CA1133293A - Glass fibers for optical transmission - Google Patents

Glass fibers for optical transmission

Info

Publication number
CA1133293A
CA1133293A CA328,397A CA328397A CA1133293A CA 1133293 A CA1133293 A CA 1133293A CA 328397 A CA328397 A CA 328397A CA 1133293 A CA1133293 A CA 1133293A
Authority
CA
Canada
Prior art keywords
composition
curable organopolysiloxane
glass fiber
organopolysiloxane composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA328,397A
Other languages
French (fr)
Inventor
Naoya Uchida
Shigeyuki Seikai
Kozo Yoshimura
Toru Yamanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Application granted granted Critical
Publication of CA1133293A publication Critical patent/CA1133293A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03694Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03677Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4402Optical cables with one single optical waveguide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament

Abstract

ABSTRACT OF THE DISCLOSURE
A reinforced glass fiber for use in optical transmission comprising an optical fiber coated with (1) a coating of a first curable organopolysiloxane composition having a refractive index higher than that of the clad glass which forms the outer-most layer of the optical fiber, said first curable organo-polysiloxane composition being baked, (2) a coating of a second curable organopolysiloxane composition which can be the same as or different from the first curable organopolysiloxane composition, the second curable organopolysiloxane composition being provided on the first curable organopolysiloxane composition and being baked, and (3) optionally a coating of a thermoplastic resin composition.

Description

~133293 1. Field of the Invention This invention relates to reinforced glass fibers for optical transmission to be adapted for use in optical communi-cations (hereunder referred to as optical fibers).
2. Description of the Prior Art Since the optical fibers should be 200 mm or less in diameter or retain their flexibility and they are made of a fragile material, it is almost impossible to use them as a transmission line without any protection in view of their mechanical strength.
In addition, it is well known that, as an inherent - property, glass has a tendency to lose its strength with time - due to the influence of moisture and other factors. Therefore, several prior art techniques have been proposea for covering an optical fiber with a protective coat of plastics or other suitable materials so as to provide the optical fiber with a desired initial strength and a strength that withstands extended use. For example, a coated optical fiber obtained by the method disclosed in Japanese Patent Application (OPI) No. 125754/75 - which comprises coating an optical fiber with a thermosetting resin composition (generally referred to as a primary coat) and baking the resin coating and further providing thereon a ` coating of a melt-extruded thermoplastic resin composition (a secondary coat), possesses satisfactory strength and weatherability sufficient to withstand extended use. Also, as disclosed in Japanese Patent Application (OPI) No. 100734/76, j it is known that a spun optical fiber, prior to its contact - 30 - with another solid object, can be coated with a resin composition 11~3Z93 1 which is then baked to provide the fiber with a strength not substantially lower than the virgin strength of the glass.
On the other hand, a stress absorbing layer of small Young's modulus has been provided between the primary coat of thermosetting resin and the secondary coat of thermoplastic resin to eliminate the increased transmission loss due to a so-called "microbending phenomenon" which occurs when an optical fiber is repetitiously bent ïn small radius. Examples of the materials which have been proposed for the stress ab-sorbing layer are silicone resin, urethane rubber, butadiene rubber, ethylene-propylene rubber and foamed plastics. Of these materials, the silicone resin has been used widely because of its high processability, good curability and weatherability.
The term "silicone resin" as used herein refers to a two-part room temperature vulcanizing resin (RTV) which is generally referred to as a curable organopolysiloxane composition.
Of various organopolysiloxanes, dimethyl polysiloxane composition which is generally commercially available has a refractive index of about 1.40 which is lower than the refractive index of glass. Therefore, if dimethyl polysiloxane is directly coated on an optical fiber and then baked, the resulting glass fiber has the following disadvantages.
When an optical fiber having a distribution of refractive index as illustrated in accompanying Figure 1 is coated with a layer of an organopolysiloxane composition having a refractive index of about 1.40, the resulting transmission system as shown in Figure 2 comprises the desired transmission system having I as the core and another transmission system having II as the core and the organopolysiloxane as the cladding. Since the transmission system having II as the core ~ 133i~3 suffers an optically higher loss than the system having I as the core, light excited in the region II will be damped in a distance of about ten-odd meters. As a result, estimation of optical transmission in terms of the ratio of the optical output at a point one to two meters away from the incident end ~Pin) to the optical output at a point several hundred to thousand meters away from the incident end (PoUt) cannot be made correctly because Pin includes the optical output from the transmission system having II as the core and is therefore over estimated. The second transmission system (or cladding transmission system) having the core of II is undesirable and makes the correct measurement of transmission loss difficult.
In addition, if the light loss in the region of II is relatively low, light excited in the region II will reach the receiving end. On the other hand, the core of an optical fiber is generally prepared by controlling the distribution of its refractive index to obtain a desired level of transmission band (or base-band frequency characteristics) which is one element of its transmission characteristic. Therefore, emergence of light excited in the region II at the receiving end will seriously degrade the transmission band of the fiber.
It is to be understood that while Figures 1 to 3 illustrate examples of the distribution of refractive index of an optical fiber to which this invention is applicable, optical fibers having other distributions of refractive index are included within the scope of this invention.

SUMMARY OF THE INVENTION

. .
A primary object of this invention is therefore to provide a reinforced optical fiber which is free from cladding transmission and has high mechanical strength as well as stable ;.
1 transmission characteristics that can withstand extended use.
Other ob~ects, features and advantages of this invention will be apparent by the following detailed description of the invention in conjunction with the accompanying drawings.

~RIEF DESCRIPTION OF THE DRAWINGS

Figures 1 and 2 illustrate examples of the distribution of refractive index of the dimethyl polysiloxane coated optical fiber.

- 10 Figure 3 shows the distribution of refractive index of an optical fiber coated according to this invention.
In Figures 1, 2 and 3, the reference numeral 1 represents a core, 2 is a cladding A, 3 is a cladding B, and 4 and 5 are each a coat made of an organopolysiloxane com-position.
Figure 4 is a cross section of one preferred embodiment of a reinforced glass fiber according to this invention. In Figure 4, 1 is a core, 4 is a coating of a first curable organopolysiloxane, 5 is a coating of a second curable organo-`~ 20 polysiloxane and 6 is a coating of a thermoplastic resin com-position.
Figure 5 illustrates one embodiment of the apparatus for coating and baking the organopolysiloxane composition.
In Figure 5, 7 is a spinning furnace, 8 is a fiber rod, 9 is a coating die, 10 is a curing furnace, and 11 is a take-up bobbin.
DETAILED DE~CRIPTION OF THE INVENTION

According to this invention, a spun optical fiber, before contacting other solid materials, is coated with a 30 first curable organopolysiloxane composition having a refractive index larger than that of the clad glass which forms the outermost ~133Z93 1 layer of the fiber and the first composition is then baked.
The resulting fiber is further coated with a second curable organopolysiloxane composition which can be the same as or different from the first curable organopolysiloxane composition, and the second curable composition is also baked. The glass fiber thus obtained can optionally be coated with a thermoplastic resin composition on the baked second curable composition. The coatings of the first and second curable organopolysiloxane compositions of the thus reinforced optical fiber function both as what are generally referred to as a primary coating and a stress absorptive coating, thus providing a mechanical strength sufficient to withstand the stress under which the fiber is placed during the stranding and sheathing steps for making a cable of the fibers or to withstand extended use in varying environments to be encountered after cable laying as well as making the fiber retain stable transmission characteristics in environments that axe likely to cause the effect of micro-bending.

As Figure 3 shows, this invention uses an organo-polysiloxane composition having a refractive index higher than ' that of the glass which forms the outermost layer of an optical fiber, and so it is able to absorb and inhibit an urdesirable transmission mode and achieve correct measurement of transmission loss without degrading the transmission band.
Generally, curable organopolysiloxane composition having a refractive index higher than that of glass according to the present invention has a basic structure comprising the poly-siloxane bond of Si-0-Si and phenyl groups as side chain substituents. Such phenyl polysiloxane composition basically comprises ``` 1133293 (i) a component ~12C=CH~O-Si ~ ~0-5 ~CH=CH2, a component H2C=CH~0-5i ~ ~O-S ~H=CH2~ or R ' IC 6H51 a component H2C=CH - -~O-Si m -O-Si ~ H=CH2 wherein R is a substituted or unsubstituted univalent hydrocarbon group having no aliphatic unsaturation, (ii) an organohydrodiene polysiloxane component having in its molecule at least 3 hydrogen atoms directly bonded to a silicon atom contained in an amount sufficient to provide 0.7 to 5 such hydrogen atoms per vinyl group of the component (i), and (iii) a catalytic amount of platinum compound. Examples of the suitable platinum compound are those which are highly compatible with the above two components, such as an olefin complex, or a chloroplatinic acid in which part of chlorine may or may not be substituted with alcohol, aldehyde or ketone. For the purpose of increasing the mechanical strength of the cured product and fluidity of the composition, these three components may be combined with an organopolysiloxane composition comprising (CH2=CH)R2Sioo 5~
R3Sioo 5 and SiO2 (wherein R is a substituted or unsubstituted uni-valent hydrocarbon group having no aliphatic unsaturation), the molar ratio of the sum of (CH2=CH)R2Sioo 5 and R3SiOo 5 to SiO2 being in the range of from 0.5 to 2.0 and the content of vinyl group being in the range of from 0.5 to 3 wt~. The phenyl content in this phenyl polysiloxane composition can be changed to control its refractive index within the range of from about 1.~0 to about 1.52. In the formulae m and n are positive integers 3i~3 1 such that the phenyl polysiloxane composition has the desired refractive index and a viscosity at 25C of from 50 to 100,000 centistokes, preferably from 1,000 to 10,000 centistokes.
A curable organopolysiloxane composition having a refractive index lower than that of glass basically comprises (i) ~ I 1 1 a component H2C =CH - SiO- - sio - - si - CH = CH2 R R n R

(wherein R is a substituted or unsubstituted uni-valent hydro-carbon group having no aliphatic unsaturation), (ii) an organo-hydrodiene polysiloxane component having in its molecule at least
3 hydrogen atoms directly bonded to a silicon atom contained in an amount sufficient to provide 0.7 to 5 such hydrogen atoms per vinyl group in the above defined component, and a catalytic amount of a platinum compound. Examples of the suitable ; platinum compound are those which are highly compatible with the above two components, such as an olefin complex or a chloroplatinic acid in which part of chlorine may or may not be substituted with alcohol, aldehyde or ketone. This resin composition generally has a refractive index ranging from 1.40 to 1.41. For the purpose of increasing the mechanical strength of the cured product and fluidity of the composition, these three components may be combined with an organopolysiloxane composition comprising the units of (CH2=CH)R2SiOo 5, R3SiOo 5 and SiO2~wherein R is a substituted or unsubstituted univalent hydrocarbon group having no aliphatic unsaturation), the molar ratio of the sum of (CH2=CH)R2SiOo 5 and R3SiOo 5 to SiO2 being in the range of from 0.5 to 2.0 and the content of vinyl group being in the range of from 0.5 to 3 wt%. Being a positive integer, n in the formula above of the curable polysiloxane 1~33293 1 composition is desirably such that said composition has a viscosity at 25C o~ from 50 to 1,000,000 centistokes, preferably from 500 to 10,000 centistokes.
The most preferred organopolysiloxane composition having a refractive index lower than that of glass is such that R in the above formula is a methyl group.
Both the first and second curable organopolysiloxane compositions must be cured fast since they are coated and baked with the apparatus illustrated in Figure 5. The thermosetting organopolysiloxane compositions described hereinabove are cured at a rate high enough to permit production of an optical fiber as illustrated in Figure 5. To further increase the production - speed of the optical fibers, a photosetting organopolysiloxane composition having incorporated at terminals of the main chain or in side chains a vinyl group, a mercapto group or acryl group may be employed.
Examples of suitable photosetting organopolysiloxane : compositions are those which comprise a component CH3 - CH2 OSi ~ H2CH3 : H

a component CH3CH2 ~ I i4 si~lsil CH2CH3 and a benzoin photosensitizer, or which comprise a component `` 1~ 33293 1~5- (CH ) 5i~l ~Jto~ H ) SH
~H R n CH3 a component CH2=CR ll ~Si Si ~ Si ~ H=CH2 and a benzoin photosensitizer. The refractive index of the photosetting organopolysiloxane composition can be controlled - by using either methyl groups for R or phenyl groups for R in the above formulae. While the above examples refer to a benzoin sensitizer it will be apparent to one skilled in the art that other equally well known photosensitizers can be used as well.
The curable organopolysiloxane compositions to be used - in this invention are required to afford, after curing, a Young's modulus which is sufficiently small to absorb any external stress and prevent the resultant optical fiber from bending in a small radius. According to the study of the 2n present inventors, an organopolysiloxane composition which affords, after curing, a Young's modulus of 2.0 kg/mm2 or more is ineffective as a stress absorptive material and experiences an increase in transmission loss with changes in temperature and other factors. A cured organopolysiloxane composition preferably has a Young's modulus of O.5 kg/mm2 or less.
According to this invention, the first curable organo-polysiloxane composition must have a refractive index higher than that of glass, but there is no limit on the refractive index ; of the second curable organopolysiloxane composition. Since ; 30 a phenyl polysiloxane composition is more expensive than a dimethyl polysiloxane composition, it is desirable to use the ,, .

: _ g _ ,:

.

i~33293 1 dimethyl polysiloxane composition as the second curable organo-polysiloxane composition of the present invention. However, in addition to its low price, a dimethyl polysiloxane composition of low refractive index has the advantage that its molecular structure permits faster curing of the composition than a phenyl - polysiloxane composition of high refractive index. It is there-` fore desirable that only the first layer of coating which is essential to the reinforced glass fiber of this invention be made of a phenyl polysiloxane composition of high refractive index and that the second layer of coating be made of a dimethyl poly-siloxane composition.
It is to be noted that the second curable organopoly-siloxane composition need not be formed of a single layer;
instead, it may have a multilayer structure composed of the same or different materials. The second curable organopolysiloxane layer may be coated with a thermoplastic layer which functions as an additional stress absorbing layer. The production speed of optical fibers may be increased by replacing the curable organopolysiloxane composition with a non-photosetting resin composition containing a vinyl group, a mercapto group or an acrylate group.
The thermoplastic resin composition may be used in the thermoplastic layer independently or as a mixture with all or any of an additive resin, an inorganic filler, an organic filler, a cross-linking agent, pigment or dye. The resin composition must be such that it can be melt-extruded for coating on a glass fiber. While practically all kinds of thermoplastic resin can suitably be used for the purposes of this invention, pre-ferred examples are polyamide, polyester, polycarbonate, polyurethane, polyethylene, polypropylene, ionomer resin, poly-vinyl chloride, and an ethylene-vinyl acetate copolymer.

"

~ 1133293 1 This invention will now be described in greater detail by reference to the following Examples which are given for illustrative purposes only and are by no means meant to limit the scope of this invention.

A fiber rod composed mainly of quartz and having an -~ outside diameter of about 15 mm was heated in a resistance-in-ductance furnace (designated by the number 7 in Figure 5) and spun into a fiber having an outside diameter of 125 ~m. Before the fiber contacted another solid object, it was passed through - a coating die (9-A in Figure 5) where it was coated with a phenyl polysiloxane composition (OF 103, a product of Shinetsu Chemical industries Co., Ltd.) transferred to an electric heating - type curing furnace (10-A in Figure 5? for curing, then passed through a coating die (9-B in Figure 5) where it was coated with a dimethyl polysiloxane composition (KE 103 RT~, a product of Shinetsu Chemical Industries Co., Ltd.) transferred to an electric heating type curing furnace (10-B in Figure 5) for curing, and finally accumulated by a take-up bobbin (11 in Figure 5). Cured OF 103 and KE 103 each had a Young's modulus of about 0.05 kg/mm . A screw type extruding machine was used to coat the fiber with Nylon-12 (Diamide N-1940, a product of Daicel Ltd., Japan) by melt extrusion. The thicknesses of the phenyl polysiloxane composition, dimethyl polysiloxane composition and Nylon-12 coated were 200 ~um, 350 pm and 0.9 pm, respectively. The coating speed for each layer was 30 m/min.
EX~MPLE 2 The procedure of Example 1 was repeated to produce a reinforced optical fiber except that the phenyl polysiloxane ,, ~,. ' ~133z93 1 composition was CY-52-151 (a product of Toray Silicone), the dimethyl polysiloxane composition was CY-52-016 (a product of Toray Silicone) and the thermo~lastic resin was HDPE (Hi~er 5300, a product of Mitsui Petrochemical Industries, Japan).
Cured CY-52-151 and CY-52-016 each had a Young's modulus of 0.05 kg/mm . The thickness of each coating and its coating speed were the same as in Example 1.

The procedure of Example 1 was repeated to produce a reinforced optical fiber except that the phenyl polysiloxane composition was photosetting X-32-296 (a product of Shinetsu Chemical Industries Co., Ltd.) the dimethyl polysiloxane com-position was photosetting X-62-719 (a product of Shinetsu ~` Chemical Industries Co., Ltd.) both of which were cured with a ` 20 cm long mercury lamp (rated power: 2 kw), and that the thermosetting resin was polybutylene terephthalate (PBT 1401, a product of Toray). Cured X-32-296 and X-62-719 each had a Young's modulus of 0.05 kg/mm2. The coating and baking speed of phenyl and dimethyl polysiloxane compositions were 100 m/mm, and the extrusion/coating speed of polybutylene terephthalate was 30 m/min. The thickness of each coating was the same as in Example 1.
The reinforced optical fibers produced in Examples 1 to 3 had the advantages that (1) they were free from undesirable transmission modes~ (2) they had an average strength of s 5 ~ b~
. CM,/m , (3) they could be used at a temperature in the range of from - 60C to + 170C without experiencing an increase in transmission loss, and that (4) no variation in transmission loss would occur during cable making and laying procedures.
:

~ 12 -;, .

: ` 1133293 1 While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.

J' 30 ' - 13 _ .. . .

Claims (13)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A reinforced glass fiber for us in optical trans-mission comprising an optical fiber having provided thereon (1) a coating of a first curable organopolysiloxane composition hav-ing a refractive index higher than the glass which forms the outermost layer of the glass fiber, said first curable organo-polysiloxane composition being baked to cure the same and (2) a coating of a second curable organopolysiloxane composition, said second curable organopolysiloxane composition then being provided on the first curable organopolysiloxane and being baked to cure the same.
2. A glass fiber as claimed in claim 1, wherein at least the first curable organopolysiloxane composition is a phenyl-polysiloxane composition.
3. A glass fiber as claimed in claim 1, wherein at least one of the first and second curable organopolysiloxane composi-tions is a photosetting curable organopolysiloxane composition.
4. A glass fiber as claimed in claim 1, wherein at least one of the first and second curable organopolysiloxane composi-tions has a stress absorbing effect and a Young's modulus lower than 2.0 kg/mm2 at room temperature.
5. A glass fiber as claimed in claim 1, wherein the second curable organopolysiloxane composition is a dimethyl polysiloxane composition.
6. A glass fiber as claimed in claim 1, wherein the second curable organopolysiloxane composition has a multilayer structure.

7. A glass fiber as claimed in claim 1, wherein a
Claim 7 continued...

coating of thermoplastic resin composition is provided on said second curable organopolysiloxane composition.
8. A glass fiber as claimed in claim 1, wherein said first curable organopolysiloxane composition is the same as said second curable organopolysiloxane composition.
9. A glass fiber as claimed in claim 1, wherein said first curable organopolysiloxane composition is different from said second curable organopolysiloxane composition.

10. A glass fiber as claimed in claim 2, wherein said phenyl-polysiloxane composition comprises:
(i)a) a component of the formula (i)b) a component of the formula , or a component of the formula Wherein R is a substituted or unsubstituted monovalent hydro-carbon group having an aliphatic unsaturation, (ii) an organo-
claim 10 continued...
hydrodiene polysiloxane component having in its molecule at least 3 hydrogen atoms directly bonded to a silicon atom in an amount sufficient to provide 0.7 to 5 such hydrogen atoms per vinyl group of the component (i), and (iii) a catalytic amount of a platinum compound, wherein m and n are positive integers such that the pheny-polysiloxane composition has a refractive index of about 1.40 to about 1.52 and a viscosity at 25°C of from 50 to 100,000 centistokes.
11. A glass fiber as claimed in claim 10, wherein said second curable organopolysiloxane composition has a refractive index lower than that of glass and comprises (i) a component of the formula wherein R is a substituted or unsubstituted mono-valent hydro-carbon group having no aliphatic unsaturation, (ii) an organo-hydrodiene polysiloxane component having in its molecule at least 3 hydrogen atoms directly bonded to a silicon atom in an amount sufficient to provide 0.7 to 5 such hydrogen atoms per vinyl group in the above defined component, and (iii) a catalytic amount of a platinum compound, said composition having a refract-ive index ranging from 1.40 to 1.41, and n being such that such composition has a viscosity at 25°C of from 50 to 1,000,000 cent-isokes.
12. A glass fiber as claimed in claim 11, wherein in said second curable organopolysiloxane composition R is a methyl group.
13. A glass fiber as claimed in claim 11, wherein said Young's modulus is 0.5 kg/mm or less.
CA328,397A 1978-05-25 1979-05-25 Glass fibers for optical transmission Expired CA1133293A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6315878A JPS54154338A (en) 1978-05-25 1978-05-25 Glass fiber for optical transmission and production
JP63158/78 1978-05-25

Publications (1)

Publication Number Publication Date
CA1133293A true CA1133293A (en) 1982-10-12

Family

ID=13221139

Family Applications (1)

Application Number Title Priority Date Filing Date
CA328,397A Expired CA1133293A (en) 1978-05-25 1979-05-25 Glass fibers for optical transmission

Country Status (3)

Country Link
US (1) US4270840A (en)
JP (1) JPS54154338A (en)
CA (1) CA1133293A (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564203A (en) * 1978-11-07 1980-05-14 Nippon Telegr & Teleph Corp <Ntt> Glass fiber for optical transmission
US4373768A (en) * 1980-03-31 1983-02-15 Raychem Corporation Thermostatic fiber optic waveguides
US4505542A (en) * 1980-03-31 1985-03-19 Raychem Corporation Thermostatic fiber optic waveguides
EP0100517B1 (en) * 1982-07-31 1990-12-27 Sumitomo Electric Industries Limited Optical fiber sensor
ZA836710B (en) * 1982-09-30 1984-05-30 Int Standard Electric Corp Optical fibre
US4514037A (en) * 1983-10-21 1985-04-30 Desoto, Inc. Ultraviolet curable outer coatings for optical fiber
CA1236248A (en) * 1983-10-26 1988-05-03 Dow Corning Corporation Fast ultraviolet radiation curing silicone composition
JPS60112203U (en) * 1984-01-05 1985-07-30 住友電気工業株式会社 Multi-core fiber for optical transmission
NL8400727A (en) * 1984-03-07 1985-10-01 Philips Nv OPTICAL GLASS FIBER PROVIDED WITH A PLASTIC COATING AND METHOD FOR THE MANUFACTURE THEREOF.
JPH0658452B2 (en) * 1985-01-18 1994-08-03 古河電気工業株式会社 Optical fiber core
US4650003A (en) * 1985-04-10 1987-03-17 Systecon Inc. Light path heat detector
USRE33737E (en) * 1985-11-12 1991-11-05 Shin-Etsu Chemical Co., Ltd. Optical fiber coated with an organopolysiloxane curable actinic rays
JPS62119141A (en) * 1985-11-19 1987-05-30 Shin Etsu Chem Co Ltd Radiation-curing coating agent for optical fiber
US4806289A (en) * 1987-01-16 1989-02-21 The Dow Chemical Company Method of making a hollow light pipe
US4871487A (en) * 1987-01-16 1989-10-03 The Dow Chemical Company Method of making a polymeric optical waveguide by coextrusion
DE3710206A1 (en) * 1987-03-27 1988-10-06 Siemens Ag OPTICAL GLASS FIBER WITH A PRIMARY COATING FROM ORGANOPOLYSILOXANES CONTAINING ACRYLIC ACID ESTER GROUPS
EP0354289A1 (en) * 1988-08-08 1990-02-14 Corning Glass Works Optical fiber comprising polyimide-silicone block copolymer coating
US4848869A (en) * 1988-08-08 1989-07-18 Corning Incorporated Method of coating and optical fiber comprising polyimide-silicone block copolymer coating
US5492730A (en) * 1992-12-28 1996-02-20 Aluminum Company Of America Siloxane coating process for metal or ceramic substrates
US5358747A (en) * 1992-12-28 1994-10-25 Aluminum Company Of America Siloxane coating process for carbon or graphite substrates
US5483612A (en) * 1994-10-17 1996-01-09 Corning Incorporated Increased capacity optical waveguide
US6097556A (en) * 1996-07-02 2000-08-01 Science Applications International Corporation Irradiance redistribution guide
ATE278352T1 (en) * 1997-08-09 2004-10-15 Roche Diagnostics Gmbh ANALYZING DEVICE FOR IN-VIVO ANALYSIS IN A PATIENT'S BODY
US7406238B2 (en) * 2006-07-20 2008-07-29 Furukawa Electric North America, Inc. Optical fiber with extended bandwidth for crimp and cleave connectors
US8406596B2 (en) * 2009-08-12 2013-03-26 Corning Incorporated Optical fiber containing multi-layered coating system
JP2019045517A (en) * 2017-08-29 2019-03-22 住友電気工業株式会社 Optical fiber
CN110904682A (en) * 2019-11-23 2020-03-24 深圳市鑫昌龙新材料科技股份有限公司 Glass yarn coating material, preparation method, glass yarn coating process and glass yarn

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719098A (en) * 1953-05-11 1955-09-27 Westinghouse Electric Corp Ground glass surfaces with protective and stabilizing thermoset polysiloxane coating
US2895846A (en) * 1955-05-25 1959-07-21 Owens Illinois Glass Co Protective coating for decorated glassware and method of application
US3445267A (en) * 1966-01-12 1969-05-20 Dow Corning Treatment of glass with silsesquioxanes to improve durability of subsequent silicone treatments to washing
JPS587962B2 (en) * 1974-03-19 1983-02-14 株式会社フジクラ Hikari Eyever No Seizouhouhou
FR2265107B1 (en) * 1974-03-20 1981-09-25 Sumitomo Electric Industries
JPS5530201B2 (en) * 1974-03-20 1980-08-09
US4167305A (en) * 1974-06-17 1979-09-11 Sumitomo Electric Industries Ltd. Optical transmission fiber
JPS5194240A (en) * 1975-02-16 1976-08-18 Hikaridensoyo fuaibaa
US4072400A (en) * 1975-07-07 1978-02-07 Corning Glass Works Buffered optical waveguide fiber
DE2606782C2 (en) * 1976-02-19 1985-05-23 Siemens AG, 1000 Berlin und 8000 München Outer cover for fiber optic fibers or fiber bundles
JPS52143844A (en) * 1976-05-26 1977-11-30 Nippon Telegr & Teleph Corp <Ntt> Glass fibres for photo communication

Also Published As

Publication number Publication date
JPS54154338A (en) 1979-12-05
US4270840A (en) 1981-06-02

Similar Documents

Publication Publication Date Title
CA1133293A (en) Glass fibers for optical transmission
US4334733A (en) Coated glass fibers for optical transmission
US4344669A (en) Coated glass fibers for optical transmission
US4511209A (en) Composition having improved optical qualities
US6253012B1 (en) Cycled fiber lock for cross-functional totally dry optical fiber loose tube cable
US4317616A (en) Fluorosiloxane optical cladding
US4835057A (en) Glass fibers having organosilsesquioxane coatings and claddings
US4431264A (en) Fluorosiloxane optical cladding
EP0025800A1 (en) Coating material for optical communication glass fiber
CA1249384A (en) Composition for coating optical communication glass fibers
EP0195355B1 (en) Refractive-index-coupling elastic composition for optical communication fiber joints
GB2026716A (en) A Glass Optical Fiber Coated with Organopolysiloxane Layers
US4804246A (en) Light-transmitting fiber of glass core and clad of cured copolymer of fluoroolefin and alkyl ether
JPS6220521B2 (en)
US5052779A (en) Polymer clad optical fiber
CN100455635C (en) Uv light solidified paint capable of being used as optical fibre coating layer
KR850000266B1 (en) Glass fibers for optical transmission
JP3388597B2 (en) Composition for plastic optical fiber cladding material and plastic optical fiber using the same
JP2777289B2 (en) Composition for optical fiber core material and synthetic resin optical fiber using the same
JP2726043B2 (en) Flexible optical waveguide
JPH0470604A (en) Production of optical transmission body made of synthetic resin
CA2021927A1 (en) Polymer clad optical fiber
CA1221797A (en) Composition having improved optical qualities
JPH036503A (en) Polymer clad fiber for light transmission
JPH04366903A (en) Plastic optical fiber

Legal Events

Date Code Title Description
MKEX Expiry