 Neumann Georg Device for indicating the amount of material in a tank
US2141070A (en) * 1937-09-14 1938-12-20 Westinghouse Air Brake Co Diaphragm foot valve
DE684872C (en) * 1937-12-29 1939-12-07 Julius Pintsch Kom Ges Gas pressure regulator for high pressure gas systems
US2189750A (en) * 1938-12-23 1940-02-13 Nat Meter Company By-pass compensator for meters
US2301031A (en) * 1939-10-05 1942-11-03 Ferguson Reno Valve
US2715009A (en) * 1949-04-15 1955-08-09 Electrimatic Company Bellows operated self aligning valve
US2719889A (en) * 1950-01-27 1955-10-04 Hays Mfg Co Fluid flow responsive device
US2747400A (en) * 1952-05-06 1956-05-29 Fatio Paul Apparatus for volumetric measurements
US2747740A (en) * 1953-01-29 1956-05-29 Wilbur Curtis Company Inc Vacuum type coffee strainer
GB814867A (en) * 1956-08-30 1959-06-10 Milton Roy Co Controlled volume metering of liquefied gases
US2943643A (en) * 1956-12-21 1960-07-05 Gen Electric Flow modulating device
US2941778A (en) * 1957-10-07 1960-06-21 Abbott Lab Venoclysis apparatus
US3525355A (en) * 1967-10-13 1970-08-25 Robertshaw Controls Co Flow control apparatus
US3648726A (en) * 1968-05-06 1972-03-14 Robertshaw Controls Co Pressure regulator construction
US3547427A (en) * 1968-06-27 1970-12-15 Robertshaw Controls Co Reset mechanism for a spring assembly
US3618602A (en) * 1969-08-28 1971-11-09 Robert F Shaw Liquid infusion infiltration detection apparatus and method
DE1949616A1 (en) * 1969-10-01 1971-04-08 Distillers Co Carbon Dioxide Device for dispensing fluids
AT307907B (en) * 1970-10-10 1973-06-12 Walter Leifermann Method and device for automatic dosing of predetermined amounts of liquid
US3730215A (en) * 1971-04-08 1973-05-01 Hydr O Matic Pump Co Diaphragm controlled air relief valve
GB1429932A (en) * 1972-05-19 1976-03-31 Evered Co Ltd Gas flow regulating devices
US3901231A (en) * 1974-02-07 1975-08-26 Baxter Laboratories Inc Infusion pump apparatus
US3948285A (en) * 1975-01-29 1976-04-06 Rain Bird Sprinkler Mfg. Corporation Pressure and flow regulation device
US4010749A (en) * 1975-05-09 1977-03-08 Shaw Robert F Method of detecting infiltration of infused liquid by comparing altered skin temperature with skin temperature in area of infiltrated liquid
US4080966A (en) * 1976-08-12 1978-03-28 Trustees Of The University Of Pennsylvania Automated infusion apparatus for blood pressure control and method
US4273122A (en) * 1976-11-12 1981-06-16 Whitney Douglass G Self contained powered injection system
US4157808A (en) * 1977-11-14 1979-06-12 Integrated Flow Systems, Inc. Precision flow controller
US4300552A (en) * 1978-09-01 1981-11-17 Imed Corporation Apparatus for controlling the flow of intravenous fluid to a patient
GB1561288A (en) * 1980-02-18 1980-02-20 Univ Exeter Fluid flow rate control
US4448204A (en) * 1980-04-07 1984-05-15 Whitman Medical Corporation Liquid crystal infiltration sensing system
US4378808A (en) * 1980-04-07 1983-04-05 Whitman Medical Corporation Liquid crystal infiltration sensing system
DE3018641C2 (en) * 1980-05-16 1986-05-28 Hans 8228 Freilassing Rodler Automatic infusion pump
US4332246A (en) * 1980-06-30 1982-06-01 Staodynamics, Inc. Positive displacement intravenous infusion pump device and method
US4394862A (en) * 1980-08-25 1983-07-26 Baxter Travenol Laboratories, Inc. Metering apparatus with downline pressure monitoring system
DE3035670A1 (en) * 1980-09-22 1982-04-29 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR INFUSING LIQUIDS IN HUMAN OR ANIMAL BODIES
US4378013A (en) * 1980-09-23 1983-03-29 Burron Medical Inc. Flow controller for IV chamber
US4431019A (en) * 1981-06-25 1984-02-14 Baxter Travenol Laboratories, Inc. Fluid flow control device
US4500874A (en) * 1982-05-17 1985-02-19 Deere & Company Filter monitoring system
US4525163A (en) * 1982-08-06 1985-06-25 Nuvatec, Inc. Intravenous set flow control device
US4537387A (en) * 1982-09-30 1985-08-27 Anatros Corporation Precision valve assembly
US4519792A (en) * 1982-12-06 1985-05-28 Abbott Laboratories Infusion pump system
US4553958A (en) * 1983-02-04 1985-11-19 Quest Medical, Inc. IV Delivery controller
US4534756A (en) * 1983-04-11 1985-08-13 Ivac Corporation Fault detection apparatus and method for parenteral infusion system
US4515588A (en) * 1983-05-16 1985-05-07 Health Care Concepts, Inc. I.V. flow regulator
US4526574A (en) * 1983-05-23 1985-07-02 Baxter Travenol Laboratories, Inc. Differential occlusion sensing method and apparatus
US4530696A (en) * 1983-06-13 1985-07-23 Institute Of Critical Care Medicine Monitor for intravenous injection system for detecting occlusion and/or infiltration
US4545783A (en) * 1983-07-11 1985-10-08 Warner-Lambert Company Rigid medical solution container
DE3408331C2 (en) * 1984-03-07 1986-06-12 Fresenius AG, 6380 Bad Homburg Pumping arrangement for medical purposes
US4648869A (en) * 1985-12-04 1987-03-10 American Hospital Supply Corporation Automatic infiltration detection system and method
IL78045A0 (en) * 1986-03-05 1986-07-31 Bron Dan Drip emitter
US4710163A (en) * 1986-06-06 1987-12-01 Ivac Corporation Detection of fluid flow faults in the parenteral administration of fluids
DE3673016D1 (en) * 1986-08-19 1990-08-30 Hewlett Packard Gmbh MIXING VALVE.

Also Published As

Publication number Publication date
EP0259464B1 (en) 1991-05-22
JPH01501446A (en) 1989-05-25
WO1987005225A3 (en) 1987-11-19
WO1987005223A1 (en) 1987-09-11
JPS63503116A (en) 1988-11-17
AU7161887A (en) 1987-09-28
JPS63503117A (en) 1988-11-17
AU7164687A (en) 1987-09-28
AU7162187A (en) 1987-09-28
EP0262182B1 (en) 1991-12-18
WO1987005225A2 (en) 1987-09-11
US5241985A (en) 1993-09-07
US4816019A (en) 1989-03-28
EP0258424A1 (en) 1988-03-09
DE3770221D1 (en) 1991-06-27
US4808161A (en) 1989-02-28
US4778451A (en) 1988-10-18
CA1282737C (en) 1991-04-09
US4804360A (en) 1989-02-14
EP0262182A4 (en) 1990-07-04
EP0259464A1 (en) 1988-03-16
EP0262182A1 (en) 1988-04-06
EP0258424B1 (en) 1991-09-18
JP2551803B2 (en) 1996-11-06
DE3775318D1 (en) 1992-01-30
WO1987005224A1 (en) 1987-09-11
DE3773091D1 (en) 1991-10-24

Similar Documents

Publication Publication Date Title
CA1278843C (en) Flow control system using boyle's law
WO1987005225A1 (en) Pressure-measurement flow control system
US4998914A (en) Procedure for the perfusion of cavities in objects and device for executing the procedure
US5661245A (en) Force sensor assembly with integrated rigid, movable interface for transferring force to a responsive medium
US5315862A (en) Flow meter
CA1168538A (en) Intravenous metering device
US20100063765A1 (en) Flow Sensor Calibrated by Volume Changes
EP0332690A1 (en) Enhanced pressure measurement flow control system
JPH0267941A (en) Leakage detector
US5263367A (en) Method and apparatus for determining delivery amounts and rates of pumps in the medicotechnical field
KR100429773B1 (en) Device for injecting liquid transmitting pressure of pressure gage and sensor protector, injecting method using this and diapram housing equipped with nipple
US3838601A (en) Manometer system for monitoring pressure in a particle study device
JPS57151819A (en) Flow measuring apparatus
US5095739A (en) Tank leak detector
US4627282A (en) Fluid level sensor
US2971366A (en) Gage calibration device
US2840111A (en) Dampener and floating barrier seal
US3420416A (en) Liquid dispensing apparatus
SU1744528A1 (en) Device for measuring pressure pulsations on river floor
RU2182316C2 (en) Gas meter
US20070219533A1 (en) Chest drainage patient pressure gauge
US20070219536A1 (en) Pressure gauge for chest drainage unit
JPH0349496B2 (en)
KR910700078A (en) Method and apparatus for monitoring transmission system

Legal Events

Date Code Title Description
MKLA Lapsed